

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

D2.2

WP2 – Preliminary Developer

Guidelines

Due date of deliverable: 30/09/2021

Actual submission date: 30/09/2021

Responsible partner: POL

Editor: Luca Ardito

E-mail address: luca.ardito@polito.it

24/09/2021

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Framework

Programme

Dissemination

Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-HOME Project is supported by funding under the Horizon 2020 Framework

Program of the European Commission SU-ICT-02-2020 GA 952652

SIFIS-HOME
Secure Interoperable Full-Stack Internet of Things for Smart

Home

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Authors: Luca Ardito (POL), Luca Barbato (LUM), Marco Ciurcina (POL), Giacomo Conti

(POL), Marco Rasori (CNR), Andrea Saracino (CNR), Michele Valsesia (POL)

Approved by: Joni Jämsä (CEN), Marko Komssi (FSEC)

Revision History

Version Date Name Partner Section Affected Comments

0.1 14/05/2020 Tentative ToC and contents POL, LUM, CNR All

0.2 11/06/2021 Added software quality

metrics

POL Section 2

0.3 26/06/2021 Added labels CNR Section 3

0.4 16/07/2021 Added workflow LUM Section 2

0.5 28/07/2021 Added privacy and licensing POL Section 3

0.6 18/08/2021 Document proofread POL, LUM, CNR All

1.0 20/09/2021 Changes after internal

review

POL, LUM, CNR All

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Executive Summary

This document presents a set of developer guidelines for the creation of secure, privacy-aware, policy-

based IoT code for the SIFIS-Home project and third-party applications expected to run within the

SIFIS-Home framework. The guidelines presented in this deliverable are preliminary. The completed

guidelines will be presented in deliverable D2.4.

This document also reviews best practices, techniques, and formalisms designed to increase the quality

and reliability of IoT software and discusses how SIFIS-Home developer APIs can help developers

write more reliable and secure software.

Finally, this deliverable presents legal guidelines for complying with regulations when handling

personal data. A more specific report on Legal and Ethical Aspects will be presented in deliverable

D2.5.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Table of contents

Executive Summary ... 3

1 Introduction ... 6

2 Software Quality Guidelines ... 8

 Workflow Structure.. 8
2.1.1 Main Components .. 8

2.1.2 Lifecycle .. 8

2.1.3 Fast Static Analysis .. 11

2.1.4 Compile Test .. 12

2.1.5 Unit and Integration Testing .. 13

2.1.6 Coverage Analysis ... 13

2.1.7 Static Probable Fault Analysis ... 15

2.1.8 Dynamic Fault Detection ... 15

2.1.9 Packaging Check .. 16

 Example Workflow - C .. 16
2.2.1 Fast Static Analysis .. 17

2.2.2 Tests ... 17

2.2.3 Code Coverage ... 17

2.2.4 Probable Fault Analysis ... 19

2.2.5 Packaging ... 19

 Software Quality .. 19
2.3.1 Static Analysis ... 19

2.3.2 Dynamic Analysis .. 21

2.3.3 Code Coverage ... 21

 Code Certification .. 23
2.4.1 Code Coverage Mechanism ... 23

2.4.2 Mechanism Example .. 24

 Additional notes ... 25
2.5.1 Rust .. 25

3 Security Label ... 27

 The SIFIS-Home Developer APIs ... 28

 Labelling Mechanism ... 31

 Tags .. 32

 API Labels.. 33

 Label Format .. 34

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

3.5.1 JSON Format ... 34

4 Legal Guidelines (Licensing and Privacy) ... 39

 Privacy ... 39

 Licensing .. 40

 Highlights ... 41
4.3.1 Green Light .. 41

4.3.2 Yellow Light .. 42

4.3.3 Red Light ... 42

5 Conclusions... 43

6 References ... 44

Glossary ... 45

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 6 of 45

1 Introduction

One of the main objectives of the SIFIS-Home project is to provide developers with some guidelines

for writing secure, privacy-aware, and policy-based IoT software. Developers will benefit from a new

labelling method, which will evaluate IoT software and infrastructure levels based on security and

privacy metrics. To achieve this labelling system, it is required to define security and privacy metrics

for measuring software and infrastructure.

The SIFIS-Home deliverable D2.1 “Report on Security and Privacy Metrics” has provided a set of

metrics to be used for assessing the quality, security, and privacy of the IoT software.

This document will give developers an initial set of guidelines for writing secure, privacy-aware, and

policy-based IoT software and is structured as follows.

Section 2 proposes guidelines for software development and software quality evaluation. The proposed

guidelines are structured as a workflow that describes step-by-step procedures and methods a developer

should follow to produce high-quality software. The described workflows include practical examples.

Also presented are notions of software quality from a developer perspective and definitions of software

quality to be used for evaluation. Section 2 also includes additional notes that a developer may consider

for improving their software further.

Section 3 covers possible risks deriving from the execution of SIFIS-Home developer APIs. A set of

labels representing safety, integrity, security, and privacy issues intrinsically related to the execution of

each specific developer API are presented in this section. The section links each SIFIS-Home developer

API with an API label that describes its possible risks. API labels linked with the APIs used within an

application code form a general label called App Label. This label is designed to be shown to a user

during the installation process. The advantage of this mechanism is twofold: (i) it informs the user about

possible risks related to the application, and (ii) it seamlessly integrates with user-defined policies,

meaning that if the label of a given API violates some rule defined by the user, its execution is

automatically prevented.

Section 4 covers legal guidelines concerning the SIFIS-Home system. Collecting data is a necessary but

challenging task. In the European Union, indiscriminate data collection is limited and regulated through

GDPR (General Data Protection Regulation). Some subjects, such as the Data Controller, are obliged

to follow GDPR’s rules. Others, such as software developers or “application designers” are not.

However, these other parties may still be interested in following GDPR guidelines so that the resulting

software is by default compliant with privacy laws. Following GDPR guidelines allows an application

to be better distributed, accepted, and reviewed by the end user and the potential Service Provider. We,

therefore, clarify which rules must be followed, by what subjects, and when it is mandatory or optional

to follow them. This topic is also closely linked to licensing, the use of free and open-source software,

and legal obligations arising from the software’s use. This section explores requirements found mainly

in GDPR articles 13, 14, 25, 32, and 35, and corresponding initiatives aimed at making free and open-

source software more standardized (such as the OpenChain1 and ClearlyDefined2 projects). A “traffic

1 https://www.openchainproject.org/
2 https://clearlydefined.io/

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 7 of 45

light system” is proposed based upon different criteria through which software can be evaluated based

on privacy and licensing regulations.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 8 of 45

2 Software Quality Guidelines

This section proposes some guidelines that developers are recommended to follow while developing

software and evaluating software quality. These guidelines are structured as workflows that have been

created starting from the concepts and mechanisms described in D2.1. Of the mechanisms presented,

the following are most notable from a developer’s perspective:

• Static analysis: mechanisms for the analysis of source code to find defects and provide

information to improve code quality.

• Dynamic analysis: mechanisms for the analysis of running software to find possible memory

faults and security issues. Such analysis can also detect parts of a program that can be further

optimized.

• Code coverage: mechanisms for determining the percentage of source code covered by tests.

Each workflow presented in this section includes practical examples depicted using the C programming

language and notes about software quality evaluation procedures necessary to better explain the

subsequent certification process and the content of some workflow steps. Some additional notes related

to the Rust programming language are also included towards the end of this section. The guidelines

presented in this section are primarily for developers. System integrators and software distributors may

note that it is possible to find some information about software packaging within the various subsections

tests for the final binary.

 Workflow Structure

While multiple tools may fit the same role within a good workflow, this section does not mention

specific tools or software. For specific examples, refer to the C workflow below.

2.1.1 Main Components

The workflows presented assume that existing projects, build systems, continuous integration, and

continuous delivery phases have already been implemented and properly configured.

