
H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

D6.4

Final version of Pilot Use Case
Implementation

WP6 – Smart Home Pilot Use Case

SIFIS-Home

Secure Interoperable Full-Stack Internet of Things for Smart Home

Due date of deliverable: 30/09/2023
Actual submission date: 30/09/2023

Responsible partner: DOMO
Editor: Domenico De Guglielmo;

 E-mail address: domenico.deguglielmo@domo-iot.com

30/09/2023
Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-Home Project is supported by funding under the Horizon 2020 Framework Program
of the European Commission SU-ICT-02-2020 GA 952652

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Authors: Domenico De Guglielmo (DOMO)
Approved by: Joni Jamsa (CEN), Marco Rasori (CNR)

Revision History

Version Date Name Partners Section Affected
Comments

0.1 1/07/2023 Defined ToC DOMO All

0.2 15/07/2023 Updates to D6.2 and D6.3 DOMO All

0.3 20/08/2023 Use Case Description DOMO, CNR Section 6

0.9 11/09/2023 Ready for review DOMO All

1.0 29/09/2023 Ready for submission DOMO, CNR All

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Executive Summary
This deliverable reports the details of the final implementation of the SIFIS-Home pilot architecture,
which also represents the real-testbed for validation of SIFIS-Home mechanisms.
The deliverable is structured as follows. First, we report the details of the various devices that we used
in the pilot. Second, we describe the network and system architecture of our pilot, showing how all the
different devices involved in the pilot are interconnected. Third, we introduce the various software
components that have been integrated and tested in the SIFIS-Home pilot implementation. Finally, we
report the different smart home use cases that have been validated by using our pilot implementation
and, for each one of them, we report the results of the GQM-based validation as well as the results of
the usability tests that we defined.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.2 Page 5 of 87

Table of contents

Contents	
Executive Summary ... 3

1 Introduction .. 6
2 Devices used in the pilot ... 6

2.1 Smart Devices .. 6
2.1.1 ... DoMO gateway
 .. 6
2.1.2 ... Laptop
 .. 8

2.2 Not So Smart Devices .. 9
2.2.1 .. DoMO WiFi actuators
 .. 9
2.2.2 .. Riots Devices
 .. 14

3 Pilot architecture ... 16
4 Smart Devices OS distribution setup .. 17

4.1 Laptop distribution ... 17

4.2 DoMO GW OpenWRT distribution ... 17

4.3 Service configuration files ... 18

4.4 domo-bootstrap .. 19

5 SIFIS-Home Framework Integration in the pilot ... 20

5.1 GitHub and GitHub Container Registry .. 21

5.2 SIFIS-Home Cloud Framework ... 21
5.2.1 .. Yggio
 .. 21
5.2.2 .. Marketplace
 .. 28
5.2.3 ... VPN Server
 .. 29

5.3 SIFIS-Home Application Framework .. 31

5.4 SIFIS-Home Smart Device Framework ... 38
5.4.1 .. Use-case-specific components
 .. 38
5.4.2 .. Secure Lifecycle Manager
 .. 42
5.4.3 ... Secure Communication Layer
 .. 43
5.4.4 ... Proactive Security Management Layer

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.2 Page 6 of 87

 .. 43
5.4.5 .. Application Toolboxes
 .. 45
5.4.6 ... Api Gateway
 .. 47
5.4.7 ... VPN Manager
 .. 48
5.4.8 ... DHT Manager
 .. 49
5.4.9 ... NSSD Manager
 .. 53
5.4.10 .. Riots WoT integration
 .. 56

5.5 NSSD Framework .. 59
5.5.1 ... DoMO WiFi actuators firmware
 .. 59

6 Use Cases and Functional Validation ... 64

6.1 Use Case 01 – Login Through Biometrics ... 64

6.2 Use Case 02 - Operate Through Voice Commands ... 65

6.3 Use Case 03 – Person Movement or Presence Notification ... 66

6.4 Use Case 04 – Notification About Software Intrusion .. 66

6.5 Use Case 05 – Register Device .. 67

6.6 Use Case 06 – Unregister Device .. 67

6.7 Use Case 07 –Configure Device .. 67

6.8 UC 08 – Install third-party applications ... 68

6.9 UC 09 – Parental control .. 68

6.10 UC 10 – Configure User Settings .. 68

6.11 UC 11 – Control statistics and analytics .. 69

6.12 UC 12 – Remote configuration of device .. 69

6.13 UC 13 – Remote configuration of policies .. 69

6.14 UC 14 - Remote handling of emergency situations ... 69

6.15 UC 15 – Turn on/off lights using the control panel ... 70

6.16 UC 16 – Turn on/off lights pressing/releasing buttons .. 71

6.17 UC 17 – Being able to interact with the devices only if authorized 71

6.18 UC 18 – Being able to control the house in case of failures .. 72

6.19 UC 19 – Being alerted if a device is generating anomalous traffic 73

6.20 Summary of use cases implementation and validation .. 73
7 GQM Validation ... 76

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.2 Page 7 of 87

8 Usability Requirements Validation .. 78
Appendix A: List of Code Components ... 81

Appendix B: List of Acronyms .. 82

Appendix C: DoMO GW OpenWrt Distribution ... 82

DoMO GW OpenWRT distribution setup scripts .. 83

DoMO GW flashing procedure .. 83

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 6 of 87

1 Introduction
The smart home pilot is the real testbed used to show the possibility of integration of SIFIS-Home in
existing architectures and devices, presenting an architecture, which fully matches with the SIFIS-Home
paradigms. In particular, the architecture involves real devices classified in Smart Devices (SDs) and
Not So Smart Devices (NSSDs), fully distribution of functionalities among decentralized smart devices
to improve reliability and resilience, secure communication, and privacy-aware data management.
This deliverable reports the details of the final SIFIS-Home pilot implementation. It is structured as
follows. First, we describe the different smart and not-so-smart devices that are used in the pilot. For
each one of them we report its hardware components and describe its specific use in the pilot. Also, we
show the specific actions that need to be performed to install the SIFIS-Home software components on
the pilot devices. We continue by describing the details of the network architecture of our pilot to show
how the devices communicate and are interconnected. The various components that are installed and
executed on the various devices are then described. We then explain how the devices and the software
components interact by describing a set of different smart home use cases that we validated using our
pilot implementation. We conclude the deliverable reporting both the use cases validation results and
the usability assessment results.

2 Devices used in the pilot
This section describes the different smart (SD) and not-so-smart (NSSD) devices that are used in the
pilot implementation. The main hardware characteristics of the various devices are reported, and their
specific use in the pilot is highlighted.

2.1 Smart Devices
Smart devices are powerful devices where it is possible to install a number of applications. They execute
the set of SIFIS-Home software components that compose the SIFIS-Home Smart Device framework.
In the following, we describe the smart devices that have been used in the pilot.

2.1.1 DoMO gateway
Figure 1 shows the DoMO gateway, i.e., the main smart device used in our pilot. The DoMO gateway
is a quite powerful device, based on the Banana PI R3 board, which is provided with a Quad Core ARM
A53 CPU and 2 GB of DDR RAM. Also, it has 8GB of EMMC flash available and is equipped with a
500 GB NVMEe disk. Regarding network connectivity, the DoMO gateway is equipped with two 4x4
WiFi 6 network chips (2.4Ghz and 5Ghz bands), 5 Gb Ethernet ports and two 2.5 Gb SFP ports. Also,
it is provided with a user-accessible USB 3.0 compliant port that allows connecting external USB
devices. Additional details of the device are reported in Figure 2.

The DoMO gateways run an OpenWrt Linux distribution. In detail, we prepared a specific
OpenWrt distribution for the DoMO gateways that includes the various components that are needed to
execute the SIFIS-Home software components to be used. For additional details please refer to section
DoMO Gateway OpenWrt distribution.

The DoMO gateway not only runs the vital SIFIS-Home services but also provides WiFi

connectivity to the NSSD that are installed in a SIFIS-Home house.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 7 of 87

Figure 1: Domo Gateway

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 8 of 87

Figure 2: Domo Gateway details

2.1.2 Laptop
In the pilot we use standard laptops as amd64 Smart Devices. In detail, Figure 3 shows the model of the
laptop that we used in our pilot implementation. It is a quite powerful device, provided with an Intel i7
CPU, 32GB of RAM and a dedicated Nvidia GPU. Also, it is equipped with a camera and a microphone.
We used it to validate the use cases that make use of voice commands and that rely on computer vision
tasks.

Please refer to section _Laptop_distribution for additional details of the Linux distribution that
we used on our laptops.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 9 of 87

Figure 3: Testbed Laptop

2.2 Not So Smart Devices
Not so smart devices are small, constrained devices that are mainly used to interact with the physical
world. The set of SIFIS-Home software components that they execute is named SIFIS-Home NSSD
framework. We report the details of the NSSDs used in the pilot in the following section.

2.2.1 DoMO WiFi actuators
The SIFIS-Home pilot uses different types of WiFi actuators, provided by DoMO, to control and
monitor the energy consumption of the lights, sockets, shutters, and appliances installed inside the
house. The WiFi actuators are simple devices that provide output and input channels and allow to turn
on and off the appliances/light/sockets they are attached to, as well as measure and report their energy
consumption. By using the input channels of the actuators, it is also possible to detect the state of
attached buttons and bistable buttons, as well as the state of attached window and door contact sensors.
All the actuators are equipped with an Espressif chip that provides WiFi/Bluetooth connectivity and that
can be flashed with a custom firmware. The NSSDs used in the SIFIS-Home pilot should expose a
WebOfThings (WoT) compliant API in order to be controlled and monitored. To this end, we developed
a WoT compliant firmware whose details are described in section _DoMO_WiFi_actuators.

In the following, we briefly describe the characteristics of the various types of WiFi actuators that are
used in the pilot.

Shelly 1
Figure 4 shows the Shelly 1 WiFi actuator. It provides one input channel and a potential-free output
channel. It is not provided with an energy monitoring chip. It can be used to turn on and off lights and
appliances as well as heating systems. Also, it can detect state changes of buttons/contacts to which its
input channel is connected to.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 10 of 87

Figure 4: Shelly 1

Shelly 1PM
Figure 5 shows the Shelly 1PM WiFi actuator. It provides one input channel and one output channel. It
can be used to turn on and off lights and appliances and monitor their energy consumption. Also, it can
detect state changes of buttons/contacts to which its input channel is connected to.

Figure 5: Shelly 1PM

Shelly 2.5
Figure 6 shows the Shelly 2.5 WiFi actuator. It provides two input channels and two output channels. It
can be used to turn on and off light and appliances and monitor their energy consumption. Also, it allows
to open/close shutters and curtains. Finally, it can detect changes in the state of buttons/contacts to which
its input channels are attached to.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 11 of 87

Figure 6: Shelly 2.5

Shelly Dimmer
Figure 7 shows the Shelly Dimmer WiFi actuator. It provides two input channels and one output
channel. It can be used to control dimmable lights and monitor their energy consumption. Also, it can
detect changes in the state of buttons/contacts to which its input channels are attached to.

Figure 7: Shelly Dimmer

Shelly RGBW
Figure 8 shows the Shelly RGBW WiFi actuator. It provides one input channel and a number of output
channels that can be used to control RGBW led lights. Also, it can detect changes in the state of
buttons/contacts to which its input channel is attached to.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 12 of 87

Figure 8: Shelly RGBW

Shelly EM
Figure 9 shows the Shelly EM WiFi actuator. It is a device that can provide the total power and energy
consumption of the house where it is installed.

Figure 9: Shelly EM

Shelly 1 Plus
Figure 10 shows the Shelly 1 Plus WiFi and Bluetooth actuator. It provides one input channel and a
potential-free output channel. It is not provided with an energy monitoring chip. It can be used to turn
on and off lights and appliances as well as heating systems. Also, it can detect state changes of
buttons/contacts to which its input channel is connected to. In addition, being equipped with a Bluetooth
chip it can be used to control Bluetooth-based actuators as well as to receive data from Bluetooth sensors
in its proximity. In the pilot implementation we use this device to detect state changes of Bluetooth Low
Energy Contact Sensors (that are described in the next section).

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 13 of 87

Figure 10: Shelly 1 Plus

Bluetooth Low Energy Contact Sensor
Figure 11 shows the Bluetooth Low Energy (BLE) Door/Window contact sensors that we used in the
pilot. They are battery-operated contact sensors that allow to detect when a door/window is open/closed.
In detail, whenever an open/close event is detected by the sensor, the on-board Bluetooth chip is used
to generate a specific BLE advertisement packet reporting the event. In the pilot implementation, we
use the Shelly 1 Plus actuators to receive the BLE advertisement packets generated by the contact sensor
and report the door opening/closing event to the SIFIS-Home system.

Figure 11: Bluetooth Low Energy Door/Window contact sensors

Bluetooth Low Energy Temperature and Humidity Sensor
Figure 12 shows the Bluetooth Low Energy Temperature and Humidity sensors that we used in the pilot.
They are battery-operated sensors that allow to receive temperature and humidity measurements. In
detail, the on-board Bluetooth chip is used to generate periodic BLE advertisement packets that report
both the temperature and the humidity values of the room where the sensor is placed. In the pilot
implementation we use the Shelly 1 Plus actuators to receive the BLE advertisement packets generated
by the sensor and report the measurements to the SIFIS-Home system.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 14 of 87

Figure 12: Bluetooth Low Energy Temperature and Humidity Sensor

2.2.2 Riots Devices
Riots Thermostat
Riots Thermostat shown in Figure 13 is a device that measures temperature and humidity and provides
means to control room temperature. Thermostat has touch buttons and display that are used to set the
desired room temperature. The history of collected sensor data and current settings can be monitored
and controlled in realtime using the Riots Cloud on any browser or Riots Mobile app on a smartphone.
Riots Thermostat provides proprietary wireless connection that is used to communicate with it inside
an apartment. Other Riots devices can connect to it wirelessly enabling freedom regarding the device
positioning inside the Apartment if they stay within the range of the wireless connection.

Figure 13: Riots Thermostats

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 15 of 87

Figure 14: View from RIOTS mobile app

Riots Mama
Riots Mama shown in Figure x is a device that connects the Riots devices to Riots Cloud. Mama creates
an AES128 end-to-end encrypted connection between the local Riots network and the Riots Cloud
service. All the network traffic goes through Mama, which links a building and its spaces to the Internet.
It is a part of every Riots solution, because it enables the spaces and buildings to be turned smart,
creating a secure and efficient data transfer from cloud service to the devices in buildings.

