
H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

D6.2

First version of Pilot Use Case

Implementation

WP6 – Smart Home Pilot Use Case

SIFIS-Home

Secure Interoperable Full-Stack Internet of Things for Smart Home

Due date of deliverable: 31/01/2023

Actual submission date: 30/01/2023

Responsible partner: DOMO

Editor: Domenico De Guglielmo;

 E-mail address: domenico.deguglielmo@domo-iot.com

30/01/2023

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-Home Project is supported by funding under the Horizon 2020 Framework Program

of the European Commission SU-ICT-02-2020 GA 952652

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Authors: Domenico De Guglielmo (DOMO), Luca Barbato (LUM), Ossi Saukko

(CENTRIA), Olli Isohanni (CENTRIA)

Approved by: Luca Ardito (POL), Goran Selander (ERI)

Revision History

Version Date Name Partners Section Affected

Comments
0.1 20/10/2022 Defined ToC DOMO All

0.2 28/11/2022 Inserted first description

of testbed components

DOMO All

0.3 5/12/2022 Completed DOMO

testbed description

DOMO All

0.4 16/01/2023 Inserted Centria

Components

CENTRIA All

0.5 27/01/2023 Received internal reviews ERI, POL All

1.0 29/01/2023 Ready to Submit DOMO All

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Executive Summary

This deliverable reports the preliminary implementation of the SIFIS-HOME pilot architecture,

which also represents the real-testbed for validation of SIFIS-Home mechanisms.

First, we describe in detail the involved devices and the various software components that are used in

the SIFIS-HOME pilot implementation. We then detail the network and system architecture of our

pilot and show how all the different devices involved in the pilot are interconnected. The interaction

between the different devices and components is described by focusing on a specific smart home use

case, i.e. allowing a user to control their lights and appliances using a web-based control panel. We

then conclude the deliverable reporting the future actions that need to be performed in order to

successfully demonstrate the different smart home use cases reported in deliverable D6.1.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.2 Page 5 of 39

Table of contents

Contents

Executive Summary ... 3

1 Introduction .. 6

2 Devices used in the pilot .. 6

2.1 Smart Devices .. 6

2.1.1 DoMO gateway .. 6

2.1.2 Raspberry PI 4, Model B ... 8

2.2 Not So Smart Devices .. 9

2.2.1 DoMO WiFi actuators.. 9

3 Pilot network architecture .. 12

4 SIFIS-HOME Framework Integration ... 13

4.1 SIFIS-HOME DHT Manager ... 13

SIFIS-HOME DHT Manager REST API ... 13

SIFIS-HOME DHT Manager WebSocket API .. 14

SIFIS-HOME DHT Manager code and deployment .. 15

4.2 SIFIS-HOME NSSD Manager ... 15

4.3 SIFIS-HOME Smart Device Mobile API .. 18

4.4 DoMO GW OpenWRT distribution... 24

4.5 DoMO GW OpenWRT distribution setup scripts .. 24

4.6 DoMO GW upgrade procedure .. 25

4.7 DoMO GW flashing procedure .. 25

5 DoMO WiFi actuators firmware .. 26

5.1 Firmware implementation and structure .. 26

5.2 WoT API: properties and actions ... 27

5.3 Security .. 29

5.4 Flashing procedure ... 29

5.5 WoT firmware operations .. 30

6 Smart home use case workflow ... 31

7 Validation strategy ... 34

7.1 Testing software component quality .. 34

7.2 Validate the smart home use cases ... 34

7.3 NSSD WoT API testing ... 35

7.4 Use cases testing .. 35

8 Next actions ... 35

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.2 Page 6 of 39

Appendix A: List of Code Components ... 37

Appendix B: List of Acronyms .. 38

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 6 of 39

1 Introduction

The smart home pilot is the real testbed used to show the possibility of integration of SIFIS-Home in

existing architectures and devices, presenting an architecture, which fully matches with the SIFIS-

Home paradigms. In particular, the architecture involves real devices classified in Smart Devices and

NSSDs, fully distribution of functionalities among decentralized smart devices to improve reliability

and resilience, secure communication and privacy aware data management.