2.1.2 Lifecycle

The workflow, as illustrated in Figure 1, assumes that the software is developed using a pull request

model:

• A patch set is prepared, containing features and/or fixes as well as tests covering all code

changes.

• The patch set is put up for review.

• The continuous integration automation will run a set of fast static analyses, which as a rule of

thumb, should be at least twice as fast as building the project. Static analysis checks:

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 9 of 45

– Coding style

– Code quality

• If the previous phase passes, the continuous integration system will run more resource-intensive

tasks, including:

– Compile tests

– Static fault analysis

– Unit tests

– Integration tests

– Code coverage evaluation

– Dynamic fault analysis

• Once those phases pass, it is possible to prepare packages and ensure that the software is ready

for distribution.

• If all phases pass and the reviewers approve the changes, the patch set is merged.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 10 of 45

Figure 1: Global flowchart

New Pull Request

In review

Fast Static Analysis Compile Test Static Fault Analysis
Unit and Integration

Test

Dynamic Fault
Analysis

Dynamic Fault
Analysis with Fuzzing

No

Yes

Do they all pass?

Yes

Do they all pass?

Fix the issues

Prepare the
Packages

No

Yes

Is it packaged
correctly?

Ready

No

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 11 of 45

The described workflow should attempt to minimize developer wait time. As soon as a mistake is

detected, it should be reported. When possible, most of the faster tests should be run by the developer

while writing the software. Ideally, all checks should be integrated into the build system, making it more

practical to execute every test locally when needed.

2.1.3 Fast Static Analysis

Lint, or a linter, is a static code analysis tool used to flag programming errors, bugs, stylistic errors, and

suspicious constructs. The term originates from a Unix utility that examined C language source code.

Fast static analysis is designed to enforce uniformity through linters and provide a quick overview of

the project state. Code quality analysis mechanisms should execute quickly and assist developers and

reviewers by highlighting parts of the code that have higher complexity and thus require more

documentation and additional tests. Figure 2 illustrates the fast static analysis flowchart.

Figure 2: Fast static analysis flowchart

Yes

Does it pass

the style checks?

Yes

Are the metrics still

 within the threshold?

Run the linters

Complexity/Clarity

Analysis
Fail

Pass

No

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 12 of 45

2.1.4 Compile Test

Making sure the code builds for all supported targets is essential, even if the developers are not running

tests on all of them. Setting up and keeping an entire test environment operational for many architectures

can be cumbersome; having a cross-building setup is a good compromise. If the code stops compiling

on a specific architecture, the problem must be resolved as soon as possible. Figure 3 illustrates the

compile test flowchart.

Figure 3: Compile test flowchart

Build for all the target
architectures

Build for x86_64-linux

Build for aarch64-linux

Build for aarch64-macos

Build for x86_64-macos

...

Build for x86_64-windows

NoDoes it compile?

Yes

Fail

Pass

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 13 of 45

2.1.5 Unit and Integration Testing

Proper unit and integration tests ensure that the behaviour of the software is correct. A single unit test

is quick to write and usually quick to execute. However, many individual tests add up quickly, and

completing the unit test suite may require significant time and resources. Integration tests may be more

cumbersome in general. However, they consider a bigger picture and catch mistakes that unit tests do

not. In general, tests should cover as much of the code base as possible. Figure 4 illustrates the testing

flowchart.

Figure 4: Testing flowchart

2.1.6 Coverage Analysis

Many tools designed to measure how much code unit tests cover exist. Some require specifically

instrumenting the build, adding another compilation phase. Others use non-intrusive profiling to obtain

less precise data but at a fraction of the time expenditure.

It is possible to use a code complexity/quality map and a code coverage map to decide which areas of

the code should be prioritized and when the coverage is adequate. If a new feature is introduced

without enough tests covering it, such mechanisms will highlight the issue. Any pull request reducing

Collect coverage

information

Run Unit tests and
Integration tests

Yes

Do they pass?

Yes

Is the coverage

sufficient?

Fail

Pass

No

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 14 of 45

the code coverage below a set threshold should be rejected.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 15 of 45

2.1.7 Static Probable Fault Analysis

Static analysis typically takes as long as, or longer than compiling software. For many languages, the

compiler suite itself may include static analysis capabilities. Static analysers can detect many mistakes

that may have been overlooked during a code review, and they are usually still faster than some later

build phases. Depending on the tool, static analysers can detect simple use-after-free or null-

dereferences or actual API misuse such as locking faults using pthreads. Figure 5 illustrates the static

fault analysis flowchart.

Figure 5: Static fault analysis flowchart

2.1.8 Dynamic Fault Detection

The tools available to dynamically detect faults in code can be split into two groups:

• those that require custom builds and instrumentation;

• those that rely on the non-intrusive profiling features provided by the platform.

Investigate the faults

Static Fault Analysis

Yes

No

Are faults detected?

No

YesIs it actually a fault?

Mark it as
false positive

Fail

Pass

https://clang.llvm.org/docs/analyzer/checkers.html#alpha-unix-pthreadlock

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 16 of 45

Dynamic analysis execution can take between two and ten times the duration of the execution of a

normal debug build. They may include options for fuzzing (to detect faults and expand code coverage),

but due to the time-consuming nature of such functionality, these options should not be enabled on a

per-pull request. Dynamic analysis tools tend not to hit many false positives. When they do, they are

usually caused by a problem with the compilation or due to limitations in their CPU/memory models.

These tools can easily find faults caused by unexpected interactions with external APIs that static

analysis mechanisms cannot detect. Figure 6 illustrates the dynamic fault detection flowchart.

Figure 6: Dynamic fault detection flowchart

2.1.9 Packaging Check

Once all builds and tests have been completed, artefacts are ready to be packaged into an installer or

update. The process of creating packages should also be automated and scheduled to run based on the

organization’s needs (per pull request or at specific time intervals). Packages destined to be shipped to

customers may need to be digitally signed, which may require additional (and possibly manual) steps.

Since code-signing is a highly secure process, signing keys should be stored separately from build

environments when possible.

 Example Workflow - C

The build process for C code differs per platform. On Windows, compilers are provided with each IDE.

On Linux and Unix systems, makefiles and configure helper scripts are most widely used. MacOS uses

a mix of the two, usually utilizing mechanisms provided by XCode, the default IDE on that platform.

Run Tests
with fuzzy input
for a timespan

No

Yes

Do they all pass?

Prepare an
Instrumented build

Generate unit tests
from the failures

Pass

Fail

https://www.gnu.org/software/make/

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 17 of 45

Nowadays, Ninja (Ninja, 2021) has gained popularity, with CMake3 and Meson (Meson, 2021)

replacing traditional configure scripts.

For the following examples, we will use Meson since it provides excellent yet minimalistic test

integration that includes support for test coverage out of the box. CMake’s testing support is richer and

more complex, making it less suited as an illustrative example.

2.2.1 Fast Static Analysis

2.2.1.1 Linting

A popular linter format for the C language is clang. Meson integrates with it out of the box.

2.2.1.2 Code Quality Metrics

To obtain code quality metrics, we suggest the rust-code-analysis tool, which provides a good report,

despite the fact that it is not integrated directly with Meson. Calling the rust-code-analysis-cli while

passing the source root directory is enough to get relevant information. The metrics provided by this

tool can help guide developers to test more complex code in a more thorough manner. Depending on

the project, it is possible to consider automatically blocking a patch that introduces too much code

complexity until enough tests have also been added.

In Task T2.2, better integration with the build system and the code-coverage evaluation will be explored.