Figure 15: Different variations of Riots Mama – GSM (left), LAN (center), USB (right)

Riots Mama has minimal amount of implementation logic included; it is essentially a gateway that
converts Riots proprietary wireless connection to the encrypted TCP connection. There are few different
variants of Riots Mama device depending on the physical connection type:

- GSM Mama connects to the Internet using IoT SIM card and GPRS data connection

- LAN Mama connects to the Internet via RJ45 port and Ethernet connection

- USB Mama connects to a smart device via integrated USB port.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 16 of 87

It provides serial communication and uses host device’s internet connection
In this pilot USB Mama is used and the host device’s software that is used to communicate with Mama
and Riots Cloud is updated to add Sifis-Home compatibility. For more details see chapter Riots WoT
integration later in this document.

3 Pilot architecture

Figure 16: Pilot network architecture

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 17 of 87

Figure 16 shows the current network/system architecture of the SIFIS-Home pilot. As it can be observed
a number of devices and components are present in the pilot:

Smart Home Router: it is the device used to provide Internet Connectivity to the house. It is in general
provided by the Internet Service Provider (ISP), and it does not execute SIFIS-Home software
components. We assume that it provides WiFi connectivity to the users of the smart home and executes
a DHCP server that assigns IP addresses to the network devices deployed in the house.

DoMO gateway: a number of DoMO gateways are present in the house. At least one of them is
connected to the Smart Home Router using an Ethernet connection. The DoMO gateways are connected
with each other by means of a dedicated WiFi mesh network. In addition, they advertise a specific WiFi
network (SIFIS WiFi network in Figure 16) to which the NSSDs used in the pilot connect to.

Laptop: our pilot also includes laptops. They are connected to the local area network created by the
Smart Home Router and receive their network configuration from the DHCP server that it executes.

NSSD: there are several NSSDs inside the house. They are configured to connect to the network
advertised by the different DoMO gateways present in the house. Once connected to the WiFi network
of the DoMO gateway, they expose a WoT compliant API. Please note that the Bluetooth contact sensors
are not directly connected to the main SIFIS-Home network, but, rather, they are connected to the Shelly
1 Plus devices, which act as Bluetooth/WiFi gateways.

User smartphones: they are the devices that can be used by the users of the smart home to control the
lights and appliances connected to the NSSD deployed in the house. They run a mobile application that
executes the set of components being part of the SIFIS-Home Application Framework.

SIFIS-Home Cloud: we used a physical server, named Panarea, residing at CNR facilities, to host the
services being part of the SIFIS-Home Cloud framework. In detail, in the pilot implementation, we run
both Yggio and a VPN server on Panarea, to allow the smart home users to access the house
functionalities from a remote side.

GitHub: we use GitHub to host the source code of the different SIFIS-Home software components that
we developed. Also, we make use of GitHub actions to build the different software components. Finally,
we rely on the GitHub Container Registry (GHCR) service to host the Docker images of the different
SIFIS-Home services.

4 Smart Devices OS distribution setup
In this section we describe the details and the setup of the specific operating systems/distributions that
are used on our "operating systems/distributions used on our Laptops and DoMO gatewaysLaptop
distribution
The laptops that are used in the pilot run an Ubuntu 22.04 Linux distribution where the docker and
docker-compose packages have been installed using the apt package manager. After the installation of
such packages, it is possible to execute the different SIFIS-Home components by launching their
associated Docker images.

4.1 DoMO GW OpenWRT distribution

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 18 of 87

The DoMO Gateways run a SIFIS-Home OpenWrt Linux distribution, i.e., an OpenWrt distribution that
contains all the software packages that are needed to execute the components of the SIFIS-Home Smart
Device Framework. In detail, the SIFIS-Home OpenWrt distribution that we prepared contains the
docker and docker-compose packages as well as the domo-bootstrap package (for additional details of
the procedure that we used to prepare the DoMO Gateway OpenWrt image please refer to DoMO GW
OpenWrt distribution). docker and docker-compose packages allow the DoMO Gateways to execute
Docker containers by using the command line or the docker-compose binary (i.e., by specifying the
docker containers to run in a Docker Compose yaml file). Conversely, the domo-bootstrap package
provides the SIFIS-Home OpenWrt distribution with the domo-bootstrap application whose
functionalities are described in section domo-bootstrap.

4.2 Service configuration files
On both the Laptop and the DoMO gateway distribution, folder /etc/domo is used to store a number of
toml files that contain the configuration parameters of the different SIFIS-Home services. For example,
Table 1 shows the toml file used to configure the DHT Manager component.

Table 1: Configuration file for the DHT manager /etc/domo/broker.toml

[broker]	
http_port	=	3000	

[broker.cache]	
url	=	"sqlite://root/domo-dht-db/sifis-db.sqlite"	
table	=	"domo_data"	
persistent	=	true	
shared_key	=	
"d31c75055088a46242198d401a61e8c0db8aa580640e11be5258fc5b18e3456d"	
loopback	=	false	

In addition, /opt/domo/domo-compose is the folder where we place the docker-compose.yaml file
containing the details of all the different SIFIS-Home services to be run on a certain smart device. Figure
17 shows parts of the docker-compose.yaml file that is used on the DoMO gateways.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 19 of 87

Figure 17: Example of docker-compose.yaml file

As it can be observed, the docker-compose file contains the list of services that compose the SIFIS-
Home Smart Device Framework. We want to highlight that, since all the components of SIFIS-Home
are provided as Docker images, a running Docker engine suffices for a device to execute the whole
SIFIS-Home framework.

4.3 domo-bootstrap
The domo-bootstrap binary is an application that allows a DoMO gateway to receive all the information
it needs to join a SIFIS-Home network, such as its node id or the secret key to be used by the DHT
Manager application.
In detail, when a DoMO gateway is turned on, the following actions are performed by the domo-
bootstrap application. If the DoMO gateway has been already configured in the past, no further action
is performed. Conversely, if the device has not been configured yet, the domo-bootstrap application
takes care to 1) set the 2.4 Ghz WiFi interface of the DoMO Gateway in access point mode, 2) create a
dedicated WiFi bootstrap network, whose SSID is domo-<MAC>, where MAC is the MAC address of
the device, and password is a random one, 3) start a web server listening on port 8080 and exposing a
POST /config endpoint. We assume that the SSID and password of the WiFi bootstrap network can be
easily retrieved by the owner of the DoMO gateway by scanning a QR code present on the DoMO
Gateway enclosure box. Once a connection to the bootstrap network is performed, the /config endpoint
should be used to configure the DoMO gateway.

The /config endpoint of the web server accepts a json payload, whose format is reported in Figure 18.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 20 of 87

Figure 18: Example of json payload used to configure a DoMO gateway

As it can be observed, the endpoint allows to specify both application parameters such as the shared key
to be used by the DHT Manager (dht_iot field) and system parameters such as the SSID and password
of the network to which the NSSDs will connect to (iot_ssid and iot_pass fields). Other parameters such
as the id of the device (node_id) as well as the mesh network credentials (mesh_id and mesh_pass) can
be configured too. If the json payload sent to the /config endpoint is correct, the domo-bootstrap
application takes care to 1) configure the OpenWrt system using the parameters contained in the json
payload, 2) generate the toml files needed by the different SIFIS-Home components (such as the
broker.toml shown in Figure 13) and place them in the /etc/domo folder, 3) start the dockerd process
and execute the domo-docker service whose initscript is the following one:

Figure 19: domo-docker init script

As it can be observed, the domo-docker initscript launches the command “docker compose up
/opt/domo/ domo-compose/domo-compose.yaml” causing all the services specified in that files to be
executed. Hence, after the configuration phase, the SIFIS-Home Smart Device framework becomes
active and operational on the DoMO gateway.

5 SIFIS-Home Framework Integration in the pilot
As it can be observed by looking at Figure 16, a number of SIFIS-Home components have been
integrated and tested in the SIFIS-Home pilot. Specifically, the pilot implementation comprises
components being part of the SIFIS-Home Cloud, Application, Smart Device and NSSD frameworks.
In the following, we report the details of all the components integrated and used in the pilot, highlighting
their functionalities, and how they have been integrated with each other.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 21 of 87

5.1 GitHub and GitHub Container Registry
The SIFIS-Home framework is made up of different components and services. We used a dedicated
GitHub repository for every component that we developed. We used GitHub Actions to build and test
the different SIFIS-Home components. Also, specific GitHub actions have been used to build Docker
images for the components of the SIFIS-Home framework. We used the GitHub Container Registry to
store the Docker images that we produced. In the following sections, if possible, we provide a link to
the repository and Docker image of every component that is described.

5.2 SIFIS-Home Cloud Framework
5.2.1 Yggio
Yggio is the most important component of the SIFIS-Home Cloud Framework. It provides an interface
through which users of the smart home can have a clear view of the status of their devices, control them,
see system logs, and have a list of the installed SIFIS-Home third-party applications. In the following
sections, we describe the different Yggio components.

Figure 20: The start page of the Cloud Interface

Yggio / Cloud UI
The Sensative horizontal Internet of Things (IoT) integration platform Yggio is used as the backbone
of the SIFIS-Home cloud interface. It provides the execution environment that makes Ratatosk
FIWARE Context Broker possible to execute, and its API makes it possible to implement the SIFIS-
Home overall web interface UI. Ratatosk in turn uses the open-source KeyCloak component as a
security plug-in for access and authentication that provides a JWT – JSON Webtoken. The JWT is used
by both the DHT and the Mobile Application to authenticate users and interact with the Ratatosk Rest
API.

The cloud interface can be used to interact with the SIFIS-Home framework both within the Smart
Home and outside the Smart Home via a feature-rich web UI.

FIWARE Context Broker Ratatosk: FIWARE NGSI v2 Ratatosk is a publish/subscribe Context
Broker that holds the representation of a system state via FIWARE entities. The Context Broker
implements [FIWARE NGSI v2 API] FIWARE NGSI v2 APIs. The FIWARE Context broker API is
exclusively used to power the cloud user interface of the SIFIS-Home and is not involved in the actual
secure SIFIS-Home network inside the Smart Home, which instead relies on a DHT to create a
distributed and robust network without a single point of failure.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 22 of 87

Each of the FIWARE entities is described in JSON via a data model. FIWARE defines recommended
data models to simplify interoperability between systems at https://github.com/smart-data-models but,
if none fits, it is also possible to define one’s own data models or use a subset of an existing data model
to represent the type of object one wants to describe.

Figure 21: Ratatosk FIWARE Context Broker architecture

Ratatosk is a secure FIWARE Context Broker relying on the KeyCloak open-source component as a
security plug-in, and that it always requires a valid authentication token to accept a command. This will
be used to make sure that a user in the Smart Home who attempts to perform some actions has the
required authorization to do so.

A design aspect of SIFIS-Home is that the cloud interface that implements the FIWARE Context Broker
must be able to send a command through a firewall to the DHT-based network inside a Smart Home,
and then execute some command, like turning on a lamp. The natural FIWARE solution to use NGSI
subscriptions would unfortunately not work, since subscription requests are required to be IP
addressable and will get blocked by the Smart Home firewall. The solution that we identified was to
develop an MQTT-to-DHT bridge, i.e., the devices and analytics in the Smart Home both publish events
and subscribe to the FIWARE Context Broker events not via the API and NGSI subscriptions, but rather
via a standard, open-source MQTT broker that integrates with Ratatosk. The Ratatosk events will then
be triggered either by the user via the UI or by other SIFIS-Home devices. There are more details about
the MQTT-to-DHT bridge in Section DHT-TO-MQTT Manager.

The Ratatosk implementation is available here: https://github.com/sifis-home/yggio-ratatosk

Cloud Home

This is the main component of the User Interface and is used to launch other applications installed in
the Smart Home system. The dashboard in the figure below shows some key metrics of the system, such
as the number of devices and installed third-party applications (Client Apps in Figure 20).

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 23 of 87

Figure 22: Home screen with a simple dashboard and a map

Cloud Device management

This component enables the configuration of the devices in the SIFIS-Home network. This is a core
system component that manages onboarding, configuration, displaying of device status, and other
functionalities related to the devices added to the Smart Home system. Depending on what role the
logged in user has, different activities, like read or write data, are allowed.

Figure 23: Device Manager with a list of devices

Cloud Settings

This component provides user interfaces for the configuration of the SIFIS-Home infrastructure and
most items in the cloud interface, such as devices and analytics. Each visible item is represented by
FIWARE entities in the Ratatosk Context broker. This component allows the user to view and edit the
values of FIWARE entities.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 24 of 87

Figure 24: View status and edit settings for a SIFIS-Home Smart Device

Figure 25: Compare time series data of 3 devices used for validation

Figure 26: Control actuators via command buttons in the cloud interface

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 25 of 87

Figure 27: Create custom command buttons

The Cloud UI implementation is available here: https://github.com/sifis-home/yggio-components

Yggio Market Place
The Yggio Market Place, as depicted in Figure 17, is accessible through the cloud UI. It enables end
users to see the list of available third-party applications and install them on their SIFIS-Home network.

Figure 28: Example 3rd party app in the Market Place

Figure 29: Example 3rd party app in the Market Place

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 26 of 87

Figure 17 Example of an installed app in the Market Place

Figure 30: Edit or create an application in the Market Place

Figure 31: Share installed application with other users in the home

For seamless integration into the SIFIS-Home ecosystem, third-party applications are required to be
uploaded to the SIFIS-Home GitHub Docker Container registry. Subsequently, these applications
undergo an automatic security scanning process utilizing tools developed by WP2. Once the
applications pass the security scanning successfully, they are appropriately labeled and are then made
available in the Yggio Market Place. This meticulous procedure ensures that only trusted and secure
applications are accessible to users, in the interest of preserving the integrity and safety of the SIFIS-
Home environment.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 27 of 87

The Yggio Market Place implementation is available here as an embedded application inside the control
panel: https://github.com/sifis-home/yggio-components/tree/master/control-panel-v2/src/pages/apps

Alarm / Logs:
The functionality of this component encompasses two key features: displaying alarms in the cloud
interface and the mobile application and gathering logs pertaining to the operation of the SIFIS-Home
infrastructure. Concerning alarms, it provides a means to highlight any critical issues or events that
require attention. Additionally, it facilitates the collection of logs, capturing essential information about
the overall functioning of the SIFIS-Home system for analysis and monitoring purposes.

Figure 32: The log in the cloud UI with quick filter on alarms activated.

The alarm and log component receives logs from the DHT via MQTT. These logs are received under a
JSON key named "log" located at the top level of each message. The "log" key contains crucial
information such as type, priority, category, and message, which collectively determine how the log
message should be handled and displayed in the UI.
When incoming logs have a priority level of "severe" or "high", they are categorized as alarms. As a
result, the user will be notified of these alarms via both the cloud UI and the mobile application and
provided with the ability to dismiss them.

Figure 33: The log JSON structure of logs

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 28 of 87

Each log within the SIFIS-Home system is equipped with access rights, ensuring that only end users
who have access to the device that generated the log can view and dismiss alarms related to that device.
This ensures that the responsibility for handling and acknowledging device-specific alarms lies solely
with the users who have direct access to the respective device.