This deliverable reports the details of the current SIFIS-HOME pilot implementation. It is structured

as follows. First, we describe the different smart and not-so-smart devices that are used in the pilot.

For each one of them we report its hardware components and describe its specific use in the pilot. We

continue by describing the details of the network architecture of our pilot in order to show how the

devices communicate and are interconnected. The various components that are installed and executed

on the various devices are then described. Also, we show the specific actions that need to be

performed to install the SIFIS-HOME software components on the pilot devices. We then describe

how the devices, and the software components interact by focusing on a specific smart home use case,

i.e., allowing the user of the smart home to turn on and off lights by using a web-based control panel.

We conclude the deliverable reporting the future plans and actions that need to be performed in order

to successfully demonstrate the smart home use cases reported in D6.1.

2 Devices used in the pilot

This section describes the different smart (SD) and not-so-smart (NSSD) devices that are used in the

current pilot implementation. The main hardware characteristics of the various devices are reported

and their specific use in the pilot is highlighted.

2.1 Smart Devices

Smart devices are powerful devices where it is possible to install a number of applications. They

execute the set of SIFIS-HOME software components that compose the SIFIS-HOME Smart Device

framework. In the following we describe the smart devices that are currently used in the pilot.

2.1.1 DoMO gateway

Figure 1 shows the DoMO gateway, i.e. the main smart device used in our pilot. The DoMO gateway

is a quite powerful device, based on the Banana PI R3 board, that is provided with a Quad Core ARM

A53 CPU and 2 GB of DDR RAM. Also, it has 8GB of EMMC flash available. Regarding network

connectivity, the DoMO gateway is equipped with two 4x4 WiFi 6 network chips (2.4Ghz and 5Ghz

bands), 5 Gb Ethernet ports and 2 2.5 Gb SFP ports. Also, it is provided with a user-accessible USB

3.0 compliant port that allows connecting external USB devices. Additional details of the device are

reported in Figure 2.

The DoMO gateway runs an OpenWrt Linux distribution. In detail, we prepared a specific

OpenWrt distribution for the DoMO gateway that includes the various SIFIS-HOME software

components to be used. We describe the tools and the packages that we developed to generate the

OpenWrt SIFIS-HOME distribution in section _DoMO_GW_Openwrt .

The DOMO gateway is the device where the most important SIFIS-HOME services, such as the

SIFIS-HOME DHT Manager, are executed. It not only runs the vital SIFIS-HOME services but also

provides WiFi connectivity to the NSSD that are installed in a SIFIS-HOME house.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 7 of 39

Figure 1: Domo Gateway

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 8 of 39

Figure 2: Domo Gateway details

2.1.2 Raspberry PI 4, Model B

For the development of the Smart Device Mobile API component we used a Raspberry Pi 4, model B

device. It has 4 GB of RAM available and runs a 64-bit version of the Raspberry Pi OS. The device

running the Smart Device Mobile API must be able to create a dedicated WiFi network to which the

smartphone intended to run the SIFIS-HOME Mobile application will connect to. The Raspberry Pi 4

is equipped with a WiFi chip that can be configured to run in Access Point mode. Hence, it has all the

needed features required to run the Smart Device Mobile API component. Once the Smart Device

Mobile API component development is completed, we plan to prepare a specific OpenWrt package

that includes it, so that it can also be executed on the DoMO gateways.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 9 of 39

2.2 Not So Smart Devices

Not so smart devices are small, constrained devices that are mainly used to interact with the physical

world. The set of SIFIS-HOME software components that they execute is named SIFIS-HOME NSSD

framework. We report the details of the NSSDs used in the pilot in the following section.