2.2.2 Tests

The C language does not have a built-in unit test concept. However, several third-party libraries exist

to automate unit test processes, all of which have a standardized output. In our examples, unit tests can

be built as normal Meson executable() targets. The test() function allows developers to run a test

executable, parse its output and report the result.

e = executable('prog', 'testprog.c');
test('name of test', e);

2.2.3 Code Coverage

Meson integrates with a code coverage tool called gcovr. As explained in the

manual, -Db_coverage=true is a shorthand to instrument the build and then:

$ meson compile
$ meson test
$ meson compile coverage # or coverage-text, coverage-xml

3 https://cmake.org

https://mesonbuild.com/Unit-tests.html
https://mesonbuild.com/Unit-tests.html
https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://mesonbuild.com/Code-formatting.html
https://crates.io/crates/rust-code-analysis
https://mesonbuild.com/Reference-manual.html#executable
https://mesonbuild.com/Reference-manual.html#test
https://gcovr.com/en/stable/

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 18 of 45

The generated XML file can be parsed to implement continuous integration blockers if code coverage

is not found to be adequate. Therefore, having a good code coverage report is important. Configuring

patch blockers that prevent reducing test coverage ensures that all analysis run on the test corpus stays

meaningful.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 19 of 45

2.2.4 Probable Fault Analysis

It is possible to automate the detection of probable faults in a code base using static and dynamic analysis

tools. Running tests under those tools takes between 2x, and 10x the normal execution of a debug build.

2.2.4.1 Static Analysis

Meson integrates with clang-analyzer scan-build, and it has some partial support for clang-tidy.

Any tool that can consume the compile_commands.json can be successfully used.

2.2.4.2 Dynamic Analysis

Analysis tools that work on non-instrumented binaries can use the --wrap option for the test runner:

$ meson test --wrap=valgrind testname

Meson supports the sanitize family of tooling available with GCC and clang out of the box through

the -Db_sanitize=option, e.g., to use AddressSanitizer

$ meson <other options> -Db_sanitize=address
$ meson test <other options> <testname>

2.2.5 Packaging

Meson has minimal built-in support to generate RPM specfiles but no built-ins for other common

targets. During Task T2.2, we will evaluate strategies to automate package creation for common

distributions.

 Software Quality

Software quality methods provide information on the safety, security, reliability, and maintainability of

a codebase. Such methods provide metrics that can be computed by analysing a program's code or

execution flow. The following sections contain recommendations for some programs for computing

software quality metrics. The ultimate choice of software to be used is at the discretion of the developer.

2.3.1 Static Analysis

Static code analysis methods analyse code quality and detect faults before a program has been run.

2.3.1.1 Code Quality

Code quality is a set of metrics that establish the quality of a piece of code through the verification of

https://mesonbuild.com/howtox.html#use-clang-static-analyzer
https://clang-analyzer.llvm.org/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://mesonbuild.com/RPM-module.html
https://rpm-packaging-guide.github.io/

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 20 of 45

specific properties. One such property is verbosity. Verbose code can take a long time to be read and

comprehended, wasting mental energy. It is usually measured in terms of the number of code lines in a

source file. The following represent common metrics in this domain.

 SLOC - Source Lines of Code. The total number of lines in a file.

 PLOC - Physical Lines of Code. The number of instructions and comment lines in a file.

 LLOC - Logical Lines of Code. The number of logical lines (statements) in a file.

 CLOC - Comment Lines of Code. The number of comment lines in a file.

 BLANK - Blank Lines of Code. The number of blank lines in a file.

Reducing SLOC, PLOC, and LLOC metrics through refactoring guarantees less verbose code, which

results in better understandability of a codebase, while a higher value for CLOC indicates good

documentation and clarity in the most difficult parts of a code.

Another property is the structure of a code - functions and closures are analysed to evaluate their lengths,

number of arguments, and the number of exit points. Metrics in this domain include:

 NOM - Number of Methods. The number of methods in a file.

 NARGS - Number of Arguments. The number of arguments in each method in a file.

 NEXITS - The number of Exit Points. The number of exit points of each method in a file.

NARGS and NEXITS are intuitively linked with the ease of reading and interpreting source code - a

function with a high number of arguments can be more difficult to analyse because of the higher number

of possible paths. In contrast, a function with many exit points may be difficult to read.

For metrics computation, we recommend an open-source tool developed by Mozilla (Ardito, et al.,

2020), called rust-code-analysis, because it is fast on large codebases and covers some of the most

widely used programming languages.

2.3.1.2 Code Complexity

Code complexity is a measure of the complexity of maintaining a code base over a long period of time.

Associated metrics provide information on the ease or difficulty of understanding the control flow of a

program and the effort required to manage a codebase. Some tools even provide an estimate on the ease

of introducing bugs and errors in a code.

As explained in detail in D2.1, the most well-known metrics created for these purposes include:

• Cyclomatic Complexity: a measure of the complexity of a method’s control flow, originally

intended to identify software modules that are difficult to test or maintain (McCabe, 1976).

• Cognitive Complexity: evaluates the control flow of code through mathematical models that

reflect programmers’ intuitions about the mental, or cognitive effort required to understand those

flows (Campbell, 2018).

• Halstead Suite: After having retrieved all operands and operators present in a source code,

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 21 of 45

Halstead Suite computes a set of complexity measures that quantify, for example, the effort to

manage a codebase of a determined size and volume or an estimate on the ease of introducing

bugs and errors in a code.

We recommend using rust-code-analysis to compute code quality metrics.

2.3.2 Dynamic Analysis

Dynamic analysis (or dynamic code analysis) methods analyse software that is running. The goal of

dynamic analysis is to find errors in a program while it is executing (instead of examining the code

itself). Dynamic analysis techniques can identify lack of code coverage, errors in memory allocation

and leaks, fault localization according to failing and passing test cases, concurrency errors (race

conditions, exceptions, resource & memory leaks, and security attack vulnerabilities), performance

bottlenecks and security vulnerabilities.

Software Analysis Description

Valgrind Memory, Thread Virtual Machine with in-memory

binary patching

miri Memory, Thread, Undefined

Behaviour, Soundness

Rust-specific instrumentation and

virtual machine

Clang/Gcc AddressSanitizer Memory Compiler instrumentation

Clang/Gcc

UndefinedBehaviourSanitizer

Undefined Behaviour Compiler instrumentation

Clang/Gcc ThreadSanitizer Thread Compiler instrumentation

kcov Code Coverage Relies on DWARF debugging

information and kernel-specific

debugging features

Clang/Gcc/Rustc gcov output

and grcov/gcovr/lcov analysis

Code Coverage Compiler instrumentation, and

offline analysis

Table 1 Dynamic analysis tools

2.3.3 Code Coverage

Code coverage is a metric that can help developers understand how much source code is covered by

unit tests. It can also be used to assess the quality of existing tests. A simple code coverage measure is

statement coverage, which records the lines of code that were executed. Many commercial tools also

analyse multiple condition coverage which is a measure of whether each logical condition in the code

has been evaluated as both true and false (across multiple executions of the program). For example, the

https://valgrind.org/
https://github.com/rust-lang/miri/
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/SimonKagstrom/kcov
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Data-Files.html
https://github.com/mozilla/grcov
https://gcovr.com/en/stable/
http://ltp.sourceforge.net/coverage/lcov.php

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 22 of 45

following pseudo-code:

if (a > 0)
 do_something();

should be tested with a > 0 and with a <= 0.

As pointed out by R.Hamedy in4, some common aims of code coverage analysis are:

• find out which parts of the codebase are covered by tests and which are not;

• find out which code execution paths are missed;

• a high code coverage score indicates well-written and testable code;

• a developer is more likely to write a unit test if the coverage drops;

• enforce a culture of writing unit tests using code coverage rules;

• high code coverage leads to confidence in code;

• high code coverage matters to some potential customers;

• low code coverage scores can indicate the need for code refactoring;

• code coverage can verify whether tests are executed or not.

Many commercial code coverage tools (open source or proprietary) are available for different

programming languages. The following is a list of popular code coverage tools, along with their

supported programming language and open-source status.