5.2.2 Marketplace
All the SIFIS-Home third-party applications are provided to the end user of the smart home as Docker
images that are ready to be downloaded and run on the SIFIS-Home SDs. The Marketplace is the
component responsible for providing access to the third party applications Docker images of the
different SIFIS-Home third-party applications and make them available for download. Moreover, the
Marketplace provides an API through which the metrics of a third-party application such as its software
quality and its hazards list can be retrieved. We use the GitHub Container Registry to store the SIFIS-
Home Docker images of the third-party applications and decided to use specific Docker Labels to store
the third-party application metrics. Repository https://github.com/sifis-home/third-party-application,
shows the procedure that we used to create a third-party application Docker image and add labels to it.
Also, it is reported how the Docker Labels associated with a certain image can be retrieved using the
GitHub Container Registry API. Such APIs are used by both Yggio Marketplace and the Mobile
Application to produce the list of available third-party applications and show their metrics (see Figure
15).

Figure 34: MarketPlace mobile app view

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 29 of 87

5.2.3 VPN Server
The VPN Server is the technical solution through which we make services running on the SDs accessible
from a remote side. In detail, our goal is to make the DHT Manager web service, the privacy dashboard
panel, and the policy translation point panel running on a SD deployed in the house available from a
remote side. Specifically, given that yggio.sifis-home.eu is the DNS name associated with the Panarea
server, our solution allows to reach the DHT web service at the address yggio.sifis-home.eu:3000, the
privacy dashboard panel at the address yggio.sifis-home.eu:11000, and the policy translation panel at
the address yggio.sifis-home.eu:9000.

The VPN Server solution is made up of two different components, a wireguard server and a nginx proxy
server. The configuration of the wireguard server that we use is reported in Figure 15. As it can be
observed, the server is configured in such a way that it will create a wireguard interface, namely wg0,
that will use address 10.43.89.1. Moreover, only one single client (i.e., the wireguard client running on
the leader SD deployed in the house, see also section domo-scheduler) can be connected to the server
and will have address 10.43.89.2 assigned to it. We highlight that UDP port 51820 has been opened on
the Panarea server to allow wireguard clients to connect to the server.

Table 2: configuration of the wireguard server running on Panarea

########	
#	 Wireguard	 server	 configuration	 for		
########	

[Interface]	
Address	 	 	 	 =	 10.43.89.1/24	
ListenPort	 =	 51820	
PrivateKey	 =	 <wireguard_server_private_key>	
#	 Deny	 internet	 traffic		
PostUp	=	iptables	-I	FORWARD	-i	%i	-o	%i	-j	ACCEPT;	iptables	-i	%i	-A	FORWARD	-j	REJECT;	
PostDown	=	iptables	-I	FORWARD	-i	%i	-o	%i	-j	ACCEPT;	iptables	-i	%i	-A	FORWARD	-j	REJECT;	

[Peer]	
PublicKey	 	 =	 <wireguard_client_public_key>
AllowedIPs	 =	 10.43.89.2/32,	 224.0.0.251/32		
PersistentKeepalive	 =	 15	
		

The configuration of the nginx server that we use to redirect requests arriving to the Panarea server
towards the SD connected through the VPN tunnel is reported in Figure 16. In detail, the nginx proxy
forwards requests arriving to port 3000 of the Panarea server to the DHT Manager running on the
connected SD and running on port 3000, request arriving to port 9000 of Panarea to the Policy
translation panel running on the connected SD on port 9000 and, finally, requests on port 11000 to the
Privacy dashboard panel running on port 11000 on the connected SD. Please note that 10.43.89.2 is the
IP address of the leader SD.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 30 of 87

Table 3: configuration of the nginx proxy running on the Panarea server

load_module	 /usr/lib/nginx/modules/ngx_stream_module.so;	
worker_processes	 	 1;

events	 {	
	worker_connections	 	 256;		
}	

stream	 {	
	server	 {	
			listen	 3000;	
			proxy_pass	 10.43.89.2:3000;	
	}	
	
	server	 {	
							listen	 9000;	
							proxy_pass	 10.43.89.2:9000;	
	}	

	server	 {	
							listen	 11000;	
							proxy_pass	 10.43.89.2:11000;	
	}	

}
		

Table 4 shows a successful ping operation from the Panarea server towards the SD VPN client. Also,
Figure 35 and Figure 36 show the Privacy dashboard panel and the Policy translation point panel,
respectively, that have been accessed through the VPN tunnel.

Table 4: Successful ping operation from Panarea to the connected SD using the VPN connection

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 31 of 87

Figure 35: Privacy Dashboard login interface

Figure 36: Policy translation point dashboard

5.3 SIFIS-Home Application Framework
The Mobile Application within the SIFIS-Home system serves as a user-friendly interface for end users
to interact with the SIFIS-Home framework. Through the Mobile Application, users can easily manage
the SIFIS-Home network basic functionalities. This includes listing the installed devices within the
home, enabling users to perform various actions on these devices, such as collecting environment
measure readings, controlling actuators, and turning devices on or off.

Additionally, the Mobile Application provides access to system logs for monitoring purposes, as well
as the ability to install third-party applications directly into the SIFIS-Home framework, in order to
extend the capabilities of the system.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 32 of 87

The Mobile Application was written in Javascript and Vue utilizing the NativeScript framework and the
Stackblitz development environment. Mobile Application can run both on Android and iOS with the
NativeScript preview application available at https://preview.nativescript.org/.

Figure 37: Mobile Application UX

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 33 of 87

Login

The Mobile Application performs the login operation using Yggio API (https://yggio.sifis-
home.eu/swagger). Yggio API provides a simple method to send authentication credentials and as a
POST request, and it returns a JWT token on successful login. This token is stored on the device which
performed the request and is used for future communications with DHT.

Figure 38: Login view

Devices
The Mobile Application collects the topics that represent devices and visualizes data and possible
actions provided by the devices.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 34 of 87

Figure 39: Devices view

Marketplace
The SIFIS-Home marketplace provides a list of the third-party applications that can be installed.
Such a list is retrieved from ghcr.io, under the SIFIS-home organization, where the docker images of
the third-party applications are stored.
The name all the third-party applications starts with the prefix "3pa-", e.g., "3pa-third-party-lamp-
controller-amd64", so the marketplace applies this filter to show the third-party applications only.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 35 of 87

Figure 40: Marketplace view

Statistics & Analytics
The Mobile Application connects to Yggio logs API to fetch the list of system events. The logs are
rendered and shown to the end user.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 36 of 87

Figure 41: Logs view

Settings
Mobile Application gives option to define the DHT server address and select whether the DHT is used
local or remote.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 37 of 87

Figure 42: Settings view

Notifications
The mobile application shows notifications through a banner which appears on each view. Notifications are meant
to inform about critical events, still all kind of notifications can be given using this interface. The integration of
the notifications with the SIFIS-Home framework is done through a specific Notification topic, which can be
used by any SIFIS-Home framework component, plus the Yggio interface which is used to relay the notification
to the mobile application, even when the mobile device is outside the smart home premises.

Figure 43: Example of notification

Privacy dashboard and Policy definition Panel
The privacy dashboard and policy definition panel are deployed on in the SIFIS-Home framework as

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 38 of 87

separate services. Mobile Application provides WebView to use them. Both services can be used
remotely when DHT is used via VPN connection.

5.4 SIFIS-Home Smart Device Framework

The SIFIS-Home Smart Device Framework is composed of the following macro components:

• Secure Lifecycle Manager

• Secure Communication Layer

• Proactive Security Management Layer

• Application Toolboxes

• Api Gateway

• DHT Manager

• VPN Manager

• NSSD Manager

In the following sections, we briefly describe all the components of the different macroblocks of the
Smart Device Framework, which have been integrated and used in the pilot. However, we first need to
introduce some “use-case-specific” components that have been specifically developed to optimize the
performance of the SIFIS-Home Smart Device while operating in the pilot environment.

We want to highlight that, given the heterogeneity of the pilot devices, for all the components of the
SIFIS-Home SD framework we built Docker images targeting both the armv8 and amd64 architecture.

5.4.1 Use-case-specific components
This set of components has been specifically developed to optimize the performance of the SIFIS-Home
framework when executed in the DOMO testbed.

5.4.1.1 domo-scheduler
The domo-scheduler is an application running on all the SIFIS-Home SDs. It is a Rust application that
has direct access to the DHT since it embeds the DHT as an external library. Its role is to elect one
leader device among all the different SDs that are present in a certain SIFIS-Home network, in a
dynamic way. The leader device is the only one allowed to execute specific services of the smart home,
that are named cluster services. In detail, only one single instance of a cluster service should be running
inside the SIFIS-Home network at a given point in time. This is because such services take decisions
and coordinate specific smart home functionalities and, hence, do not need to be executed on multiple
devices at the same time. The domo-scheduler takes as input the id of the node where it is executing
and uses specific volatile messages published on the DHT to elect a leader node in a completely dynamic
and distributed way. The following picture shows an example toml file used to configure the domo-
scheduler application.

Table 5: domo-scheduler configuration file

[domo_scheduler]	
node_id	=	1	

[domo_scheduler.cache]	

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 39 of 87

url	=	"sqlite::memory:"	
table	=	"domo_scheduler"	
persistent	=	true	
shared_key	=	"<secret_dht_key>"	
loopback	=	false
	

The actions that are periodically executed by the domo-scheduler application are the following ones.
First, a volatile message whose format is reported in Figure 17 is sent.

Table 6: domo-scheduler message format

{
 “name”: “domo-scheduler”,
 “message”: {
 “node_id”: <node_id>,
 “publication_timestamp”: <current_timestamp>
 }
}

As it can be observed, the message contains the identifier of the node where the domo-scheduler
application is currently running and the time at which the message has been generated. Please note that
due to the pub/sub functionality of the DHT, every domo-scheduler message that is published on the
DHT is received by all the domo-scheduler applications running on the other SDs at a given point in
time.

The domo-scheduler application stores the different domo-scheduler messages that it receives from the
DHT. Then, it periodically runs the following simple algorithm to decide if the node where it is currently
executing has the right to become the leader device. First, The domo-scheduler expunges all the domo-
scheduler messages with "publication_timestamp" older than 30 seconds with regards to the current
time. Second, the "lowest_external_id" is computed as the lowest "node_id" found in the set of the
domo-scheduler messages. If the node id of the device where the domo-scheduler is running is lower
than lowest_external_id, the current device becomes the leader_node. Otherwise, another node in the
network should be the leader one.

The domo-scheduler uses a simple mechanism to signal to the cluster services running on the node that
the device is, currently, the leader one. Specifically, it creates a file named /services/leader_file.txt
whenever the node becomes the leader one and removes the file whenever another node is selected to
be the leader node.

A mechanism such as the one reported in Figure 18 should then be used to monitor, execute, and
terminate a cluster service. In the pilot implementation we used simple bash scripts that we called launch
scripts, to implement the functionality reported in Figure 18.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 40 of 87

Figure 44: Executing a cluster service

In detail, the lifecycle of a cluster service, named SERVICE in the example of Figure 44, is managed
by a "launch script", which periodically performs the following actions. First, file
/services/leader_file.txt is checked. If it exists, this means that the node is the leader one. Hence, the
launch script checks if SERVICE is running or not. If not, SERVICE is launched. Conversely, if file
/services/leader_file.txt is not present, the node is not the leader one. Hence, if SERVICE is running, it
is terminated.

Having a domo-scheduler application and launch scripts running on all the SDs of the system, provides
an easy and robust way to launch cluster services.

5.4.1.2 SIFIS-SD-nginx-server
On all the SDs a nginx proxy server is used to protect the web services running on the SDs from external
access. In detail, the nginx proxy server provides TLS termination for the DHT Manager web service,
the Privacy Dashboard panel as well as the Policy Translation Point Panel (see Figure 19).

Figure 19: nginx-dht service operations

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 41 of 87

Moreover, since only authorized users should have access to the DHT Manager web service, the nginx
proxy requires that all the requests towards the DHT contain a valid Json Web Token (JWT) in their
HTTP Authorization header. A DHT request is considered valid if its JWT has been released by
Keycloak and it has not expired yet. Figures 20 and 21 report the results of two DHT requests. The first
one is valid, while the second one is not.

Figure 20: successful DHT request

Figure 21: unsuccessful DHT request

GitHub repository Docker Images URLs
https://github.com/sifis-home/sifis-sd-nginx/ ghcr.io/sifis-home/domo-nginx-dht-

arm64v8:latest
ghcr.io/sifis-home/domo-nginx-dht-
amd64:latest

5.4.1.3 SIFIS Light Manager
The pilot implementation includes a light manager component also. Such component takes care to turn
on and off the physical lights of a certain room when the physical buttons of the room are
pressed/released by the users of the smart home.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 42 of 87

The light manager is a cluster service that only runs on the leader SD. It has been developed using the
Python language and uses the WebSocket and REST Api of the DHT to detect status changes of buttons
and bistable buttons and to send the appropriate commands to the physical lights.

GitHub repository Docker Images URLs
https://github.com/sifis-home/uc16-light-
manager

ghcr.io/sifis-home/uc16-light-manager:latest

5.4.2 Secure Lifecycle Manager
The components being part of the Secure Lifecycle Manager are reported in Figure 22. For the Secure
Lifecycle Manager subcomponents, no noticeable differences have to be reported with respect to what
has been described in D5.4. Hence, in the rest of this section, for each subcomponent, we only report a
brief description and a link to their GitHub repository and Docker images. Additional details of the
components can be found in D5.4.

Figure 45: Secure Lifecycle Manager

5.4.2.1 Application Manager
The application manager is the component responsible for controlling the deployment, execution and
removal of the SIFIS-Home third-party applications.

GitHub repository Docker Images URLs
https://github.com/sifis-home/Application-
Manager

ghcr.io/sifis-home/application-manager:latest

5.4.2.2 Node Manager
The node manager component allows the dynamic joining of nodes and handles the removal of nodes
in different circumstances.

GitHub repository Docker Images URLs
https://github.com/sifis-home/node-manager ghcr.io/sifis-home/node-manager-amd64:latest

ghcr.io/sifis-home/node-manager-arm64:latest

5.4.2.3 System Protection manager
It is the component that receives inputs from the various monitors and triggers actions such as node or
application removal by communicating with the Application Manager and Node Manager through the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 43 of 87

DHT.

GitHub repository Docker Images URLs
https://github.com/sifis-home/System-
Protection-Manager

ghcr.io/sifis-home/system-protection-
manager:latest

Authentication Manager and Key Manager
The following table reports a link to the implementation of the security solutions developed in WP3
pertaining to the “Secure Lifecycle Manager” module.