2.2.1 DoMO WiFi actuators

The SIFIS-HOME pilot uses different types of WiFi actuators, provided by DoMO, to control and

monitor the energy consumption of the lights, sockets, shutters and appliances installed inside the

house. The WiFi actuators are simple devices that provide output and input channels and allow to turn

on and off the appliances/light/sockets they are attached to as well as measure and report their energy

consumption. Using the input channels of the actuators it is also possible to detect the state of attached

buttons and bistable buttons as well as the state of attached window and door contact sensors. All the

actuators are equipped with an Espressif ESP8266 WiFi chip that can be flashed with a custom

firmware. The NSSD devices used in the SIFIS-HOME pilot should expose a WebOfThings (WoT)

compliant API in order to be controlled and monitored. To this end, we developed a WoT compliant

firmware whose details are described in section _DoMO_WiFi_actuators.

In the following we briefly describe the characteristics of the various types of WiFi actuators that are

used in the pilot.

Shelly 1

Figure 3 shows the Shelly 1 WiFi actuator. It provides one input channel and a potential-free output

channel. It is not provided with an energy monitoring chip. It can be used to turn on and off lights and

appliances as well as heating systems. Also, it can detect state changes of buttons/contacts to which its

input channel is connected to.

Figure 3: Shelly 1

Shelly 1PM

Figure 4 shows the Shelly 1PM WiFi actuator. It provides one input channel and one output channel.

It can be used to turn on and off lights and appliances and monitor their energy consumption. Also, it

can detect state changes of buttons/contacts to which its input channel is connected to.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 10 of 39

Figure 4: Shelly 1PM

Shelly 2.5

Figure 5 shows the Shelly 2.5 WiFi actuator. It provides two input channels and two output channels.

It can be used to turn on and off light and appliances and monitor their energy consumption. Also, it

allows to open/close shutters and curtains. Finally, it can detect changes in the state of

buttons/contacts to which its input channels are attached.

Figure 5: Shelly 2.5

Shelly Dimmer

Figure 6 shows the Shelly Dimmer WiFi actuator. It provides two input channels and one output

channel. It can be used to control dimmable lights and monitor their energy consumption. Also, it can

detect changes in the state of buttons/contacts to which its input channels are attached.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 11 of 39

Figure 6: Shelly Dimmer

Shelly RGBW

Figure 7 shows the Shelly RGBW WiFi actuator. It provides one input channel and a number of

output channels that can be used to control RGBW led lights. Also, it can detect changes in the state

of buttons/contacts to which its input channel is attached to.

Figure 7: Shelly RGBW

Shelly EM

Figure 8 shows the Shelly EM WiFi actuator. It is a device that can provide the total power and energy

consumption of the house where it is installed.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 12 of 39

Figure 8: Shelly EM

3 Pilot network architecture

Figure 9: Pilot network architecture

Figure 9 shows the current network/system architecture of the SIFIS-HOME pilot. As it can be

observed a number of devices are present in the pilot:

Smart Home Router: it is the device used to provide Internet Connectivity to the house. It is in

general provided by the Internet Service Provider (ISP) and it does not execute SIFIS-HOME software

components. We assume that it provides WiFi connectivity to the users of the smart home and

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 13 of 39

executes a DHCP server that assigns IP addresses to the network devices deployed in the house.

DoMO gateway: a number of DoMO gateways are present in the house. At least one of them is

connected to the Smart Home Router using an Ethernet connection. The DoMO gateways are

connected with each other by means of a dedicated WiFi mesh network. In addition, they advertise a

specific WiFi network (SIFIS WiFi network in Figure 9) to which the NSSD devices used in the pilot

connect to.

NSSD (DoMO WiFi actuators): there are a number of NSSD (WiFi actuators) inside the house. They

are configured to connect to the network advertised by the different DoMO gateways present in the

house. Once connected to the WiFi network of the DoMO gateway they expose a WoT compliant

API.

User smartphone/PC: they are the devices that can be used by the users of the smart home to control

the lights and appliances connected to the NSSD deployed in the house.