• Cobertura, Java, open-source

• Coverage.py, Python, open-source

• JaCoCo, Java, open-source

• OpenClover, Java and Groovy, open-source

• Bullseye Coverage, C/C++, proprietary

• NCover, .NET suite, proprietary

• Vector Cast C++, C/C++, proprietary

• Devel:Cover, Perl, open-source

• dotCover, .NET, proprietary

• Visual Studio, .NET, proprietary

• Istanbul, Javascript, open-source

4 https://codeburst.io/10-reasons-why-code-coverage-matters-9a6272f224ae

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 23 of 45

 Code Certification

Software quality certification is a procedure that a developer must undertake to guarantee to users, third

parties, and other developers that software is reliable, secure, well tested, and containing readable code.

To do so, we have created a traffic light-based system to assign scores to code quality as follows:

• Red: The software is dangerous and unreliable. Its use is not recommended.

• Orange: The software can be used, but it is not fully certified.

• Green: The software has been entirely certified, so its use is recommended.

The minimal set of requirements that the software must satisfy to obtain the orange colour is:

• no memory faults detected;

• no undefined behaviours;

• no known security issues;

• a specified level of code coverage.

To obtain a green colour, the code must have:

• no memory faults detected;

• no undefined behaviours;

• no known security issues;

• a specified level of code coverage.

Failing to meet the above requirements will cause a red colour to be assigned.

Software that is certified is not necessarily free of faults - it just means that the tools used for certification

have not detected any problems. Some programming languages may implement out-of-the-box features

that prevent certain classes of faults from being detected during certification. In those cases, developers

should provide details about how the programming language specification might cause specific

workflow steps to be skipped.

2.4.1 Code Coverage Mechanism

In this section, a mechanism for scoring code based on both testing coverage and complexity is defined.

This mechanism is based on the following observations found while performing code coverage tests:

• Lines of code that are covered by tests, but are awarded a high code complexity score can be

considered relatively safe. If bugs are introduced to these lines during refactoring, due to the

high complexity score, tests will likely fail. Obviously, for better maintainability, developers

should reduce the code complexity score.

• Lines of code that are not covered with tests, and are awarded high complexity scores are the

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 24 of 45

worst-case scenario. Bugs could already be present in the code, and no tests exist to verify code

functionality. Additional bugs can be easily introduced during future refactoring.

• Missing cases including (i) code not covered by tests and low code complexity and (ii) code

covered by tests and with low code complexity are already considered by common code

coverage metrics. The former can be solved by adding tests to the uncovered lines, while the

latter represents the best possible outcome.

In order to measure code complexity, source code must first be divided into spaces. Space is defined as

any structure that can incorporate a function. The following list represents space kinds that can be found

in C, C++, and Rust source files:

• functions

• classes (C++)

• structs (Rust, C, C++)

• traits (Rust)

• impl (Rust)

• unit (all languages)

• namespace (C++)

The described mechanism implements both cognitive and cyclomatic complexity measurements, which

are intuitive and well-documented. As stated by the cognitive complexity authors5, acceptable values

for cognitive complexity scores are usually between 1 and 15, and for cyclomatic complexity scores,

usually between 1 and 10, although these thresholds may vary depending on the programming language.

In fact, for the C language is recommended a value less than 25. The minimum value for both instead

is 1. Any other value must be considered as a high code complexity value and thus a complex code.

Next, we define a strategy for incorporating both code coverage and complexity scores together:

• Each covered line has a weight of 1. Lines with no coverage receive a weight of 0.

• Code complexity score is then calculated on each space. If it exceeds the code complexity

threshold (either cognitive or cyclomatic), the block receives a weight of 2. If not, the block

receives a weight of 1.

• The new code coverage value for a space is obtained by multiplying the sum of the code coverage

weights by the code complexity weight associated with that space.

• The global code coverage value is obtained by dividing the sum of the new code coverage values

by the number of physical lines in a source file (PLOC).

2.4.2 Mechanism Example

Let foo and bar be two functions (two spaces) of five lines each and written in simple pseudo-code.

5 https://community.sonarsource.com/t/how-to-use-cognitive-complexity/1894/4

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 25 of 45

These spaces have code complexity values of 16 and 5, and thus the code complexity weights of 2 and

1.

function foo() {
 instruction 1
 instruction 2
 instruction 3
}

function bar() {
 instruction 1
 instruction 2
 instruction 3
}

The number of covered lines is 5 for foo and 5 for bar.

The new code coverage value for the foo space is:

5 * 2 = 10

which is doubled compared to the initial code coverage value and therefore it must be discarded.

The new code coverage value for the bar space is:

5 * 1 = 5

which remains unaltered compared to the initial code coverage value.

The global code coverage value is then equal to:

5 / 10 = 0.5

where the numerator corresponds to the bar new code coverage value, while the denominator is the

PLOC metric. In this case, only 50% of the source code lines are covered.

 Additional notes

This section contains notes that a developer may consider to further improve software quality and

maintainability.

2.5.1 Rust

We advise considering Rust (Rust, 2021) as the primary language for new projects. Rust is a new

programming language whose focus is on developing reliable and efficient systems that exploit

parallelism and concurrency. Conciseness, expressiveness, and memory safety are among the principal

properties that guided Rust development (Matsakis & Klock, 2014). According to a report on security

vulnerabilities published by the Microsoft Security Response Centre (MSRC), about 70% of

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 26 of 45

vulnerabilities are memory safety issues caused by developers who accidentally included memory

corruption bugs into their C and C++ code. Rather than investing in additional tools for addressing those

flaws, the use of a programming language that prevents the introduction of memory safety issues directly

during feature development would be of benefit both developers and security engineers. In this way, the

onus of software security is removed from the feature developer. It is put in the hands of the language

developer.

Some programming languages regarded as safe from memory corruption vulnerabilities produce sub-

optimal code that wastes hardware resources. Rust prevents these problems in an efficient way, as

referenced by its main design goals:

• fast and memory-efficient;

• no runtime or garbage collector;

• easily integrates with other programming languages;

• guarantee memory-safe and thread-safe code, eliminating many classes of bugs at compile-time;

• useful methods to manage errors and print the relative messages in a comprehensible way;

• good documentation.

Along with the rustc compiler, Rust also provides a package manager called Cargo, which performs the

following tasks:

1. download the dependencies of a program;

2. call rustc to compile the dependencies. Each dependency is compiled independently;

3. call the linker to link together all the produced objects in order to obtain the final artefact.

A Rust project can easily integrate with an existing codebase through a C API/ABI, making it easy to

use the language to create new stand-alone components or rewrite old ones: -system-deps streamlines

linking to external libraries, -bindgen can consume C headers to generate low-level bindings

automatically, and -cargo-c provides a simple way to build rust code into a library that any C-ABI

consumer can use.

Ongoing work with autocxx makes it easy to consume strictly idiomatic C++ libraries, and uniffi aims

to provide automatic bindings for Swift (Swift, 2021) and Kotlin (Kotlin, 2021), targeting mobile app

developers. The additional guarantees provided by the language and the work to formally prove them

can provide a great starting point to build safe and trustworthy applications with less effort spent on

testing. Tools such as rudra and miri are being developed to ensure that even unsafe code is

automatically validated. During Task T2.2, we will actively compare similar codebases and provide

automation to reduce further the setup of workflows based around the Rust ecosystem.

https://crates.io/crates/system-deps
https://crates.io/crates/bindgen
https://crates.io/crates/cargo-c
https://crates.io/crates/autocxx
https://crates.io/crates/uniffi
https://github.com/sslab-gatech/Rudra
https://github.com/rust-lang/miri/

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 27 of 45

3 Security Label

A study conducted by researchers at Carnegie Mellon University (Emami-Naeini, Agarwal, Cranor, &

Hibshi, 2020) concluded that details about security and privacy practices adopted by smart device

companies are rarely made available to consumers before purchase. The study suggested attaching labels

to IoT devices designed to convey information about security mechanisms, data practices, and other

details such as manufacturer’s country and device compatibility. Such a label could be included on a

device’s packaging or retrieved online by means of a QR code. Transparency is important for both

customers and vendors, but it is up to vendors to decide whether they want to adopt new standards or

not. Ultimately, providing more information about a product can help boost brand reputation, especially

if the vendor adheres to good practices.