GitHub repositories
https://github.com/sifis-home/wp3-solutions
https://github.com/sifis-home/ace-ucs
https://github.com/sifis-home/ace-entities
https://bitbucket.org/marco-tiloca-sics/ace-java

https://bitbucket.org/marco-tiloca-sics/ace-java
https://github.com/rikard-sics/californium/tree/edhoc

5.4.3 Secure Communication Layer
The components being part of the Secure Communication Manager are reported in Figure 24. No
noticeable differences have to be reported with respect to what has been described in D5.4. Hence, in
the rest of this section, for each subcomponent, we only report a brief description and a link to their
GitHub repository and Docker images. Additional details of the components can be found in D5.4.

Figure 46: Secure Communication Layer

5.4.3.1 Secure Message Exchange Manager and Content Distribution Manager
The following table reports a link to the implementation of the security solutions developed in WP3
pertaining to the “Secure Communication Manager” module.

GitHub repositories
https://github.com/sifis-home/wp3-solutions
https://github.com/sifis-home/ace-ucs
https://github.com/sifis-home/ace-entities
https://bitbucket.org/marco-tiloca-sics/ace-java

https://bitbucket.org/marco-tiloca-sics/ace-java
https://github.com/rikard-sics/californium/tree/edhoc
https://github.com/rikard-sics/californium/tree/group_oscore

5.4.4 Proactive Security Management Layer

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 44 of 87

The components being part of the Proactive Security Management Layer are reported in Figure 25. No
noticeable differences have to be reported with respect to what has been described in D5.4. Hence, in
the rest of this section, for each subcomponent, we only report a brief description and a link to their
GitHub repository and Docker images. Additional details of the components can be found in D5.4.

Figure 47: Proactive Security Management Layer

5.4.4.1 Monitors
This component is a collection of services that log specific events at different levels:

DHT Monitor
Implemented through the libP2P library, it logs the number and type of operations performed on the
DHT.

GitHub repository Docker Images URLs
https://github.com/sifis-home/dht-monitor ghcr.io/sifis-home/dht-monitor:latest

Application Monitor
This service in-lines security critical APIs to log and control their behaviour and rights to be executed
when they are invoked by third-party applications.

GitHub repository Docker Images URLs
https://github.com/sifis-home/sifis-api
https://github.com/sifis-home/sifis-message

ghcr.io/sifis-home/sifis-alpine-runtime-
arm64v8:latest

Network Monitor
It acquires traffic by capturing packets via iptables. It is intended to run on central networking devices,
such as routers through which other devices communicate both inside the SIFIS-Home network and to
the outer Internet.

GitHub repository Docker Images URLs
https://github.com/sifis-home/wp4-
aud_manager

ghcr.io/sifis-home/aud_manager:latest

SysCall Monitor
It collects system call events through a REST API and conveys them for further assessment to the
responsible analytic in the Data Analytic Toolbox component of the Application Toolboxes module.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 45 of 87

GitHub repository Docker Images URLs
https://github.com/sifis-home/Kernel-Monitor ghcr.io/sifis-home/kernel-monitor:latest

5.4.4.2 Distributed Trust
The distributed trust component continuously assigns to each smart device a trust score and manages
distributed decisions under biased voting. The distributed trust management has been integrated as a
functional module of the Node Manager.

GitHub repository Docker Images URLs
https://github.com/sifis-home/node-manager ghcr.io/sifis-home/node-manager-amd64:latest

ghcr.io/sifis-home/node-manager-arm64:latest

5.4.4.3 Self Healing
The self-healing component has been integrated as a functional module of the Node Manager.

GitHub repository Docker Images URLs
https://github.com/sifis-home/node-manager ghcr.io/sifis-home/node-manager-amd64:latest

ghcr.io/sifis-home/node-manager-arm64:latest

5.4.5 Application Toolboxes
The components being part of the Application Toolboxes are reported in Figure 27. No noticeable
differences have to be reported with respect to what has been described in D5.4. Hence, in the rest of
this section, for each subcomponent, we only report a brief description and a link to their GitHub
repository and Docker images. Additional details of the components can be found in D5.4.

Figure 48: The application toolboxes

5.4.5.1 Data Analysis Toolbox
This component of the SIFIS-Home framework is devoted to the execution of the analytics on the data
collected from the sensors and Smart Devices in the Smart Home.

GitHub repositories Docker Images URLs
Privacy-Aware Speech Recognition
(https://github.com/sifis-home/flask-whisper-
speech-recognition)

ghcr.io/sifis-home/flask-whisper-speech-
recognition:latest

Privacy-Aware Face Recognition
(https://github.com/sifis-home/flask-private-
deepface).

ghcr.io/sifis-home/flask-private-deepface:latest

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 46 of 87

Privacy-Aware Device Anomaly Detection
(https://github.com/sifis-home/flask-device-
anomaly-detection).

ghcr.io/sifis-home/flask-device-anomaly-
detection:latest

Privacy-Aware Parental Control
(https://github.com/sifis-home/flask-parental-
control).

ghcr.io/sifis-home/flask-parental-control:latest

Privacy-Aware Object Recognition
(https://github.com/sifis-
home/flask_object_recognition)

ghcr.io/sifis-
home/flask_object_recognition:latest

Privacy-Aware Speaker Verification
(https://github.com/sifis-
home/flask_speaker_verification)

ghcr.io/sifis-
home/flask_speaker_verification:latest

Privacy-Aware Audio Signal Classifier
(https://github.com/sifis-
home/flask_audio_signal_classifier)

ghcr.io/sifis-home/max-model:latest

Analytics API (https://github.com/sifis-
home/analytics_api)

ghcr.io/sifis-home/analytics_api:latest

5.4.5.2 Anonymization Toolbox
The anonymization toolbox contains software tools that preserve privacy of data before, during, and
after the analysis of such data. The tools have been integrated as functional modules of the analytics
modules.

5.4.5.3 Policy Enforcement Engine

There are three different modules being part of the Policy Enforcement Engine, namely the Usage
Control Engine, the Policy Translation Point and the Privacy dashboard. They are briefly described
below and link to their source code and Docker images is also provided.
Usage Control Engine
The Usage Control Engine is implemented following the Usage Control (UCON) model. The UCON
model allows dynamic evaluation of access policies through mutable attributes.

GitHub repository Docker Images URLs
https://github.com/sifis-home/usage-control ghcr.io/sifis-home/usage-control-engine:latest

Policy Translation Point
The Policy Translation Point (PTP) translates high-level security policies into low-level policies in a
XACML formalism. Furthermore, PTP detects potential conflicts like redundancies and inconsistencies
between high-level policies.

GitHub repository Docker Images URLs
https://github.com/sifis-home/policy-
translation-point

ghcr.io/sifis-home/policy-translation-
point:latest

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 47 of 87

Privacy dashboard
The privacy dashboard is a centralized web interface for data controllers and data subjects that provides
an organized overview of privacy notices, a list of data subjects, data retention periods, tracking of data
subject rights requests, and facilitates communication between data subjects and data controllers for
GDPR compliance. For additional details please refer to D2.6 and D2.7.

GitHub repository Docker Images URLs
https://github.com/sifis-
home/privacydashboard

ghcr.io/sifis-home/privacydashboard:latest

5.4.6 Api Gateway
The components being part of the SIFIS-Home Api Gateway are reported in Figure 34. No noticeable
differences have to be reported with respect to what has been described in D5.4. Hence, in the rest of
this section, for each subcomponent, we only report a brief description and a link to their GitHub
repository and Docker images. Additional details of the components can be found in D5.4.

Figure 49: API Gateway with the mobile and 3rd party API

5.4.6.1 Mobile Application API

No changes to report with respect to D5.4.

5.4.6.2 3rd party API
This component provides the API that allows downloaded third-party applications to interact with the
Smart Home system.
It is implemented as a rust crate based on “tarpc” to implement both applications (that act as untrusted
clients) and runtimes (that act as trusted endpoint and interface to the DHT).
The application binaries are expected to run in a segregated environment such as “ujail” or docker and
interact only with the runtime via a Unix socket.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 48 of 87

Figure 50: The manifest generator/validator

GitHub repository Docker Images URLs
https://github.com/sifis-home/sifis-api
https://github.com/sifis-home/sifis-message

ghcr.io/sifis-home/sifis-alpine-runtime-
arm64v8:latest

5.4.7 VPN Manager
The VPN Manager is a cluster service that we use to make services running on the SDs accessible from
a remote side. The VPN Manager runs only on the leader node and uses a wireguard-client application
to connect to a wireguard server running on the Panarea server. As it can be observed from Figure 19-
20, the wireguard client is configured in such a way that it connects to the wireguard server running on
the Panarea server. Then, the DoMO gateway where it executes takes address 10.43.89.2. Figure 21
shows a successful ping operation from the gateway to the Panarea server. Please note that since i) the
VPN Manager is the process opening the VPN connection and ii) Panarea has a public IP address, the
solution overcomes NAT or port forwarding issues.

Table 7: VPN manager toml configuration file

[domo_vpn]	

[domo_vpn.wireguard]	

#	Wireguard	client	private	key	
interface_private_key							=	"<secret_client_key>"	

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 49 of 87

#	Address	and	subnet	mask	in	CIDR	notation	of	the	wireguard	interface	
interface_address											=	"10.43.89.2/24"	

#	Wireguard	remote	peer	(server)	public	key	
peer_public_key													=	"<server_public_key>"	

#	Wireguard	remote	peer	(server)	allowed	IPs	
peer_allowed_ips												=	"10.43.89.1/32,	224.0.0.251/32"	

#	Wireguard	remote	peer	keepalive	
peer_keepalive														=	15

Table 8: VPN manager wireguard configuration

[Interface]
Address = 10.43.89.2/24
MTU = 1280
PrivateKey = <client_private_key>

[Peer]
PublicKey = <wireguard_server_public_key>
Endpoint = panarea.sifis-home.eu:51820
AllowedIPs = 10.43.89.1/32, 224.0.0.251/32
PersistentKeepalive = 15

Figure 51: domo-vpn client successful ping towards Panarea

5.4.8 DHT Manager

5.4.8.1 DHT
The SIFIS-Home DHT is a component that offers a completely distributed publish/subscribe

mechanism through which SIFIS-Home applications can exchange messages. The SIFIS-Home DHT
allows to publish both "persistent" and "volatile" messages. Persistent messages are messages that need
to be stored in a persistent way, so that they are available even after a node reboot operation. In detail,
persistent messages are stored on an Sqlite database. Volatile messages are instead messages that need
to be delivered to all the available applications but that do not need to be persisted on disk.

The SIFIS-Home DHT has a built-in mechanism to solve possible data conflicts that can arise

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 50 of 87

when a network partition occurs. In detail, every time a message is published on the DHT, the DHT also
stores its publication timestamp. Then, the publication timestamp is used to assure that only the most
recently published messages will be stored and made available to the applications.

The SIFIS-Home DHT has been developed using the Rust language. Rust applications can
include the DHT by embedding it as a library. Non-Rust applications can access the DHT by means of
a REST + WebSocket API provided by the DHT Manager. Please note that Rust applications can also
use the REST + WebSocket API provided by the DHT Manager to access the DHT. In the next section,
we report the details of the REST and WebSocket API provided by the DHT Manager.

SIFIS-Home DHT REST API
The DHT provides a REST API through which it is possible for an external application to access the
DHT. Here we report the main REST API endpoints. In the following, <DHT_ADDRESS> indicates
the IP address of the node where the DHT executes while <DHT_PORT> is the HTTP port used by the
DHT.

HTTP
Method

Endpoint Parameters Description

GET http://<DHT_ADDRESS>:<DHT_P
ORT>/get_all

- Returns all the
published persistent
messages

GET http://<DHT_ADDRESS>:<DHT_P
ORT>/topic_name/<topic_name>

<topic_name> Returns all the
persistent messages
whose topic_name is
<topic_name>

GET http://<DHT_ADDRESS>:<DHT_P
ORT>/topic_name/<topic_name>/top
ic_uuid/<topic_uuid>

<topic_name>
<topic_uuid>

Returns the message
whose topic_name is
<topic_name> and
topic_uuid is
<topic_uuid>

POST http://<DHT_ADDRESS>:<DHT_P
ORT>/pub

The content of the
message to be
published is specified
in the request body
(type application/json)

Publishes a volatile
message whose content
is specified in the
payload of the request

POST http://<DHT_ADDRESS>:<DHT_P
ORT>/topic_name/<topic_name>/top
ic_uuid/<topic_uuid>

<topic_name>,
<topic_uuid>,

The content of the
message to be
published is specified
in the request body
(type application/json)

Publishes a persistent
message whose
topic_name is
<topic_name> and
whose topic_uuid is
<topic_uuid>

SIFIS-Home DHT WebSocket API
The DHT provides also a WebSocket API to access the DHT. In the following, we report the WebSocket
messages that can be sent to the DHT Manager to request operations on the DHT. The websocket API
URL is ws://<DHT_ADDRESS>:<DHT_PORT>/ws.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 51 of 87

Message Parameters Description
RequestGetAll - Returns all the published

persistent messages
{"RequestGetTopicName":

{"topic_name": "<topic_name>"}}
<topic_name> Returns all the persistent

messages whose
topic_name is
<topic_name>

{"RequestPubMessage": <payload>} <payload>: payload of the
message to be published

Publishes a volatile
message

{“RequestPostTopicUUID”: {

“topic_name”: <topic_name>,

“topic_uuid:”: <topic_uuid>,

“value”: <payload>

}}

<topic_name>,
<topic_uuid>,
<payload>

Publishes a persistent
message whose
topic_name is
<topic_name> and whose
topic_uuid is <topic_uuid>

SIFIS-Home DHT code and deployment
The SIFIS-Home DHT source code and Docker images are available at:

GitHub repository Docker Images URLs
https://github.com/sifis-home/libp2p-rust-dht ghcr.io/sifis-home/sifis-alpine-dht-

arm64v8:latest
ghcr.io/sifis-home/sifis-alpine-dht-amd64:latest

The command line parameters that are available are:

SQLITE_FILE: absolute path of the sqlite file where persistent messages published on the DHT are
stored.

PRIVATE_KEY_FILE: path to the file containing the private key of the node in PEM format. A 2048
bits long private RSA key file in PEM format can be generated using command "openssl genrsa -out
private.pem 2048". If private_key_file does not exist, the key pair is automatically generated by sifis-
dht and stored inside file private_key_file .

IS_PERSISTENT_CACHE: if set to true indicates that sifis-dht is authorized to write messages to the
provided sqlite file. If set to false, the SQLITE_FILE content will only be used to initialize the cache.