4 SIFIS-HOME Framework Integration

The DoMO gateways run a SIFIS-HOME OpenWrt distribution, i.e. an OpenWrt distribution

that also contains SIFIS-HOME software components (the specific tools and actions needed to prepare

the SIFIS-HOME OpenWrt distribution are described in the following). In detail, the current SIFIS-

HOME OpenWrt distribution contains the SIFIS-HOME DHT Manager and the SIFIS-HOME NSSD

Manager. We provide a detailed description of these components in the following sections. Also, in

section _Smart_Device_Mobile we report the details of the Smart Device Mobile API component that

has been currently developed and tested using a Raspberry PI 4 device. In the next months, we plan to

prepare a specific OpenWrt package for the Smart Device Mobile API to include it in the SIFIS-

HOME OpenWrt distribution.

4.1 SIFIS-HOME DHT Manager

The SIFIS-HOME DHT is a component that offers a completely distributed publish/subscribe

mechanism through which SIFIS-HOME applications can exchange messages. The SIFIS-HOME

DHT allows to publish both persistent and volatile messages. Persistent messages are messages that

need to be stored in a persistent way, so that they are available even after a node reboot operation. In

detail, persistent messages are stored on an Sqlite database. Volatile messages are instead messages

that need to be delivered to all the available applications but that do not need to be persisted on disk.

The SIFIS-HOME DHT has a built-in mechanism to solve possible data conflicts that can arise

when a network partition occurs. In detail, every time a message is published on the DHT, the DHT

also stores its publication timestamp. Then, the publication timestamp is used to assure that only the

most recently published messages will be stored and made available to the applications.

The SIFIS-HOME DHT has been developed using the Rust language. Rust applications can

include the DHT by embedding it as a library. Non-Rust applications can access the DHT by means of

a REST + WebSocket API provided by the DHT Manager. Please note that Rust applications can also

use the Rest + WebSocket API provided by the DHT Manager to access the DHT. In the next section

we report the details of the Rest and WebSocket API provided by the DHT Manager.

SIFIS-HOME DHT Manager REST API

The DHT Manager provides a REST API through which it is possible for an external

application to access the DHT. Here we report the main REST API endpoints. In the following

<DHT_ADDRESS> indicates the IP address of the node where the DHT manager executes while

<DHT_HTTP_PORT> is the HTTP port used by the DHT Manager.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 14 of 39

HTTP

Method

Endpoint Parameters Description

GET http://<DHT_ADDRESS>:<DHT_P

ORT>/get_all

- Returns all the

published persistent

messages

GET http://<DHT_ADDRESS>:<DHT_P

ORT>/topic_name/<topic_name>

<topic_name> Returns all the

persistent messages

whose topic_name is

<topic_name>

GET http://<DHT_ADDRESS>:<DHT_P

ORT>/topic_name/<topic_name>/top

ic_uuid/<topic_uuid>

<topic_name>

<topic_uuid>

Returns the message

whose topic_name is

<topic_name> and

topic_uuid is

<topic_uuid>

POST http://<DHT_ADDRESS>:<DHT_P

ORT>/pub

The content of the

message to be

published is specified

in the request body

(type application/json)

Publishes a volatile

message whose

content is specified in

the payload of the

request

POST http://<DHT_ADDRESS>:<DHT_P

ORT>/topic_name/<topic_name>/top

ic_uuid/<topic_uuid>

<topic_name>,

<topic_uuid>,

The content of the

message to be

published is specified

in the request body

(type application/json)

Publishes a persistent

message whose

topic_name is

<topic_name> and

whose topic_uuid is

<topic_uuid>

SIFIS-HOME DHT Manager WebSocket API

The DHT Manager provides also a WebSocket API to access the DHT. In the following we report the

WebSocket messages that can be sent to the DHT Manager to request operations on the DHT. The

websocket API URL is ws://<DHT_ADDRESS>:<DHT_PORT>/ws.