In a similar fashion, we would like to provide SIFIS-Home-aware applications with labels that describe

security risks derived from an application’s code execution. We propose a mechanism to label individual

APIs. A label for the application as a whole will be thus composed of all labels associated with the APIs

used within the application’s code.

Our proposal is analogous to the permissions mechanism in the Android operating system (Android

Permissions, 2021). Indeed, our proposed labelling mechanism resembles the Android manifest file. In

SIFIS-Home, the user (or a maintainer on the user’s behalf) defines policies to be enforced within the

smart home. Defining policies is a simple and intuitive process - the user declares which actions and

operations can be performed by applications in the smart home environment and which cannot. In SIFIS-

Home, this process is conducted using novel mechanisms based on artificial intelligence and natural

language processing, as described in work package WP4.

Our application label is displayed to the user during installation with an informative purpose, and it

highlights if some of the risks go against the user’s defined policies. If no risk contradicts the user’s

policies, the application is automatically installed. Otherwise, the user can decide whether to edit their

policies, proceed with installation anyway, or cancel installation. This differs from Android’s

permission mechanisms that simply inform the user about the permissions the application requires to

run all of its features. Permissions contained in the Android manifest file are just shown to the user, who

oftentimes is unaware of what some of the entries mean. Recently, Android introduced runtime

allowance for dangerous permissions, meaning that the user is asked to give permission within the

application when first using a feature that requires such a permission. However, this approach is not

convenient in our scenario since it requires user interaction which might be unfeasible in some cases.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 28 of 45

 The SIFIS-Home Developer APIs

Figure 7: Architecture

As shown in Figure 7, the SIFIS-Home Developer APIs are designed to extend and improve service

level APIs such as those offered by WebThings and Yggio. The SIFIS-Home developers APIs build

upon this existing model, which is used to abstract from the specific producer-based implementation of

functionalities used to provide generic services, such as “Switch on Light”, “Open Lock”, and “Increase

Temperature”. Following the Web of Things terminology, we name these services “Capabilities”.

Capabilities help developers of third-party applications provide applications that can invoke these

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 29 of 45

generic services, without having to be worried about the actual device-specific implementation. To

clarify, let us suppose, for example, that two refrigerator manufacturers provide two different API

implementations to decrease the current temperature in the refrigerator by 1 °C. To offer this API to

third-party developers, not having to foresee two distinct invocations, one for Manufacturer 1 and one

for Manufacturer 2, the manufacturers describe the API as a capability “lowerFridgeTemp()”, exposed

by SIFIS-Home. Thus, a developer can simply invoke the SIFIS-HOME API call and without needing

to determine which device they are talking to and invoke the device-specific implementation of it.

To define the SIFIS-Home developer APIs, we build upon currently existing frameworks, focusing on

Web of Things and FIWARE6. Since SIFIS-Home is focused on the security and safety aspects of smart

home management, it is not in the scope of our activities to develop new standards. Since many IoT

standards are new and only a few, basic capabilities have actually been defined, SIFIS-Home draws

from other non-standardised frameworks such as IFTTT7, Home Assistant, and OpenHab8 to define

some additional capabilities useful for representing desired features and functionalities. As defined by

Web of Things and FIWARE, new capabilities can be proposed by device producers and application

developers, to represent functionalities that can be offered to third-party applications.

To be able to handle the privacy, safety, and security issues, within the activities of Task T2.3, we have

defined a set of “tags” representing safety, integrity, security, and privacy issues intrinsically related to

the execution of each specific developer API. Such risks are generally related to either misuse or

malicious use of functionality, e.g., decreasing the refrigerator temperature excessively to cause greater

energy consumption. The user must be informed of this possibility when installing an application on

SIFIS-Home devices, and they must have the opportunity of controlling the execution of such risky

operations, by means of security and safety policies. As described in deliverable D1.1, this can be

achieved by means of security and safety policies, which can be defined either by the user themself or

by an external, expert maintainer. By binding the labels to specific APIs (API label in Figure 7) we

ensure that if an API is invoked, the corresponding API label is associated with the application, in a

similar way to how Android permissions are handled. The application will thus have an application label

(App Label) associated with it that is derived from the combination of the API labels invoked by the

application’s source code. The App Label, together with the code quality information provided by Tasks

2.1 and 2.2, and other metadata, define an App Contract.

App Contracts are structured documents that are both human readable and machine interpretable (based

on a markup language), and are bound to the application code by means of digital signature. The App

Contract provides information on the application quality, the identity and reputation of the developer,

the resources that can be controlled by the application and the correlated risk, which might stem from

misuses of such resources. This document provides useful information to the user, allowing them to

easily decide whether to install the application or not. At the same time, the contract is analysed by the

SIFIS-Home framework, which, according to the enforced policies, will handle the privacy, security,

and safety risks by possibly limiting the application functionalities, and/or warning the user or

maintainer about possible inconsistencies with the user’s decision to enable application functionalities,

and about identified misbehaviours.

The following describes the process of defining API labels for SIFIS-Home developer APIs and

6 https://www.fiware.org
7 https://ifttt.com
8 https://www.openhab.org

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 30 of 45

discusses some proposed capabilities. We assume that for new proposed capabilities, the assignment of

one or more API labels will be performed by a SIFIS-Home consortium. The certification system would

behave in a similar way to CE conformance marking (CE conformance marking, 2021) - depending on

the API in use, a self-assessment would be sufficient to enter the SIFIS-marketplaces. Dangerous APIs

would require an independent party to confirm the safety of the API in use and that the software behind

the API surface conforms to an adequate development standard.

Figure 8: SIFIS-Home APIs integration and interaction with other components

Figure 8 illustrates how the SIFIS-Home APIs relate to various components of the architecture. An API

label is assigned to a SIFIS-Home API; the SIFIS-Home aware app code includes SIFIS-Home APIs,

whose API labels contribute to the App Label.

A SIFIS-Home API abstracts a producer API that is written by the device producer. The execution of a

SIFIS-Home API is secured by the SIFIS-Home Framework, which is installed on smart devices. This

means that the SIFIS-Home API includes some code that verifies whether such API can be executed or

not, according to the security policies defined by the user.

The following demonstrates a pseudocode example of the SIFIS-Home API

SIFIS-LowerFridgeTemp().

SIFIS-LowerFridgeTemp(){

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 31 of 45

 makeSecure();
 WoT-LowerFridgeTemp(){
 linkToProducerLowerFridgeTemp();
 }
}

The makeSecure() method implements security checks that are performed before executing the actual

capability.

 Labelling Mechanism

The SIFIS-Home framework defines APIs and makes them available for SIFIS-Home-aware app

developers. A generic API implements functionalities of either a service or a device and possibly

operates on data. However, the execution of an API may imply obvious, as well as subtle, risks. Three

categories of possible risks include safety, privacy, and financial risks.

Safety risks occur when events produce a direct physical effect. APIs that trigger actuators are associated

with this kind of risk. Indeed, smart home environments may include appliances that can cause injury,

or even death, if misused. For instance, a smart cooktop could set the house on fire if unattended.

Furthermore, safety risks regard all the threats that may put people and assets in danger. An undesired

release of a door lock may lead to physical intrusion.

Privacy risks are related to operations that manage sensitive information. This kind of risk is associated

with APIs that access resources and read data. APIs that get data from sensors, e.g., audio/video streams

or temperature readings, as well as APIs that retrieve actuator states, e.g., on/off state of a light bulb,

are straightforward examples. APIs that collect auxiliary data, such as logs, also fall into this category.