SHARED_KEY: 32 bytes long shared symmetric key in hex format (command "openssl rand -hex 32"
can be used to generate a random key)

HTTP_PORT: port to be used for the HTTP interface

LOOPBACK_ONLY: if set to true, only the loopback interface will be used, meaning that only other
local instances of sifis-dht are discovered. If set to false, all the available network interfaces of the
device will be used. Hence, two sifis-dht instances running on the same local network should discover
each other.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 52 of 87

5.4.8.2 FIWARE API
The FIWARE Api component is a cluster service that only runs on the leader device of a SIFIS-Home
network. This component forwards the persistent messages published through the DHT to the Ratatosk
FIWARE Context broker that is part of the Yggio instance residing on the SIFIS-Home cloud. Also, it
forwards commands entered by the user in the Yggio user interface to the DHT (see Figure 22). In detail,
from the Yggio UI and thanks to the FIWARE API component it is possible to control devices, e.g.,
turn on and off lamps, as well as require the installation of third-party applications. The Yggio UI can
be accessed from the user both when it is at home or when it is on a remote side.

Figure 52: Unsuccessful DHT request

The Fiware API component uses both REST API and the MQTT protocol to set up and receive/publish
messages from/to Yggio. More in detail, the FIWARE API component is provided with a set of
dedicated credentials that allow it to access the Yggio REST API and MQTT broker. It then uses the
REST API to associate and reserve a dedicated MQTT topic for each DHT topic. Please note that the
solution allows to overcome NAT/firewall issues since the Yggio instance is provided with a public IP
address and the connection is initiated by the FIWARE API connection.

The FIWARE API component has been developed using the Rust language. Its source code and Docker
image can be found at:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 53 of 87

GitHub repository Docker Images URLs
https://github.com/sifis-home/dht-to-mqtt ghcr.io/sifis-home/sifis-dht-to-mqtt-

amd64:latest
ghcr.io/sifis-home/sifis-dht-to-mqtt-
arm64v8:latest

5.4.9 NSSD Manager
The SIFIS-Home NSSD Manager is the SIFIS-Home component responsible for interacting with the
NSSDs present in the house. It is composed of two different modules namely the CoAP Manager and
WoT Manager.

5.4.9.1 CoAP Manager
On a device acting as CoAP client, the CoAP Manager receives commands and retrieves information
from the DHT Manager, and then takes care to execute the requested operations, by interacting with the
targeted CoAP server device(s).

GitHub repository Docker Images URLs
https://github.com/sifis-home/wp3-solutions ghcr.io/sifis-home/phase0-client:latest

ghcr.io/sifis-home/phase1-client:latest
ghcr.io/sifis-home/phase2-client:latest
ghcr.io/sifis-home/phase3-client:latest
ghcr.io/sifis-home/phase4-client:latest
ghcr.io/sifis-home/group-client1:latest
ghcr.io/sifis-home/group-client2:latest

5.4.9.2 WoT Manager
The WoT Manager has been developed using the Rust language and is composed of three main modules:
the DHT module, the M-DNS Module and the Web of Things (WoT) Module.

• DHT Module: the DHT Module is the responsible for communicating with the DHT Manager.
Being a native Rust application, the WoT Manager embeds the DHT as an external library. The
WoT Manager communicates with the DHT Manager in order to receive commands from the
user (e.g., “turn on a certain light”) and to update the status of the managed devices (e.g., to
signal that an actuator is connected to the system).

• M-DNS Module: the M-DNS Module uses the m-DNS protocol to detect the presence of WiFi
actuators in the network advertised by the DoMO gateway where it is in execution. In detail, the
M-DNS module periodically performs an m-DNS discovery operation that produces as a result
the list of WiFi actuators that are connected to the DoMO gateway advertised network.

• WoT Module: the Web of Things module manages the communication of the WoT Manager
with the NSSD. It uses a WoT API to interact with the NSSD.

The interaction between the WoT Manager and both the DHT Manager and NSSDs is shown in Figure
53 while the operations continuously performed by the WoT Manager are reported in Figure 54.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 54 of 87

Figure 53: WoT Manager interaction with the DHT Manager and WiFi actuators (NSSD)

Figure 54: WoT Manager operations

Wait for:
1) user commands coming from the
DHT
2) updates from the WiFi actuators
3) m-DNS result: a new actuator has
been discovered

Forward command to the
intended WiFi Actuator
using WebThings API

Update related persistent
topic on the DHT

If the actuator is present
in the DHT, start a new

WebThing connection to
the WiFi actuator using
the security credentials

stored in the DHT

user
command?

update from
actuator?

m-DNS
discovery

result?

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 55 of 87

As it can be observed, the WoT Manager continuously waits for an event to occur. The events can be
of three different types: i) a user command is received from the DHT, ii) an update from one of the WiFi
actuators is received, iii) a new WiFi actuator connected to the network advertised by the DoMO
gateway. In case a user command is received from the DHT, it is forwarded to the intended WiFi
actuator using the WoT API offered by the WoT firmware installed on the WiFi actuators. Conversely,
if a state update is received from one of the actuators, the related persistent topic on the DHT is updated.
Finally, if a new WiFi actuator has been discovered by the M-DNS module and the actuator has been
registered on the DHT, a new WoT connection towards it is started using the security credentials stored
in the DHT.

The WoT Manager uses both persistent and volatile topics. In detail, we use persistent topics to store
the status of the various actuators inside the DHT, so that it is accessible by all the SIFIS-Home
applications. Conversely, we make use of volatile messages to send/receive user commands.

topic_name topic_uuid Description
shelly_1 Random UUID Topic used to store the status of

a Shelly 1 Device.
shelly_1pm Random UUID Topic used to store the status of

a Shelly 1pm Device.
shelly_25 Random UUID

Topic used to store the status of
a Shelly 2.5 Device

shelly_dimmer Random UUID

Topic used to store the status of
a Shelly Dimmer Device

shelly_em Random UUID

Topic used to store the status of
a Shelly EM Device

shelly_rgbw Random UUID

Topic used to store the status of
a Shelly RGBW Device

shelly_1plus Random UUID

Topic used to store the status of
a Shelly 1 Plus Device

domo_light Random UUID Topic used to represent a
physical light

domo_bistable_button Random UUID Topic used to represent a
physical bistable button

domo_button Random UUID Topic used to represent a
physical button

domo_window_sensor Random UUID Topic used to represent a
window contact sensor

domo_door_sensor Random UUID Topic used to represent a door
contact sensor

domo_pir_sensor Random UUID Topic used to represent a
motion sensor

domo_ble_thermometer Random UUID Topic used to store temperature
and humidity measurements
produced by the domo
temperature/humidity sensors.

Below we also report the structure of the different volatile messages used by the WoT Manager to

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 56 of 87

receive user commands for the actuators and the physical lights.

Volatile message format used to control the actuators

{
				"command":	 {
								"command_type":	 "shelly_actuator_command",
								"value":	 {
												"mac_address":	<actuator_mac_address>,	
												"action_name":	 <action_name>,
												"action_payload":	 <action_payload>
								}
				}
}	

As it can be observed, the actuator to which send the command can be specified using parameter
mac_address. The specific action to perform is identified by parameters action_name and
action_payload.

Volatile message format used to control lights

{
				"command":	 {
								"command_type":	 "turn_command",
								"value":	 {
												"topic_name":	 “domo_light”,
												"topic_uuid":	 <topic_uuid_of_the_light_to_control>,
												"desired_state":	 True/False
								}
				}
}	

As it can be observed, command type indicates that we want to send a turn command. The light to
control is specified by proving its uuid in the topic_uuid field. Finally, the desired state for the light is
indicated by parameter desired_state.

SIFIS-Home WoT Manager code and deployment
The WoT Device Manager source code and Docker images are available at:

GitHub repository Docker Images URLs
https://github.com/sifis-home/domo-wot-
bridge

ghcr.io/sifis-home/domo-wot-bridge-
amd64:latest
ghcr.io/sifis-home/domo-wot-bridge-
arm64v8:latest

Please note that an instance of the WoT Manager is present on every DoMO Gateway.

5.4.10 Riots WoT integration

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 57 of 87

The integration of the Riots devices to Sifis-Home architecture was implemented as part of the project.
Riots devices are third party devices that use proprietary wireless communication protocol, and the
implementation is done in smart device. Figure below shows the modules that are involved in the
implementation.

Figure 55: RIOTS WoT implementation

Riots Serial Module is a software component that acts as an integration link between Riots devices and
the SIFIS-Home architecture.
Riots WoT Module collects the data from Riots Serial module and provides the abstraction of Riots
devices as Web of Things compliant devices.
Riots DHT Module publishes the device data collected from Riots WoT Module to DHT.

The implementation uses following persistent DHT topic to store the model and data of Riots
Thermostat so it is accessible by all the SIFIS-Home applications.

topic_name topic_uuid Description
SIFIS::RiotsThermostat Random UUID Topic used to store the status of

a Riots Thermostat Device.

Example of a persistent message format used to provide thermostat data:
	
{	

"topic_name":	"SIFIS::RiotsThermostat",	
"topic_uuid":	"FirstRiotsThermostat",	
"value":	{	

"set_temperature":	20,	
"temperature":	24.7,	
"humidity":	49,	
"status":	0,	

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 58 of 87

"name":	"Riots	Thermostat	1"	
}	

},	

Riots WoT integation code and deployment
The source code and Docker images are available at:

GitHub repository Docker Images URLs
https://github.com/sifis-home/riots-
webthings

ghcr.io/sifis-home/sifis-home/riots-usb:latest
ghcr.io/sifis-home/sifis-home/riots-webthings:latest
ghcr.io/sifis-home/sifis-home/riots-dht:latest

Integration details
For demo purposes a piece of hardware was prepared, Riots Thermostat was installed to a piece of
plywood in a project box side by side with a indication light that is used to show the status of heating
as seen in the figure below.

Figure 56: Riots WoT pilot device

The collected thermostat data was delivered to DHT as described in previous chapters and visualized in
the Sifis-Home mobile app as shown in figure below.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 59 of 87

Figure 57: Riots Thermostat device shown in Sifis-Home mobile app

5.5 NSSD Framework
5.5.1 DoMO WiFi actuators firmware
We decided that the NSSDs, being part of the pilot, need to expose a Web of Things compliant API. In
detail, in a WoT-based architecture every NSSD is a server that exposes a set of functionalities to
possible clients. Web of Things does not mandate the use of a specific protocol to make the
functionalities of a Web of Thing Object (WebThing) accessible to an external application. In our
implementation, we decided that our NSSDs are HTTPS servers exposing their functionalities through
a WebSocket API. In a WoT server, properties are used to expose settings and characteristics of a
WebThing. For example, we can have the property description that is a textual description of a certain
WebThing (e.g., “kitchen light”). In addition, actions are used to request the execution of a certain
operation to a WebThing. A possible action to allow a user to turn on and off a certain light can be, for
example, turn. Web of Things also provides events to allow a WebThing to signal anomalous conditions.
Our implementation uses WoT properties and actions only.

5.5.1.1 Firmware implementation and structure
The WoT firmware for the NSSD devices has been developed using the C++ language and the Arduino
ESP8266 Framework. Its code is available on GitHub (https://github.com/sifis-home/domo-wot-
actuator). We also used PlatformIO (https://platformio.org/) to simplify the firmware development and
building processes. All the different WiFi actuators that we use in the pilot share the same code base.
This allows to reduce code repetition and speeds up testing operations.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 60 of 87

Figure 58: WoT firmware modules

In detail, our WoT firmware is composed of 4 different modules (Figure 17):

• WiFi Manager: it is the module responsible for managing the WiFi connection of the actuator.
It communicates with the Flash Memory Manager to get the WiFi SSID and Password of the
network to which the WiFi actuators should connect to. Also, it signals to the WoT Manager
events of connection to/disconnection from the WiFi network. The default WiFi network to be
used is specified in the firmware code.

• Flash Memory Manager: it is the module that is responsible for reading/writing data from/to
the persistent memory of the actuator. It provides WiFi credentials to the WiFi Manager. Also,
it provides the WoT Manager with the server certificate and credentials to be used by the HTTPS
WebSocket server needed to expose the WoT API (see below for additional details).

• HW Manager: it is the module responsible for managing the physical peripherals/devices of
the actuators. It uses the ESP8266 GPIO pins to activate/deactivate the actuator relays and to get
the current status of attached input devices such as bistable buttons. Also, it communicates with
the energy monitoring chips to provide power/energy readings to the user.

• WoT Manager: it is the module responsible for creating a WoT compliant API for the WiFi
actuators. In particular, the WoT Manager main task is to start and monitor an HTTPS
WebServer with WebSocket support. Also, the WoT Manager is responsible for starting up an
m-DNS resolver that allows the discovery of the actuator by part of the NSSD Manager. In our
implementation, every actuator is identified by the m-DNS name <shelly_model>-
<mac_address>.local, where shelly_model identifies the particular actuator type (i.e., shelly1,
shelly_1pm, etc.) and mac_address is the MAC address of the actuator. The WoT manager is
informed about network connection/disconnection events from the WiFi Manager. Also, it
receives the security material needed to correctly start up the HTTPS Web Server from the Flash
Memory Manager (see section Security for additional details). Finally, it communicates with the
HW Manager module to activate/deactivate the physical relays, get energy/power readings, and
update on the input channels states.

5.5.1.2 WoT API: properties and actions
As mentioned before, our WoT implementation uses both WoT properties and actions. They are detailed
below.

Properties

WiFi Manager WoT Manager

HW Manager

Flash Memory
Manager

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 61 of 87

We use a single property named status, of type String, to represent the current state of the actuator. In
detail, the property status is the serialization of a JSON Object that contains a number of different fields.
We report in Figure 18 a possible value for the status property for a shelly1 actuator and a description
of the various fields.

Table 9: Example of WoT status property

{
"ap_mac_address":"9483c413a0d4",
"fw_version":"v1",
"gateway":"192.168.1.1",
"input1":false,
"ip_address":"192.168.1.26",
"mac_address":"98:cd:ac:2d:4c:35",
"mcu_temperature":94.01399994,
"mode":0,
"output1":false,
"rssi":-61,
"topic_name":"shelly_1",
"wifi_ssid":"****"
}

Field name Description

ap_mac_address MAC address of the WiFi Access Point to which
the actuator is currently connected to

fw_version Firmware version
gateway IP address of the WiFi actuator gateway
input1 State of input channel 1
ip_address IP address of the WiFi actuator
mac_address MAC address of the actuator

mcu_temperature temperature of the MCU
mode Current operation mode
output1 State of output channel 1
rssi RSSI signal level
topic_name topic_name of the persistent message used to

store the status of the actuator inside the DHT
wifi_ssid SSID of the WiFi network to which the actuator

is connected to

Please note that the various fields of the status property are updated over time. For example, in case the
relay number 1 of the actuator is activated, the output1 field value changes from false to true. A
WebSocket client connected to the actuator receives a PropertyStatusUpdate message whenever the
status property value changes.