Message Parameters Description

RequestGetAll - Returns all the published

persistent messages
{"RequestGetTopicName":

{"topic_name": "<topic_name>"}}

<topic_name> Returns all the persistent

messages whose

topic_name is

<topic_name>
{"RequestPubMessage": <payload>} <payload>: payload of the

message to be published

Publishes a volatile

message
{“RequestPostTopicUUID”: {

“topic_name”: <topic_name>,

“topic_uuid:”: <topic_uuid>,

<topic_name>,

<topic_uuid>,

<payload>

Publishes a persistent

message whose

topic_name is

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 15 of 39

“value”: <payload>

}}

 <topic_name> and whose

topic_uuid is <topic_uuid>

We want to highlight that, currently, access to the DHT HTTP API is unprotected. In the next months

we plan to develop TLS + HTTP authentication to protect access to the DHT HTTP API.

SIFIS-HOME DHT Manager code and deployment

The SIFIS-HOME DHT Manager code is available on GitHub (https://github.com/sifis-home/libp2p-

rust-dht). It can be easily built by running the command “cargo build”.

The command line parameters that are available are:

SQLITE_FILE: absolute path of the sqlite file where persistent messages published on the DHT are

stored.

PRIVATE_KEY_FILE: path to the file containing the private key of the node in PEM format. A 2048

bytes long private RSA key file in PEM format can be generated using command "openssl genrsa -out

private.pem 2048". If private_key_file does not exist, the key pair is automatically generated by sifis-

dht and stored inside file private_key_file .

IS_PERSISTENT_CACHE: if set to true indicates that sifis-dht is authorized to write messages to

the provided sqlite file. If set to false, the SQLITE_FILE content will only be used to initialize the

cache.

SHARED_KEY: 32 bytes long shared symmetric key in hex format (command "openssl rand -hex 32"

can be used to generate a random key)

HTTP_PORT: port to be used for the HTTP interface

LOOPBACK_ONLY: if set to true, only the loopback interface will be used, meaning that only other

local instances of sifis-dht are discovered. If set to false, all the available network interfaces of the

device will be used. Hence, two sifis-dht instances running on the same local network should discover

each other.

The DHT Manager is built and added to the SIFIS-HOME DHT OpenWrt distribution by creating a

dedicated OpenWrt package (see below for the details). Please note that an instance of the DHT

Manager is present on every DoMO Gateway.

4.2 SIFIS-HOME NSSD Manager

The SIFIS-HOME NSSD Manager is the SIFIS-HOME component responsible for interacting with

the NSSD devices present in the house. It has been developed using the Rust language and is

composed of three main modules: the DHT module, the M-DNS Module and the Web of Things

(WoT) Module.

• DHT Module: the DHT Module is the responsible for communicating with the DHT Manager.

It uses the WebSocket API provided by the DHT Manager to access the DHT. In detail, it

establishes a persistent WebSocket connection with the DHT Manager for being able to

https://github.com/sifis-home/libp2p-rust-dht
https://github.com/sifis-home/libp2p-rust-dht

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 16 of 39

receive commands from the user (e.g. “turn on a certain light”) and for updating the status of

the managed devices (e.g. to signal that an actuator is connected to the system).

• M-DNS Module: the M-DNS Module uses the m-DNS protocol to detect the presence of WiFi

actuators in the network advertised by the DoMO gateway where it is in execution. In detail,

the m-DNS module periodically performs an m-DNS discovery operation that produces as a

result the list of WiFi actuators that are connected to the DoMO gateway advertised network.

• WoT Module: the Web of Things module manages the communication of the NSSD Manager

with the NSSD. It uses a WoT API to interact with the NSSD.

The interaction between the NSSD Manager and both the DHT Manager and NSSDs is shown in

Figure 10 while the operations continuously performed by the NSSD Manager are reported in Figure

11.