Financial risks are related to operations that generate a monetary expense, either directly or indirectly.

APIs that access a user’s “wallet” to place an order or pay a subscription fee are examples of direct

financial risks. Indirect financial risks refer to operations that generate an indirect monetary cost for the

user. These can include operations that affect the consumption of electricity, gas, or water. The extent

of the risk differs from API to API and from device to device.

In SIFIS-Home, we add a security label to every API to describe possible risks deriving from its

execution. The security label consists of a list of tags, each identifying a risk. A tag contains (i) the risk

name, (ii) a description, and, optionally, (iii) a risk score. Risk score is a decimal value between 0 and

1. For example, an API that can be used to turn on an oven performs an operation that consumes high

instantaneous power and could potentially set the house on fire, so its label will include, among others,

the tag “FIRE_HAZARD” and the tag “ELECTRIC_ENERGY_CONSUMPTION” with a risk score of

0.8. An API that acquires feed from a video camera and stores it locally may store images of children,

which could represent a privacy concern for the end user; and will thus receive a tag

“CHILDREN_RECORDING”. An API that authorises the payment of an asset will have a label

including the tag “SPEND_MONEY”.

Developers use SIFIS-Home APIs to build SIFIS-Home-aware apps. When an app is ready for

deployment, it is packaged in an app bundle. The app bundle contains an application (executable) and

an app contract, which consists of an app label and code quality metadata. An App Label is automatically

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 32 of 45

generated during the packaging phase and is populated with all API labels associated with APIs used.

When a user wishes to install an app from the SIFIS-Home marketplace, the App Label will inform them

about possible risks deriving from the installation and usage of the app. For each risk listed in the App

Label, a user-friendly description, and a risk score, when applicable, is provided. A short and simple

description of all risks is required to promote the reading and comprehension by every class of end

users. Moreover, risk scores, which are decimal values, can be mapped to keywords like “low”,

“medium”, and “high” when shown to the user. This allows a more straightforward perception.

Besides informing the end user about an app’s behaviour and possible risks, the App Label seamlessly

integrates with user-defined policies. This means that if the label of a given API would violate the rules

defined by the user, its execution will be automatically denied. For example, if a user has defined a

policy which reads as “No device that may cause a fire can be turned on remotely”, and the App Label

contains the turnOnOven API, the app can be installed, but the execution of that API is forbidden at

runtime if the initiator is outside the local perimeter.

 Tags

Table 2 illustrates a non-exhaustive list of tags and their descriptions for the three risk categories. The

symbol denotes that a risk score is associated with the tag it is defined in.

Safety

FIRE_HAZARD

The execution may cause fire.

AIR_POISONING
The execution may release toxic gases.

EXPLOSION
The execution may cause an explosion.

ASPHYXIA

The execution may cause oxygen deficiency by gaseous substances.

WATER_FLOODING

The execution allows water usage which may lead to flood.

POWER_OUTAGE —

The execution may cause an interruption in the supply of electricity.

POWER_SURGE
The execution may lead to exposure to high voltages.

UNAUTHORISED_PHYSICAL_ACCESS
The execution disables a protection mechanism and unauthorised individuals may physically enter

home.

SPOILED_FOOD

The execution may lead to rotten food.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 33 of 45

Privacy

AUDIO_VIDEO_STREAM

The execution authorises the app to obtain a video stream with audio.

AUDIO_VIDEO_RECORD_AND_STORE

The execution authorises the app to record and save a video with audio on persistent storage.

LOGGING_USAGE_TIME
The execution authorises the app to get and save information about the app’s duration of use.

LOG_ENERGY_CONSUMPTION
The execution authorises the app to get and save information about the app’s energy impact on the

device the app runs on.

RECORD_USER_PREFERENCES
The execution authorises the app to get and save information about the user’s preferences.

RECORD_ISSUED_COMMANDS

The execution authorises the app to get and save user inputs.

TAKE_PICTURES

The execution authorises the app to use a camera and take photos.

TAKE_DEVICE_SCREENSHOTS

The execution authorises the app to read the display output and take screenshots of it.

Financial

SPEND_MONEY

The execution authorises the app to use payment information and make a payment transaction.

PAY_SUBSCRIPTION_FEE

The execution authorises the app to use payment information and make a periodic payment.

ELECTRIC_ENERGY_CONSUMPTION —

The execution enables a device that consumes electricity.

GAS_CONSUMPTION —

The execution enables a device that consumes gas.

WATER_CONSUMPTION —

The execution enables a device that consumes water.
Table 2: Sample lists of tags for the three categories

Note that the above list of tags is not exhaustive and is designed to be also extended externally, having

third parties and/or developers proposing new tags for new specific operations related to smart home

devices.

 API Labels

Table 3 illustrates some sample APIs and their own labels.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 34 of 45

API Label

turnOnOven • FIRE_HAZARD

• POWER_OUTAGE (risk score: 0.8)

• LOG_ENERGY_CONSUMPTION

• ELECTRIC_ENERGY_CONSUMPTION (risk score: 0.8)

recordVideo • AUDIO_VIDEO_RECORD_AND_STORE

lowerFridgeTemperature • POWER_OUTAGE (risk score: 0.5)

• ELECTRIC_ENERGY_CONSUMPTION (risk score: 0.5)

raiseFridgeTemperature • SPOILED_FOOD

orderFood • SEND_MONEY

turnOnAirConditioner • POWER_OUTAGE (risk score: 0.7)

• ELECTRIC_ENERGY_CONSUMPTION (risk score: 0.7)

turnOnVacuumCleaner • POWER_OUTAGE (risk score: 0.8)

• LONG_LASTING_RESOURCE_LOCK

• ELECTRIC_ENERGY_CONSUMPTION (risk score: 0.8)

disarmAlarm • UNAUTHORISED_PHYSICAL_ACCESS

openShutters • UNAUTHORISED_PHYSICAL_ACCESS

streamMicAudio • TENANTS_VOICE_STREAM

• CHILDREN_VOICE_STREAM

unlockDoor • UNAUTHORISED_PHYSICAL_ACCESS

renewSubscription • PAY_SUBSCRIPTION_FEE
Table 3: Sample list of APIs and their API labels

 Label Format

Both API labels and App Labels should be implemented so that they can be easily converted into other

formats and exported, namely they need to be serializable. Possible serialization formats include JSON,

XML, and TOML. The following describes an implementation of a JSON schema for both API labels

and App Labels.

3.5.1 JSON Format

This section introduces an API label JSON format via an example, and then it defines an API label

schema and an App Label schema.

The example is given for the turnOnOven API. The following JSON object contains three properties:

(i) api_name, which must match the API the label refers to, i.e., turnOnOven; (ii) description, which

gives a brief explanation of the API behaviour; and (iii) security_label, which specifies the risks

associated with the API.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 35 of 45

The security_label property is an object that contains three properties representing the safety,

privacy, and financial categories. Each property contains an array of objects with the same structure,

each representing a tag. These objects identify risks associated with the API, and they are composed of

the properties name, description, and, optionally, risk_score. In the example, the safety property

is an array of size two containing the tags POWER_OUTAGE, which also reports the risk score, and

FIRE_HAZARD.

{
 "api_name": "turnOnOven",
 "description": "Activates the oven at the last selected temperature.",
 "security_label": {
 "safety": [
 {
 "name": "FIRE_HAZARD",
 "description": "The execution may cause fire."
 },
 {
 "name": "POWER_OUTAGE",
 "description": "High instantaneous power. The execution may cause power o
utage.",
 "risk_score": 0.8
 }
],
 "privacy": [
 {
 "name": "LOG_ENERGY_CONSUMPTION",
 "description": "The execution allows the app to register information abou
t energy consumption."
 }
],
 "financial": [
 {
 "name": "ELECTRIC_ENERGY_CONSUMPTION",
 "description": "The execution enables the device to consume further elect
ricity.",
 "risk_score": 0.8
 }
]
 }
}

3.5.1.1 API Label Schema

The reference JSON schema for an API label is presented next. This schema bundles [JSON Bundle

2021] the API label schema and a tag subschema into a single schema. The tag subschema defines the

tag object, which is used by all the risk categories (safety, privacy, and financial properties).