Action
We use an action named shelly_action, of type Object, to allow an external application to request the
execution of specific operations to the actuators. The shelly_action contains two mandatory fields:
action_name and action_payload. The former is used to identify the specific type of action that must be
executed by the actuator. The latter contains parameters for the action execution. Our implementation

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 62 of 87

currently provides the actions reported in the table below.

action_name action_payload Description
set_output output_number: number of the

relay to be activated/deactivated

desired_state: desired state of
the relay

Action that allows to
activate/deactivate output
relays.

set_dimmer dim_value: desired dimming
level

Action that allows to request a
dimming operation.

pulse_action output_number: relay to use for
the pulse operation
duration: duration of the pulse
signal in ms

Action that allows to request a
pulse operation using an output
relay.

set_shutter desired_state: OPEN,
CLOSED, STOPPED

Action that allows to
open/close/stop a roller shutter.

set_rgbw rgbw_value: desired rgbw value Action that allows to set RGBW
values.

set_led_dimmer output_number: output channel
to be used,
dim_value: desired dimming
level

Action that allows changing the
dimming values of LED lights.

change_wifi wifi_ssid, wifi_password Action that allows changing the
WiFi network to which the
actuator should connect to.

change_mode mode Action that allows changing the
actuator operation mode (i.e.,
RELAY mode or SHUTTER
mode).

update_action fw_url Action that allows updating the
firmware of the actuator.

A WebSocket client can request the execution of a specific action by sending a specific ActionRequest
message.

5.5.1.3 Security
As mentioned above, the WoT Manager module takes care to expose a Web of Things compliant API
that can be used by external applications to access the functionalities of the WiFi actuators.
Communication between WebSocket clients and the WoT-enabled actuator are encrypted and protected.
In particular, only allowed users/applications are able to communicate with the actuator and request the
execution of specific actions. To this end, the WoT manager uses an HTTPS server with WebSocket
support. The server certificate and server key to be used are generated during the actuator flashing phase
and stored on the flash memory of the actuator (see section below). In addition, every WebSocket client
should provide a user/password pair in order to access the WebSocket server functionalities. In detail,
every WebSocket client should use the HTTP basic access authentication to send its username and
password when making a request to the actuator. In basic HTTP authentication, the request contains a
header field in the form of Authorization: Basic <credentials>, where credentials is the Base64 encoding
of the username and password joined by a single colon. Our implementation uses a dedicated
user/password pair for every actuator. They are generated and stored on the flash memory of the actuator

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 63 of 87

during the actuator flashing phase. In this way, we provide encrypted communication and can guarantee
that only allowed applications have access to the WiFi actuators functionalities.

5.5.1.4 Flashing procedure
The flashing procedure is the operation through which we install the WoT firmware on our WiFi
actuators and provide them with the needed security material. We developed a flashing tool to ease the
actuator flashing operation. Before starting the flashing procedure, the actuators should be put in
programming mode and connected to a PC where the flashing tool is executed.

The flashing tool follows a number of steps that are detailed in the following:

1) The user selects the model (actuator_model) of the actuator to be flashed (i.e., shelly1,
shelly1pm, etc.). The corresponding firmware is selected.

2) The MAC address (mac_address) of the actuator to be flashed is retrieved.

3) The security material to be used by the actuator is generated. In detail, a random user/password
pair is generated. Also, a server private/public key pair and a server certificate with CN field
equal to “actuator_model-mac_address.local” is created. The server certificate is signed using
the SIFIS-Home Certification Authority key. Please note that the SIFIS-Home Certification
Authority certificate is contained in the SIFIS-Home OpenWrt distribution used by the DoMO
Gateways. It is stored in the trust store of the DoMO gateways by installing a dedicated OpenWrt
package that we created. Please note that we are currently assuming that the device/PC used to
flash the WiFi actuators is trusted. In detail, we are assuming that that the CA private key used
to sign the actuator certificates has been provided and saved on the flashing device/PC using a
secure channel. In a production environment, the use of an intermediate CA that is only used to
sign the actuator certificates is recommended.

4) The flash memory of the actuators is completely erased.

5) The security material (serverKey, serverCert, user/password) is stored on the flash memory of
the actuator (SPIFFS partition).

6) The WoT firmware is installed.

The user/password pair and the MAC address of the flashed actuator are saved in a local text file. Please
note that the NSSD Manager needs to know the user/password pair used by a specific actuator for being
able to connect to it. Hence, they need to be inserted in the DHT of the SIFIS-Home house where the
actuator will be installed. Currently, the credentials are stored inside the DHT using a Web-based control
panel that we created (see below).

5.5.1.5 WoT firmware operations
The following figure reports the operations that are performed by our WoT-enabled actuators. When
the actuator is turned on, the Flash Memory and the HW peripherals are initialized. Then, the WiFi
Manager obtains the WiFi credentials from the Flash Memory Manager. Then, the WiFi connection is
activated and the HTTPS WebSocket WoT server is started by getting the security material from the
flash memory. Also, the m-DNS resolver is activated. At this point, Websocket clients, such as the
NSSD Manager, can connect to the actuator to get property updates and send action requests.
The actuator continuously waits for i) updates from the physical peripherals that produce an update of
the WoT status property, ii) requests to execute a specific shelly_action by part of a WebSocket client
that, in general, cause the WoT Manager to communicate with the Hardware Manager to start operations
involving the physical devices.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 64 of 87

Figure 59: WoT firmware operations

6 Use Cases and Functional Validation
This section describes in detail the setup of the testbed, actors and operations performed on the DOMO
infrastructure, to validate the use cases defined in D1.2.

6.1 Use Case 01 – Login Through Biometrics
This use case maps the requirement of being able to recognize one of the registered users (tenant) of a
SIFIS-Home instance by using biometrics. The identification of the user is necessary to decide on
allowed functionalities or to provide customized services. In the pilot validation, we use as biometric
the face identification, exploiting the Face Recognition analytic from the Data Analysis Toolbox.

To validate the use case, a classifier has been trained with a set of identities from persons working in
SIFIS-Home. Other identities have been used for a correct training of the classifier. To demonstrate the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 65 of 87

full integration in the DOMO pilot, we have set up a laptop webcam connected to the WiFi network of
one of the three DOMO Gateways, which are present in the DOMO testbed. The correct or incorrect
identification of a user is notified to the administrator through a notification on the Mobile App
component. More in details, the evaluation of the use case involves four actors: two Tenants whose
identity is known, one external user whose identity is unknown, and the Administrator who will receive
the notification.

The use case is considered as correctly performed if the Administrator receives two notifications with
the correct identities of the Tenants and one notification for the non-recognized external user.

Figure 60: User identification through biometrics

6.2 Use Case 02 - Operate Through Voice Commands
In this use case we verify that it is possible to control the SIFIS-Home functionalities by using voice
commands. The SIFIS-Home framework has to be able to recognize specific keywords to automatically
provide services, filtering all the other speeches that normally happen inside a house. The issued
commands will correspond to an actionable action, and they issue a complex integrated workflow,
involving the Input Manager, the DHT Manager, the Data Analysis Toolbox, the Policy Enforcement
Engine and the NSSD Manager.

To validate the use case, we are using the typical DOMO testbed setup, with three DOMO Gateways
and three NSSDs, with commands issued through a microphone connected to a laptop. The actor
involved is one smart home Tenant, who will insert a voice command to turn on a light, in the middle
of other words. The SIFIS-Home framework will react to the command by turning on the light, while
will ignore all other words that do not consist in a command. The performed demo will show the actual
functionality with a person working on the project as Tenant, showing at the same time which messages
are received by the main components of this workflow.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 66 of 87

Figure 61: Voice command recognition

6.3 Use Case 03 – Person Movement or Presence Notification
This use case aims at verifying the capability of the SIFIS-Home framework to detect presence of people
in a dark environment. The final goal of this functionality could be multi-purpose as it can be used for
physical intrusion detection, or to have no need for the tenants looking for the light if waking up at
night. The use case exploits again the full DOMO testbed with three DOMO gateways, one PIR (passive
infrared) sensor as first NSSD, the mobile device for notification and an additional NSSD to control a
lamp.

To validate the use case, we include two actors: a smart home Tenant and the Administrator. The Tenant
will move inside a dark room in relative proximity to the PIR sensor. If the presence is recognized, the
administrator will receive a notification on the mobile application (intrusion detection), whilst the
SIFIS-Home framework will react by turning on a light.

The use case is considered as correctly validated if these two actions are triggered when the person is
moving inside the room, without generating false positives or negatives, triggering the notification and
the light. The demo will be performed by showing the physical interaction with the PIR sensor.

6.4 Use Case 04 – Notification About Software Intrusion
This use case aims at verifying the capability of the SIFIS-Home framework to detect possible malicious
applications running on a SD and take appropriate countermeasures. The use case exploits the DOMO
testbed using three DOMO gateways and the mobile device for notification.

To validate the use case, we intentionally start up a malicious application that publishes a considerable
amount of messages on the DHT on one of the DOMO gateways. The anomalous application behaviour
should be detected by the DHT monitor analytic and reported to the System Protection Manager. The

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 67 of 87

System Protection Manager then generates a notification that is received by the Administrator of the
smart home on his mobile device. The use case is considered successfully validated if the malicious
application behaviour is detected by the SIFIS-Home framework and a notification is successfully
received on the mobile application.

6.5 Use Case 05 – Register Device
This use case aims at verifying that the SIFIS-Home framework allows the smart home Administrator
to register a device at any time. The use case exploits the three DOMO gateways, a DOMO Shelly 1PM
WiFi actuator, that is connected to a physical light, and the mobile device.

To validate the use case, we perform the following actions. The smart home Administrator uses the
Devices panel provided by the Mobile Application to insert a new Shelly 1PM actuator device into the
system. The Administrator should be asked to provide all the details of the device such as its ID, MAC
Address, and the connection credentials to be used to connect to it. The Mobile Application then
publishes the information of the device on the DHT, making it available to all the NSSD Managers
running on the different SDs. As soon as an NSSD Manager detects the presence of the registered device
in its local WiFi Network, a connection with the device is established, to start controlling it.

The use case is considered successfully validated if the registration procedure is performed with no
issues and if it is possible to control the device using the Mobile Application some time after it has been
included into the system.

6.6 Use Case 06 – Unregister Device
This use case aims at verifying that the SIFIS-Home framework allows the smart home Administrator
to unregister a device from the system at any time. The use case exploits the three DOMO gateways, a
DOMO Shelly 1PM WiFi actuator, that is connected to a physical light, and the mobile device.

To validate the use case, we perform the following actions. The smart home Administrator uses the
Devices panel provided by the Mobile Application to get the list of devices that have been installed and
registered into the system. The Administrator should be able to select the Shelly 1PM actuator from the
list of available devices and the Mobile Application should show a page with detailed information about
the selected device. From such a page, it should be possible to unregister the device from the system.
After the device has been unregistered, it should not be possible to control it anymore.

The use case is considered as successfully validated if the procedure to unregister the device is
performed with no issues and if it is not possible to control anymore the device after it has been
unregistered.

6.7 Use Case 07 –Configure Device
This use case aims at verifying that the SIFIS-Home framework allows the smart home Administrator
to change the configuration details of a certain device at any time. The use case exploits the three DOMO
gateways, a DOMO Shelly 1PM WiFi actuator, that is connected to a physical light, and the mobile
device.

To validate the use case, we perform the following actions. The smart home Administrator uses the
Devices panel provided by the Mobile Application to get the list of devices that have been installed and
registered into the system. The Administrator should be able to select the Shelly 1PM actuator from the
list of the available devices and the Mobile Application should show a pagewith detailed information
about the selected device. From such a page, it should be possible to change the configuration

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 68 of 87

parameters of the device. The new configuration parameters should be successfully saved on the DHT
and made available to all the SIFIS-Home services.

The use case is considered as successfully validated if the procedure to change the device parameters is
performed with no issues and if the new configuration is correctly stored on the DHT.

6.8 UC 08 – Install third-party applications
This use case aims at verifying the capability of the SIFIS-Home framework to allow the smart home
Administrator to install a third-party application on its SDs at any time. The use case employs the three
DOMO Gateways and the mobile device.

To validate the use case, we perform the following actions. The smart home Administrator accesses the
Marketplace panel of the Mobile Application. The panel should report the list of third-party applications
that can be potentially installed on a SD as well as the applications that have beeninstalled already. For
every available third-party application, relevant metrics such as its software quality and the list of
hazards should be reported. Then, the Mobile Application UI should allow the user to request the
installation of the application. Finally, a notification reporting the result of the installation operation
should be sent by the system.

The use case is considered successfully validated if the installation procedure can be performed with no
issues, i.e., the third-party application is downloaded on the SD and an installation notification is
reported on the mobile device.

6.9 UC 09 – Parental control
This use case aims at showing that the SIFIS-Home framework allows the smart home Administrator to
create new policies at any time. The use case employs the three DOMO gateways and the mobile device.

To validate the use case, we perform the following actions. The Administrator opens the Policy Panel
on the Mobile Application. The Policy Panel should report the list of Policies that have been defined
and inserted into the system in the past. Then, a clear UI should allow the Administrator to easily define
new policies specifying the affected users, the involved devices and, possibly, the days/hours when the
policy should be considered active. In detail, we are going to define a policy that does not allow turning
on the appliances of a certain room when there are children inside. This use case affects the Policy
Translation Point, the DHT Manager and the Usage Control Engine components.

The use case is considered successfully validated if the Administrator successfully creates the new
policy and if the policy, translated into XACML format, is correctly received by the Usage Control
Engine.

6.10 UC 10 – Configure User Settings
This use case extends and specifies the former use case by demonstrating how the SIFIS-Home
framework enables the user (tenant or administrator) to remotely configure policies for specific Smart
Home users. While the SIFIS-Home framework is able to work also in lack of an Internet connection,
the presence of the cloud components allows for remote control and configuration of the smart home.
In this specific use case, we consider as actor the Administrator or the Maintainer, operating on an
instance of SIFIS-Home from outside of the smart home premises.
The demonstration is performed by exploiting the SIFIS-Home Mobile Application, on a device with
disabled Wi-Fi, which is thus not connected to the other Smart Devices and without direct access to the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 69 of 87

DHT. The Administrator uses the mobile app to set up a policy, using the Mobile Application, which
provides the possibility to select the policy subject, i.e., the entity the policy refers to. The demonstration
also shows, as for the previous use case, the message exchange with the policy enforcement engine, to
demonstrate the live interaction with the DHT from outside of the smart home premises.

6.11 UC 11 – Control statistics and analytics
This use case shows the capability of the SIFIS-Home framework to provide the users with the list of
commands and configurations that have been sent to the devices of the smart home over time. Such use
case employs one of the DOMO gateways present in the testbed, a Shelly 1 PM WiFi actuator and a
physical light. Also, we use a Laptop to access the Yggio web interface and the mobile device to access
the logs panel.

To validate the use case, the following actions are performed. First, the Tenant of the smart home opens
the Devices Panel of the Yggio Cloud UI and selects the testbed light from the list. The Yggio UI should
show a control interface that allows sending on/off commands to the light. Then, the Statistics &
Analytics panel of the mobile application should be open. The panel should report the list of logs that
have been generated by the smart home devices and the SIFIS-Home components. The Tenant turns on
and off the testbed light several times. Immediately after the commands are executed, a log should
appear in the Statistics & Analytics Panel.

The use case is considered successfully validated if logs of the commands sent during the use case
testing session are correctly stored and shown in the logs panel of the mobile application.

6.12 UC 12 – Remote configuration of device
This use case extends Use Case 07, demonstrating how the SIFIS-Home framework allows
reconfiguring a device at any time and even from a remote side. The involved devices are the three
DOMO gateways and the mobile device. Moreover, a Laptop connected to the local network where the
three DOMO gateways are placed is used.

To demonstrate the use case, the following actions are performed. First, the content of the DHT topic
associated with a certain Shelly 1PM actuator is retrieved from a local instance of the DHT (i.e., by
using the well-known Postman application we perform an HTTP GET request pointing to the DHT
instance running on one of the three DOMO gateways). We then open the mobile application and turn
off the WiFi connection, forcing the mobile application to use the VPN tunnel that the house establishes
with the Panarea server. We change the parameters of the Shelly 1PM actuator and show that the
changes are propagated to the local DHT instances.

The use case is considered successfully validated if the parameters of the actuator are successfully
changed using the mobile application despite it is not connected to the local WiFi network.

6.13 UC 13 – Remote configuration of policies
This use case extends and generalizes Use Case 08, demonstrating as done with Use Case 10, the
possibility to define and edit policies also from outside the smart home premises. The involved actors
are the Administrator or the Maintainer, who accesses the SIFIS-Home framework either through the
mobile application or through the cloud interface (Yggio), outside of the smart home premises. As for
Use Case 10, the validation is performed by disconnecting the device from which the access is
performed from the WiFi network, to ensure that it cannot directly communicate with the DOMO
gateways. The Administrator will then define a policy through the Mobile Application, which will be
translated in XACML and stored in the Policy Enforcement Engine.

6.14 UC 14 - Remote handling of emergency situations

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 70 of 87

This use case demonstrates the capability of the SIFIS-Home framework to timely communicate
emergency situations to the Administrator or to the Maintainer. In this specific demonstrator, we are
considering an intrusion detection scenario, where one NSSD (door/window contact sensor) is used to
notify the unauthorized opening of a physical door. The set up includes three DOMO gateways running
the SIFIS-Home framework, one mobile device used by the administrator to receive notification about
the status change of the NSSD.
The demonstration is performed by having one person physically operating the door, controlled by the
NSSD.

The use case is considered as validated if the Administrator is notified in a short time of the intrusion
attempt.

Figure 62: Notification of emergency situation - Intrusion Detection

6.15 UC 15 – Turn on/off lights using the control panel
This use case is satisfied through the Mobile Application or the Yggio cloud interface. This use case is
related to a key functionality of a smart home, as it demonstrates that it is possible to remotely control
actuators in the smart home such as lights, without using physical buttons/switches. Through mobile
applications and Yggio, these operations can be done either when connected to the SIFIS-Home
network, or from outside the SIFIS-Home premises.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 71 of 87

Figure 63: Light control use case

The considered actor for the validation of this use case is the home Tenant or Administrator, who will
access the Mobile Application or Yggio to turn on and off a light bulb. The testbed for this demonstrator
is made of three DOMO Gateways and one Shelly 1PM controlling a light bulb. The mobile phone is
used to access the mobile application.

The use case is considered demonstrated if the user is able to effectively control the light, in a timely
manner.

6.16 UC 16 – Turn on/off lights pressing/releasing buttons
This use case demonstrates how, despite the complexity introduced by the SIFIS-Home framework, it
is possible to control actuators with physical switches or buttons, without introducing noticeable delays.
This use case introduces also the concept of SIFIS-Home services, such as the Light Manager, which is
an application implementing the logic for controlling lights through physical buttons. In fact, in the
considered demonstrator, when using a Shelly actuator, we actually decouple the physical connection
between a switch/button and the controlled light. This enables a much higher flexibility as it is possible
to configure different functionalities for a single switch/button. Services are similar to third-party
applications, but they do not use the SIFIS-Home Developer –APIs, and they are considered trusted as
they come already integrated as “native applications”.

The demonstrator is very similar to the previous use case, introducing in addition the physical buttons.
The use case is considered validated if the light is controlled in a timely manner, non-distinguishable
from controlling a light without having the SIFIS-Home overhead.

6.17 UC 17 – Being able to interact with the devices only if authorized
This use case demonstrate that the SIFIS-Home framework prevents unauthorized users to access the
functionalities of the smart home. The use case employs the DOMO gateways and the mobile device.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 72 of 87

We demonstrate the use case in the following way. The user opens the Mobile Application and the
Login panel is presented to it. First, a set of valid credentials is used, i.e., we test the situation where a
valid User of the smart home is trying to perform the login operation. The mobile application sends the
user credentials to the SIFIS-Home KeyCloak service and receives an access token back. Then, the
mobile application uses the received token to access the DHT. Since the token is successfully validated
by the system, the information stored in the DHT can be retrieved and shown to the user. We then logout
from the mobile application and try to login again by using a set of invalid credentials. This time, the
mobile application does not receive an access token from KeyCloak. Hence, the login cannot proceed
further.

We consider the use case successfully validated if the valid login operation succeeds and the invalid
one fails.

6.18 UC 18 – Being able to control the house in case of failures
This use case demonstrates one of the key features of the SIFIS-Home framework: the resilience to
failures or compromission of smart devices. The use case is demonstrated in the DOMO testbed, by
using the full set up of three DOMO gateways, which are used to control a Shelly actuator and the
attached lightbulb. The use case aims at demonstrating the capability of self-healing of the SIFIS-Home
framework. The involved actor is an external user who will physically disconnect one smart device,
which is directly connected to and controls the NSSD attached to the lightbulb. Also, a Tenant will be
involved to control the light through the mobile application. To demonstrate the functionality of the
provided use case, we first show the DHT status to demonstrate that the NSSD is actually controlled by
a specific DOMO gateway. Then, we unplug the power cord from that device, and we show that, after
a short time, the NSSD can be controlled again since it automatically reconnects to another gateway.

The use case is validated if the reconfiguration happens successfully and it is still possible to turn on/off
the light from the mobile application, after the smart device has been disconnected.

Figure 64: Disconnection of DOMO gateway to test self-healing

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 73 of 87

6.19 UC 19 – Being alerted if a device is generating anomalous traffic
This use case aims at verifying the ability of the SIFIS-Home system to detect anomalous traffic
conditions and take appropriate countermeasures. To validate this use case, we employ the DOMO
gateways and the mobile application. The use case involves the DHT Manager, the AUD Analytics, the
System Protection Manager and the Mobile Application.

We validate the use case in the following way. First, we open the mobile application and verify that no
notifications are currently present in the main UI. We intentionally activate a script that generates
anomalous traffic. In detail, we use command “nmap -sn external_network_address” to generate a set
of outgoing discovery packets. The AUD Analytics detects the anomalous conditions and reports the
event to the System Protection Manager. The System Protection Manager then sends a notification that
is received by the mobile application and shown to the user.

We consider the use case successfully validated if the anomalous traffic condition is detected and if the
notification of the anomaly is correctly received on the mobile device.

6.20 Summary of use cases implementation and validation
The following table summarizes the previously described use cases and tests for a more practical
presentation in view of the formal validation through GQM.

Use Case Implementation in the pilot E2E Test technique
UC 01 - Login
through
biometrics

For the pilot implementation of this use
case, we are going to use a Laptop (SD)
provided with a camera. The identity of
the user will be recognized through a
Face Recognition operation.

A Resident User for which a face model
has been registered into the System will
enter inside a certain room. If the
Resident is identified by the System, a
notification of successful recognition of
the User will be sent. Otherwise, a
notification event reporting a failure in
identifying the User will be generated.
The test will be repeated with multiple
different Resident users.

UC 02 - Operate
through voice
commands

For the pilot implementation of this use
case, we are going to use a Laptop (SD)
provided with a microphone, or a
smartphone. Also, the DoMO Wi-Fi
actuators and physical lights will be
used Then, voice commands will be
sent to the System.

A Resident User will issue a specific
voice command (e.g., “turn on the
light”). If the command is successfully
recognized by the System a light will be
turned on. Otherwise, a notification will
be sent reporting that the command was
not intelligible. The test will be
repeated with multiple different
Resident users.

UC 03 - Being
alerted if motion
sensors detect
people presence

For the pilot implementation of this use
case, we are going to use a DoMO
gateway and a Wi-Fi actuator to which
a motion sensor is connected to.

A person will enter inside a certain
room and motion will be detected. The
motion event should be reported in the
Notification panel of the mobile
application and the web control panel.

UC 04 – Get
notification
about software
intrusion

For the pilot implementation of this use
case, we are going to use a DoMO
gateway and a smartphone.

We are going to install and execute a
malware on the DoMO gateway. The
software intrusion should be detected
and reported to the user through Mobile

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 74 of 87

application notification panel.
UC 05 –
Register device

For the pilot implementation of this use
case, we are going to use a DoMO
gateway, a smartphone and a DoMO
Wi-Fi actuator.

An authorized User will open the
mobile application and use a specific
control panel to register a DoMO Wi-Fi
actuator (NSSD) into the system. The
mobile application should ask the user
to provide the details of the NSSD to be
inserted into the system (e.g., MAC
address, user/password pair to use to
communicate with the device). After
the device is inserted into the system, it
should be possible to control it from the
control panel.

UC 06 –
Unregister
device

For the pilot implementation of this use
case, we are going to use a DoMO
gateway, a smartphone and a DoMO
Wi-Fi actuator.

An authorized User will open the
mobile application and use a specific
control panel to un-register the DoMO
Wi-Fi actuator (NSSD). After the
device is unregistered is should not be
reported anymore in the device list.
Also, it should not be possible to control
it.

UC 07 –
Configure
device

For the pilot implementation of this use
case, we are going to use a DoMO
gateway, a smartphone and a DoMO
Wi-Fi actuator.

An authorized User will open the
mobile application and use a specific
control panel to configure a specific
DoMO Wi-Fi actuator (NSSD). From
the panel it should be possible to change
the device configuration, e.g., specify
the specific physical objects (lights,
sockets, etc) to which the actuator is
connected to.

UC 08 – Install
third party
applications

For the pilot implementation of this use
case, we are going to use a DoMO
gateway and a smartphone.

An authorized User will open the
mobile application and use a specific
control panel to obtain the list of the
third-party applications that can be
potentially installed into the System.
The user will select a specific third-
party application for installation. At the
end of the procedure, the application
should be installed on the Smart
Device.

UC 09 –
Parental control

For the pilot implementation of this use
case, we are going to use a DoMO
gateway and a smartphone.

The User will open the mobile
application. The System should allow
the User to define new policies or
change existing ones. In detail, we are
going to define a policy that does not
allow turning on the appliances of a
certain room when there are children
inside.

UC 10 – For the pilot implementation of this use The Administrator User will open the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 75 of 87

Configure User
Settings

case, we are going to use a DoMO
gateway and a smartphone.

mobile application and use the User
control panel. The User control panel
should allow the Administrator to
define policies for the different users.

UC 11 – Control
statistics and
analytics

For the pilot implementation of this use
case, we are going to use a DoMO
gateway and a smartphone.

The User will open the mobile
application and will select a specific
device. The mobile application should
report a log and an information panel
that reports the main events related to
the device.

UC 12 – Remote
configuration of
device

For the pilot implementation of this use
case, we are going to use a DoMO
gateway and a smartphone.

The User will open the mobile
application when he/she is on a remote
side. The System should allow the User
to change the configuration of a device.

UC 13 – Remote
configuration of
policies

For the pilot implementation of this use
case, we are going to use a DoMO
gateway and a smartphone.

The User will open the mobile
application when he/she is on a remote
side. The System should allow the User
to define new policies or edit existing
ones.

UC 14 - Remote
handling of
emergency
situations

For the pilot implementation of this use
case, we are going to use a DoMO
gateway, a smartphone and a DoMO
Wi-Fi actuator connected to an alarm
contact sensor.

We open the alarm contact sensor. The
event should be reported in the
Notification panel of the mobile
application and on the web-based
control panel. The User should be
provided with system logs and should
have the possibility to control the house
to, for example, turn off the alarm.

UC 15 – Turn
on/off lights
using the control
panel

For the pilot implementation of this use
case, we are going to use a DoMO
gateway, a smartphone and a DoMO
Wi-Fi actuator connected to a physical
Light.

The User will open the mobile
application and will use the control
panel to get the list of the devices that
are installed inside his/her house. The
mobile application should show the
possible commands for the different
devices. The User will then use the GUI
controls to turn on a certain Light. The
Light should be turned on and the new
Light state should be updated on the UI.

UC 16 – Turn
on/off lights
pressing/releasi
ng buttons

For the pilot implementation of this use
case, we are going to use a DoMO
gateway, a smartphone and a DoMO
Wi-Fi actuator connected to both a
physical Light and a physical button.

The User will press the physical button.
The System should detect the button
press event and turn on/off the Light.

UC 17 – Being
able to interact
with the devices
only if
authorized

For the pilot implementation of this use
case, we are going to use a DoMO
gateway and a smartphone.

An Authorized User will perform a
login operation. The operation should
succeed. An Unauthorized User will
perform a login operation. The
operation should fail.

UC 18 – Being For the pilot implementation of this use We start the test with the 2 DoMO

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 76 of 87

able to control
the house in case
of failures

case, we are going to use 2 DoMO
gateways, a smartphone and a DoMO
Wi-Fi actuator connected to a physical
light.

gateways active and operational. We
verify that it is possible to turn on/off
the physical light. We turn off the
DoMO gateway to which the DoMO
Wi-Fi actuator is connected to. After
some time from the deactivation of the
DoMO gateway, we issue the turn
on/off command again. It should still be
possible to control the physical light.

UC 19 – Being
alerted if a
device is
generating
anomalous
traffic

For the pilot implementation of this use
case, we are going to use a DoMO
gateway, a smartphone and a NSSD.

We simulate an anomalous traffic
condition by changing the
program/firmware executed by the
NSSD. The System should detect the
anomalous traffic condition and report
the event in the Notification panel of the
mobile application.