The tag object contains two required properties: (i) name, which must match one of the tags defined in

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 36 of 45

the tags list, and (ii) description, which gives a brief explanation of the risk. Additionally, the tag

may contain the risk_score property, indicating the gravity of the risk, defined as a number between

0 and 1, with a step size of 0.1.

{
 "$schema":"http://json-schema.org/draft-07/schema#",
 "$id":"https://raw.githubusercontent.com/sifis-home/wp2-documents/master/wp2-de
liverable-2.2/schemas/api-label.jschema",
 "title":"SIFIS-Home API label schema.",
 "description":"JSON schema defining the API security label structure within the
SIFIS-Home framework.",
 "type":"object",
 "properties":{
 "api_name":{
 "type":"string"
 },
 "description":{
 "type":"string"
 },
 "security_label":{
 "type":"object",
 "properties":{
 "safety":{
 "type":"array",
 "items":{
 "$ref":"/schemas/tag"
 }
 },
 "privacy":{
 "type":"array",
 "items":{
 "$ref":"/schemas/tag"
 }
 },
 "financial":{
 "type":"array",
 "items":{
 "$ref":"/schemas/tag"
 }
 }
 },
 "required":[
 "safety",
 "privacy",
 "financial"
]
 }
 },
 "required":[
 "api_name",

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 37 of 45

 "description",
 "security_label"
],

 "definitions":{
 "tag":{
 "$id":"/schemas/tag",
 "type":"object",
 "properties":{
 "name":{
 "type":"string"
 },
 "description":{
 "type":"string"
 },
 "risk_score":{
 "type":"number",
 "minimum":0,
 "maximum":1,
 "multipleOf":0.1
 }
 },
 "required":[
 "name",
 "description"
]
 }
 }
}

3.5.1.2 App Label Schema

The App Label JSON contains an array of API labels, such as the one defined in the example above.

The App Label schema is defined below. This schema declares three required properties, i.e., app_name,

description, and api_labels. The latter is an array of api-label objects.

{
 "$schema":"http://json-schema.org/draft-07/schema#",
 "$id":"https://raw.githubusercontent.com/sifis-home/wp2-documents/master/wp2-de
liverable-2.2/schemas/app-label.jschema",
 "title":"SIFIS-Home app label schema.",
 "description":"JSON schema defining the app label structure within the SIFIS-Ho
me framework.",
 "type":"object",
 "properties":{
 "app_name":{
 "type":"string"
 },
 "description":{

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 38 of 45

 "type":"string"
 },
 "api_labels":{
 "type":"array",
 "items":{
 "$ref":"/sifis-home/wp2-documents/master/wp2-deliverable-2.2/schemas/api-
label.jschema"
 }
 }
 },
 "required":[
 "app_name",
 "description",
 "api_labels"
]
}

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 39 of 45

4 Legal Guidelines (Licensing and Privacy)

Different subjects may be obliged to, or interested in complying with privacy laws and, therefore, may

need to adopt specific standards. In a situation where data is collected through smart-home systems, the

Data Controller of processing performed by software interacting with IoT devices, according to the

GDPR, could be the owner of the house (or the tenant), who willingly installed IoT devices in the house.

However, the Data Controller may also be a Software as a Service (SaaS) provider, who obtains and

stores personal data from IoT devices. While following privacy rules is not mandatory for software

developers (or application designers), it is advantageous for them to comply with privacy rules and

follow current standards, since compliance to privacy rules means that the software can be more easily

reviewed and accepted by both the end users and SaaS providers who want to provide services based

on the application designed by the developer. For this reason, we propose some insight into following

best practices for shipping software that is not only privacy-compliant but also based on state-of-the-art

approaches to data protection and self-evaluation. This section deals with a second goal that derives

from the reuse and distribution of free and open-source software - compliance with legal obligations

arising from free and open-source software.

 Privacy

Rules provided by GDPR are designed to be followed by software developers and publishers. In

particular, SaaS providers must satisfy accountability requirements and must perform quantitative risk

assessment analyses. The requirements described in articles 13 (EU GDPR, Art.13, 2021) and 14(EU

GDPR, Art.14, 2021) of the GDPR require information to be provided to the data subject, even if

personal data is not collected. The required information includes:

a) the identity and contact details of the Data Controller and the Data Protection Officer, if present;

b) the purposes of the processing;

c) what kind of personal data is being processed;

d) if applicable, the intention of transferring personal data to a third-party country, external from

the European Union;

e) the period of time in which personal data will be kept;

f) the right for the data subject to obtain a modification or cancellation of their data and the practical

ways in which they can exercise this right;

g) the existence of automated decision-making, including profiling.

Additionally, the following guidelines should be followed:

• Article 25 (EU GDPR, Art.25, 2021) asks that the Data Controller implement appropriate

technical and organisational measures designed to enforce data-protection principles, such as

data minimisation compatible with the cost of the implementation and the nature of the

processing. This “data protection by design” principle combines with the concept of “data

protection by default”, which mandates the controller to implement other technical and

organisational measures to ensure that. By default, only personal data which is necessary for

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 40 of 45

each specific purpose of the processing is processed.

• Article 32 (EU GDPR, Art.32, 2021) sets requirements on the matter of security (obligation to

implement appropriate technical and organisational measures to ensure a level of security

appropriate to the risk).

• Article 35 (EU GDPR, Art.35, 2021) mandates the controller to carry out a Privacy Impact

Assessment when the processing is likely to result in a high risk to the rights and freedoms of

natural persons, or if the processing is carried out automatically or on a large scale. Of these

requirements, the most complicated is probably that found in Article 35. To aid Data Controllers

in building and demonstrating compliance to the GDPR, the French CNIL9 created a useful tool10

that has quickly become a reference standard. Using this tool can help the developer to

understand the security and privacy risks posed by their software and may give them the chance

to solve any identified issues before shipping the product to the public. It is therefore

recommended to use this tool to ensure software’s compliance with GDPR rules.

Figure 9 shows the flowchart to obtain a privacy-compliant software by following GDPR requirements

and recommendations.

Figure 9: Main GDPR requirements and recommendations flowchart

 Licensing

9 CNIL is France’s independent administrative regulatory body to ensure that data privacy law is enforced in the French

territories.
10 Downloadable on the official CNIL’s website: https://www.cnil.fr/en/open-source-pia-software-helps-carry-out-data-

protection-impact-assesment

Are you using software to

process personal data?

Are you developing

software that may be used

to process personal data?

Is the Software

Developer also a Data

Controller?