Table 3. Pilot implementation and E2E test case for every use case

7 GQM Validation
The used GQM template is reported in the following table.

Object of study SIFIS-Home framework
Purpose Validation of the main use cases
Focus Functional requirements
Perspective End user (E2E testing)
Context Pilot implementation

The GQM questions and metrics for every E2E test case are reported below.

Use Case GQM questions – Answers GQM metrics – Value
UC 01 - Login
through
biometrics

Q1.1: Is a Resident User recognized by the
System? - Yes
Q1.2: Is a Non-Resident User not recognized
by the System? - Yes
Q1.3: Is a notification sent when the Resident
is recognized? - Yes
Q1.4: Is a notification sent when the Non-
Resident is not recognized? – Yes

M1.1: Percentage of resident users
that are correctly recognized by the
system. – 87%
M1.2: Percentage of non-resident
users that are recognized as
resident users by the system. – 0%
M1.3: Percentage of notifications
correctly sent upon resident
notification. – 100%
M1.4: Percentage of notifications
correctly sent upon non-resident
notifications. – 100%

UC 02 - Operate
through voice
commands

Q2.1: Is the voice command executed
successfully by the System? - Yes
Q2.2: Is a notification generated if the voice
command is not intelligible? – No

M2.1: Percentage of voice
commands that are correctly
executed by the system. - TBA
M2.2: Percentage of notifications
correctly generated upon not
intelligible voice commands. - 0%

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 77 of 87

UC 03 - Being
alerted if motion
sensors detect
people presence

Q3.1: Is the people presence detected by the
System? - Yes
Q3.2: Is the motion event reported by the
System? - Yes

M3.1: Percentage of motion events
that have been successfully
reported during testing. – 100%
M3.2: Number of false motion
events that have been reported
during testing. – 0%

UC 04 – Get
notification
about software
intrusion

Q4.1: Is the malware execution detected? -
Yes
Q4.2: Is the software intrusion reported to the
user? - Yes

M4.1: Number of times the
software intrusion event has been
successfully detected. – 94%
M4.2: Percentage of false software
intrusions that have been detected.
– 0,2%

UC 05 –
Register device

Q5.1: Is the device correctly registered into
the system? - Yes
Q5.2: Is it possible to control the device after
it has been registered into the system? - Yes

M5.1: Percentage of devices that
are correctly registered after a
testing session. – 100%
M5.2: Percentage of controllable
devices of those registered. –
100%

UC 06 –
Unregister
device

Q6.1: Is the device correctly unregistered
from the System? - Yes
Q6.2: Is it possible to control the device after
it has been deregistered? - No

M6.1: Percentage of correctly
unregistered devices after a testing
session. – 100%
M6.2: Percentage of controllable
devices of those that are
deregistered. - 0%

UC 07 –
Configure
device

Q7.1: Is the current configuration of the
device available to the smart home users? -
Yes
Q7.2: Is it possible to change the
configuration of the device? - Yes

M7.1: Percentage of users to
which the current configuration is
available. – 100%
M7.2: Percentage of users that are
able to change the configuration of
the device. -100%

UC 08 – Install
third party
applications

Q8.1: Is it possible to get the list of 3rd party
applications? - Yes
Q8.2: Is the installation of a 3rd party
application performed successfully? - Yes

M8.1: percentage of 3rd party
applications retrieved. – 100%
M8.2: percentage of 3rd party
applications that are correctly
installed. – 100%

UC 09 – Parental
control

Q9.1: Is it possible to create the policy
required for parental control? - Yes

M9.1: existence of a policy for
parental control. - Yes

UC 10 –
Configure User
Settings

Q10.1: Is it possible to retrieve the list of the
configured users? - Yes
Q10.2: Is it possible to define different
policies for the different users? - Yes

M10.1: number of configured
users. - 5
M10.2: number of policies for the
users. – 2

UC 11 – Control
statistics and
analytics

Q11.1: Are statistics and analytics reported
for every device? - Yes

M11.1: percentage of devices for
which statistics and analytics are
correctly reported. -100%

UC 12 – Remote
configuration of
device

Q12.1: Is it possible to configure a device
from a remote side? -Yes

M12.1: percentage of devices that
can be configured from remote. -
100%

UC 13 – Remote
configuration of
policies

Q13.1: Is it possible to configure and edit
policies from a remote side? -Yes

M13.1: percentage of policies that
can be configured from remote. -
Yes

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 78 of 87

UC 14 - Remote
handling of
emergency
situations

Q14.1: Is the emergency reported in the
Notification panel of the mobile application?
- Yes
Q14.2: Is it possible for the users to interact
with the House after the emergency
notification is received? -Yes

M14.1: Number of times a false
contact sensor activation is
reported. - 0
M14.2: Percentage of contact
sensor activations that have been
successfully reported. -100%

UC 15 – Turn
on/off lights
using the control
panel

Q15.1: Is it possible to get the list of installed
devices? -Yes
Q15.2: Is it possible to get the list of
commands for a certain device? -Yes
Q15.3: Are commands executed
successfully? -Yes

M15.1: number of installed
devices retrieved. - 5
M15.2: number of commands
retrieved for each device. - 2
M15.3: percentage of commands
executed successfully. - 100%

UC 16 – Turn
on/off lights
pressing/releasin
g buttons

Q16.1: Is the button press event detected and
reported? - Yes
Q16.2: Is the light turned on/off after a button
press event? - Yes

M16.1: Number of times the
system failed in detecting a button
press event. - 0
M16.2: Percentage of successful
detections of button press events. -
100%

UC 17 – Being
able to interact
with the devices
only if
authorized

Q17.1: Is an Authorized User able to perform
a login operation? - Yes
Q17.2: Is the login request of an
Unauthorized user rejected? - Yes

M17.1: Percentage of successful
logins by authorized users. -100%
M17.2: Percentage of successful
logins by unauthorized users. -0%

UC 18 – Being
able to control
the house in case
of failures

Q18.1: Is it possible to control the devices of
the house before the Smart Device failure
occurs? - Yes
Q18.2: Is it possible to control the devices of
the house after the Smart Device failure? -
Yes

M18.1: percentage of devices that
can be controlled before the smart
device failure occurs. – 100%
M18.2: percentage of devices that
can be controlled after the smart
device failure occurs. -100%*

UC 19 – Being
alerted if a
device is
generating
anomalous
traffic

Q19.1: Is the anomalous traffic condition
detected? -Yes
Q19.2: Is the user informed that a device is
generating anomalous traffic? -Yes

M19.1: Number of times the
anomalous traffic event has been
successfully detected. – 100%
M19.2: Percentage of false
anomalous traffic events that have
been detected. – 0%

Table 4: GQM questions

For the purpose of evaluating the overall outcome of testing purposes for functional requirements, we
also consider two additional aggregate metrics, described below:

1) N_uc: Number of use cases that the pilot is able to demonstrate. Such metric is computed as the
raw count of the use cases for which a test case is run successfully;

2) N_fr: Number of functional requirements that are covered by the pilot. Such metric is computed
as the sum of the functional requirements that are covered by the use cases that were successfully
run in the acceptance testing phase.

We successfully validated all the different use cases. Hence N_uc = 19. In addition, we verified 41 out
of 57 functional requirements having N_fr=41.

8 Usability Requirements Validation

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 79 of 87

Reprising from D5.4, the validation of the usability requirements has been postponed to this deliverable
as we deemed it as more appropriate to perform such validation directly on a real testbed instead of on
a simulated one.
The following table reports the list of usability non-functional requirements and the results of the
validation, performed on the DOMO testbed.
For verifying the usability, we have involved two persons that were not participating in the project

NFR ID NFR Description Validation

US-01 The system shall be easy to use for users with no technical
background.

Tenant functionalities have been
operated by 2 non-trained users.

US-02 The SIFIS-Home system shall be autonomous and learn based on
the users’ habits, still according to defined privacy policies.

This requirement has not been
validated as it requires long-term
usage.

US-03 The SIFIS-Home system shall consider special cases in its design,
such as color blindness.

This requirement has not been
validated.

US-04 The SIFIS-Home system shall preserve consistency among all
devices, related database and constraints.

This requirement is validated by
design

US-05 The SIFIS-Home hardware components should be easy to use for
the elderly and users with no engineering background.

This requirement has not been
validated as it was not possible to
involve elderly users

US-06 The SIFIS-Home system shall have an explorable interface. This requirement has been
validated by design

US-07 Proper and easy hardware installation should be considered.
This requirement has been
validated by design through the
design of the DOMO pilot

US-08

The image-based identification through biometrics in a room
(interior) or in an open space (exterior), without obstacles or face
covering elements, it should be performed by the system in a radius
of at least 10 meters from the device.

This requirement has been
validated in a controlled
environment.

US-09
An untrained user should be able to understand that an attack is
ongoing in less than a minute from reading the SIFIS-Home alert or
notification.

An attack has been simulated
during the testing of tenant
functionalities by untrained users.
The users have been asked to
interpret the received notification
and the answer was correct.

US-10 An untrained user should be able to recognise a software intrusion
in less than one minute.

See validation of previous
requirement

US-11 An untrained user should be able to perform the device registration
procedure in less than 5 minutes.

An untrained user has been
explained the rationale of the
device registration operation and
has been able to perform the
operation through the mobile app
in 3 minutes.

US-12 An untrained user should be able to perform the device de-
registration procedure in less than 5 minutes. As for previous requirement

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 80 of 87

US-13 An untrained user should be able to perform the configuration of
devices in less than 5 minutes. As for previous requirement

US-14 An untrained user should be able to perform the installation of an
application in less than 5 minutes.

The untrained user has been able
to install a third-party app in less
than a minute.

US-15 An untrained user should be able to complete the configuration of
policies for groups of users in less than 5 minutes. As for requirement US 11

US-16 An untrained user should be able to complete the configuration of
policies for groups of devices in less than 5 minutes. As for previous requirement

US-17 An untrained user should be able to complete the configuration of
profiles in less than 5 minutes.

This requirement has not been
validated

US-18 An untrained user should be able to perform a profile change in less
than 30 seconds.

This requirement has not been
validated

US-19 An untrained user should be able to access the statistics for
visualizing and interpreting them in less than 5 minutes. As for requirement US 11

US-20
The Multi-Level Anomaly Detection system (MLADS) must
monitor network traffic provided by several input sources and
several locations.

Validated through UC 19 demo

US-21 The workload of the devices should be available to the MLADS. Validated by design

US-22 The list of applications running on each device should be available
to MLADS. Validated by design

US-23 Raw sensor data must be available to be analysed by MLADS. Validated by design

US-24 Features from different devices should be aggregable directly or by
means of pre-processing through specific analysis tools. Validated by design

US-25 When possible, a dataset should not be present on a single device
for analysis. Validated by design

US-26 The presence of a GPU is needed to perform DL-based analysis. Validated by design

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 81 of 87

Appendix A: List of Code Components
Code Component GitHub Public Link
DHT Manager https://github.com/sifis-home/libp2p-rust-dht
NSSD Manager https://github.com/sifis-home/domo-wot-bridge
WoT firmware for DoMO WiFi actuators https://github.com/sifis-home/domo-wot-actuator
Smart Device Mobile API https://github.com/sifis-

home/wp6_mobile_application_api

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 82 of 87

Appendix B: List of Acronyms
Acronym Meaning
RGBW Red Green Blue White Light
EMMC Embedded MultiMediaCard
WoT Web of Things
DHT Distributed Hash Table
SD Smart Device
NSSD Not So Smart Device

Appendix C: DoMO GW OpenWrt Distribution
OpenWRT is a Linux distribution geared towards building firmware for routers. It is inherently focused
on cross-compilation and is based on a GNUMake-based toolchain closely resembling the Linux Kernel
build system.

Its source distribution is split in multiple git repositories, the `openwrt` one contains the core
components and the toolchain machinery, additional `packages` repositories provide optional
components.

Its main configuration files are `.config` and `feeds.conf`. The former matches the file with the same
name used in the Linux Kernel, the latter resembles Debian’s `/etc/apt/sources.list` in format and
purpose.

The package layout is a directory containing a single Makefile implementing pre-named `defines` and
variables that are then sourced by the main Makefile if its source tree is `installed` using the feeds
management script. For each package present in the `installed` tree a metadata index is produced and
used by the build system .config machinery.

The packages are built as installable packages (opkg) or built and installed in the base image depending
on the `.config`.

In order to produce an OpenWrt image for the DoMO Gateways the following are required:

- The OpenWRT core git tree

- A custom packages repository with packages for the custom software produced and the toolchain
required to build them, in our case the Rust compiler is the only component missing.

- A package containing our custom configurations regarding the network and the boot process

- A `feeds.conf` pointing to our package repository.

- A `.config` targeting the hardware and adding to the base image the software

Additional care had been taken to not diverge from the distribution philosophy to reduce the odds of
having clashing changes as the upstream distribution evolves:

- Every component providing a daemon has a procd-compliant initscript

- All the non-standard configuration is packaged as a uci-defaults script

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 83 of 87

DoMO GW OpenWRT distribution setup scripts
The whole SIFIS-Home OpenWrt image creation is automated via a simple bash script. In detail, the
bash script performs the following steps:

- It clones the openwrt github mirror

- It generates the feeds.conf to include the SIFIS-specific packages

- It populates the .config file using the settings extracted using the diffconfig script

- It builds the full image and the upgrade image

DoMO GW flashing procedure
The Banana-pi R3 SoC sports a 128MB NAND and a 32MB NOR memory in mutually exclusive access
and a SD port sharing the I/O pins with the internal 8GB eMMC storage.

The OpenWRT build system generates images that can target all the possible I/O. The SD image can
flash the NAND and the NOR with an image, directly from u-boot. The NAND image can flash the
eMMC from u-boot; the NOR image cannot, due to the constrained memory available.

The manufacturer’s suggested procedure to flash the system is to boot from the SD with a modern
image, flash the NAND storage, reboot from the NAND and flash the eMMC.

In detail, the following actions need to be executed to flash a Banana Pi R3.

First, a USB-Serial converter should be connected to the debug console of the BPI R3 as shown in the
picture below.

Also, an SD card flashed with the DoMO gateway image should be inserted in the SD card slot. Then,
all the BPI R3 jumpers should be set to the high position so as to allow the card booting using the SD
card.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 84 of 87

After powering up the board, the “Flash to NAND” operation should be selected on the Uboot menu.
After the operation is terminated, the board should be powered off and the jumpers should be set as
reported in the following figure.

The board should be powered up again and the “Flash to EMMC” operation should be selected from
the Uboot menu. After the operation is terminated, the board should be powered off again and the
jumpers should be set as shown in the following picture:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.4

Version: 1.0 Page 85 of 87

Some time after the board is powered up, it can be noticed that a domo-<MAC> network is created.
This means that the domo-bootstrap application is up and running and the DoMO gateway is ready to
receive its configuration.