Software Developer

GDPR Obligations

Data Controller

GDPR Obligations

Articles 13, 14
(information notice given to

the data subject)

Articles 25, 32
(privacy and security by

default)

Article 35
(privacy, impact assessment)

No need to follow

GDPR rules

Highly

recommended

Mandatory

Mandatory

in some cases

YesYes

Yes

No

No

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 41 of 45

The goal of complying with legal obligations arising from reuse and distribution of free and open-source

software stands at the base of both the OpenChain11 and the ClearlyDefined12 projects. These initiatives

aim at helping free and open-source software to become more standardized and well defined, clearing

doubts regarding legal compliance and providing developers with clear and comprehensive information

that will inform them of the limits and obligations that the various free and open-source licenses impose

on the use or modification of the original software. More specifically, the OpenChain project aims to

“establish requirements to achieve effective management of free and open-source software for software

supply chain participants, such that the requirements and associated collateral are developed

collaboratively and openly by representatives from the software supply chain, open-source community,

and academia”. OpenChain has become an international standard (ISO 5230) that allows software

developers to obtain compliance regarding open-source licenses. After following these guidelines, a

software developer can send a document to the OpenChain organisation affirming that their software

satisfies all the requirements of the specification and is therefore compliant with the OpenChain

standard13. It is important to notice that an OpenChain compliance badge can only be obtained if all the

requirements are satisfied, and not just some of them. Following the OpenChain specification, the

software developer creates, and therefore can make available, the compliance artefacts - “a collection

of artefacts that represent the output of a compliance program and accompany the supplied software..”

that “..may include (but is not limited to) one or more of the following: attribution notices, source code,

build and install scripts, copy of licenses, copyright notices, modification notifications, written offers,

open source component bill of materials, and SPDX documents”. The ClearlyDefined project, on the

other hand, is still relatively new, but already offers some suggestions on how to distribute clearly

defined open-source software, so that users and other developers are clearly informed about aspects

such as the type of open-source license used, where to find the components used for bug fixing or new

versions (such as a GitHub page), and how these are made. It also offers a security forum so that

developers can ask questions and receive answers on the matter of security and vulnerabilities that may

be present in their software14. Following both the OpenChain and the ClearlyDefined practices gives

the software important certification that can aid in its diffusion.

 Highlights

To summarise the privacy and licensing legal requirements and consider the usefulness of following

some standard practices, we propose the following “traffic light system” to assess whether one’s

software is compliant with the concepts exposed in the previous paragraphs.

4.3.1 Green Light

11 See https://www.openchainproject.org/resources/faq
12 See https://clearlydefined.io/about
13 These requirements are found in the Supplier Education Pack (permanent link: https://github.com/OpenChain-

Project/Reference-Material/blob/eebf7cdc873691f89a1765425de4f456f0f41988/OpenChain-ISO-5230-Supplier-

Education-Pack/en/OpenChain%20ISO%205230%20Supplier%20Education%20Pack.zip) downloadable on the official

OpenChain website, and in particular in the “basic-open-source-education” pdf file within the zip archive.
14 The ClearlyDefined “checklist” can be found on the official ClearlyDefined website (see

https://docs.clearlydefined.io/clearly#secure).

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 42 of 45

1. The software developer successfully has performed a privacy impact assessment based on

reasonable assumptions for at least a standard use case, and the documentation of this assessment

accompanies the software15.

2. The software developer has produced information to be used for compliance to articles 13, 14,

25, and 32 of GDPR, and a document containing the information accompanies the software.

3. The software developer followed the OpenChain specification or other public specifications for

licensing compliance, and the software is accompanied by compliance artefacts.

4. The methodology used and standards followed in creating a privacy impact assessment, the

document produced according to point 2 and the compliance artefacts, is publicly available, free

of any right of third party, so that everyone can assess compliance and use it.

Green-lighted products ensure that a Data Controller can assess if the software is compliant with GDPR

and free and open-source license obligations and can therefore be used in the EU to process personal

data.

4.3.2 Yellow Light

1. The software developer states that they can make available all information required to perform

a privacy impact assessment.

2. The software developer declares that they have produced information to be used to comply with

articles 13, 14, 25, and 32 of GDPR.

3. The software developer declares that they have compliance artefacts.

4. The software developer declares that the methodology used, and the standards followed in

creating the above documentation can be made available in order to assess compliance.

Yellow-lighted products allow the Data Controller to assess if the software is compliant with the GDPR

and free and open-source license obligations and can therefore be used in the EU to process personal

data but some additional work will be required.

4.3.3 Red Light

One or more of the points provided for the Yellow Light is not satisfied. This software must be carefully

analysed to assess if it is compliant with the GDPR and free and open-source license obligations before

using it in the EU to process personal data.

15 For example using the CNIL’s tool as stated before

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 43 of 45

5 Conclusions

This document introduced a series of developer guidelines for the production of secure, privacy-aware

and policy-based IoT software.

The first section of this document described a workflow to assist developers in improving the quality of

their software. It also provided an example of this workflow based on the C language. It finally presented

procedures for automatically certifying software quality, and some notes that a developer might consider

for further improving software quality and maintainability.

The second section of this document described the SIFIS-Home developer APIs and their relation to

other architectural components. The concept of an API label, which describes safety, privacy, and

financial risks associated with an API was introduced, along with a sample list for each category, and a

concrete example of an API label. The concept of an App Label, derived from API labels within the

application code, and designed to integrate with user-defined policies so that the execution of an API

can be allowed or denied at runtime was introduced. Finally, the schemes of both API labels and App

Labels in JSON format were described.

In the third and final section of this document, EU legal guidelines for compliance with privacy laws

and standards were presented. These laws and guidelines are essential for developers of smart home

applications that collect personal data.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 44 of 45

6 References

[Android Permissions, 2021] Retrieved from Permissions on Android:

https://developer.android.com/guide/topics/permissions/overview

[Ardito, 2020] Ardito, L., Barbato, L., Castelluccio, M., Coppola, R., Denizet, C., Ledru, S., & Valsesia,

M. (2020). rust-code-analysis: A Rust library to analyze and extract maintainability information

from source codes. SoftwareX.

[Campbel, 2018] Campbell, G. A. . Cognitive Complexity - A new way of measuring understandability.

SonarSource SA, 10.

[Marking, 2021] CE conformance marking. (2021). Retrieved from https://ec.europa.eu/growth/single-

market/ce-marking/manufacturers_en

[Agarwal, 2020] Emami-Naeini, P., Agarwal, Y., Cranor, L. F., & Hibshi, H. (2020). Ask the experts:

What should be on an IoT privacy and security label? IEEE Symposium on Security and Privacy

(SP). IEEE.

EU GDPR, Art.13. (2021). Retrieved from https://www.privacy-regulation.eu/en/13.htm

EU GDPR, Art.14. (2021). Retrieved from https://www.privacy-regulation.eu/en/14.htm

EU GDPR, Art.25. (2021). Retrieved from https://www.privacy-regulation.eu/en/25.htm

EU GDPR, Art.32. (2021). Retrieved from https://www.privacy-regulation.eu/en/32.htm

EU GDPR, Art.35. (2021). Retrieved from https://www.privacy-regulation.eu/en/35.htm

[JSON Schemas, 2021] Retrieved from Structuring a complex schema: https://json-

schema.org/understanding-json-schema/structuring.html#bundling

[Kotlin. 2021] Retrieved from https://kotlinlang.org

[Matsakis, N. D., & Klock, F. S., 2014]. The rust language. ACM SIGAda Ada Letters, 103-104.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering.

[Meson, 2021] Retrieved from The Meson Build system: https://mesonbuild.com

[Ninja, 2021] Retrieved from https://ninja-build.org

[Rust, 2021] Retrieved from https://www.rust-lang.org

[Swift. 2021]. Retrieved from https://swift.org/about/#swiftorg-and-open-source

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.2

Version: 1.2 Page 45 of 45

Glossary

Acronym Definition

ABI Application Binary Interface

API Application Programming Interface

CE Conformité Européene

CNIL Commission Nationale de l'Informatique et des Libertés

CPU Central Processing Unit

DWARF Debugging With Arbitrary Record Formats

EU European Union

GCC GNU Compiler Collection

GDPR General Data Protection Regulation

IDE Integrated Development Environment

IFTTT If This Then That

IoT Internet of Things

ISO International Organization for Standardization

JSON JavaScript Object Notation

MSRC Microsoft Security Response Center

QR Quick Response

RPM RPM Package Manager

SaaS Software As A Service

SIFIS-Home Secure Interoperable Full-Stack Internet of Things for Smart Home

SPDX Software Package Data Exchange

TOML Tom's Obvious, Minimal Language

WP Work Package

XML Extensible Markup Language