Figure 10: NSSD Manager interaction with the DHT Manager and WiFi actuators (NSSD)

DHT Manager
DHT Module

m-DNS Module

Web Of Things

Module

Actuator

WebSocket

s

WebThings

New

Actuator
m-DNS

NSSD Manager

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 17 of 39

Figure 11: NSSD Manager operations

As it can be observed, the NSSD Manager continuously waits for an event to occur. The events can be

of three different types: i) a user command is received from the DHT, ii) an update from one of the

WiFi actuators is received, iii) a new WiFi actuator connected to the network advertised by the DoMO

gateway. In case a user command is received from the DHT, it is forwarded to the intended WiFi

actuator using the WoT API offered by the WoT firmware installed on the WiFi actuators.

Conversely, if a state update is received from one of the actuators, the related persistent topic on the

DHT is updated. Finally, if a new WiFi actuator has been discovered by the m-DNS module and the

actuator has been registered on the DHT, a new WoT connection towards it is started using the

security credentials stored in the DHT.

The NSSD Manager uses both persistent and volatile topics. In detail, we use persistent topics to store

the status of the various managed actuators inside the DHT, so that it is accessible by all the SIFIS-

HOME applications. Conversely, we make use of volatile messages to send/receive user commands.

Wait for:

1) user commands coming from the

DHT

2) updates from the WiFi actuators

3) m-DNS result: a new actuator has

been discovered

Forward command to the

intended WiFi Actuator

using WebThings API

Update related persistent

topic on the DHT

If the actuator is present

in the DHT, start a new

WebThing connection to

the WiFi actuator using

the security credentials

stored in the DHT

user

command?

update from

actuator?

m-DNS

discovery

result?

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 18 of 39

Persistent topics used by the NSSD Manager

topic_name topic_uuid Description

shelly_1 MAC address of the actuator Topic used to store a Shelly 1

Device.

shelly_1pm MAC address of the actuator Topic used to store a Shelly

1pm Device.

shelly_25 MAC address of the actuator Topic used to store a Shelly 2.5

Device

shelly_dimmer MAC address of the actuator Topic used to store a Shelly

Dimmer Device

shelly_em MAC address of the actuator Topic used to store a Shelly

EM Device

shelly_rgbw MAC address of the actuator Topic used to store a Shelly

RGBW Device

Volatile topic used by the NSSD Manager to receive user commands:

{
"command": {
 "command_type": "shelly_actuator_command",
 "value": {
 "mac_address": <actuator_mac_address>,
 "shelly_action": {
 "input": {
 "action": {
 "action_name": "set_output",
 "action_payload": <action_payload>
 }
 }
 }
 }
}
}

As it can be observed, the intended receiver of the command is specified by parameter

"actuator_mac_address”. Instead, the specific action to be executed is identified by means of the

“action_name” “action_payload” parameter pair.

SIFIS-HOME NSSD Manager code and deployment

The NSSD Device Manager source code is available on Github (https://github.com/sifis-

home/domo-wot-bridge) and can be easily built by running command “cargo build”. The NSSD

Manager is built and added to the SIFIS-HOME DHT OpenWrt distribution by creating a dedicated

OpenWrt package (see below for the details). Please note that an instance of the NSSD Manager is

present on every DoMO Gateway.

4.3 SIFIS-HOME Smart Device Mobile API

https://github.com/sifis-home/domo-wot-bridge
https://github.com/sifis-home/domo-wot-bridge

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 19 of 39

The Smart Device Mobile API is a component that allows the initialization of new Smart Devices by

part of the SIFIS-HOME Mobile application. In addition, the component allows checking of the

device status and running commands for restarting or shutting down the device and performing a

factory reset. The component is executed on all the Smart Devices of a SIFIS-HOME enabled house.

Smart Device Initialization

Figure 12: Smart Device Mobile API usage

The Smart Device Mobile API is executed on every Smart Device. The Mobile Application

connects to the Smart Device Mobile API component using a dedicated WiFi network created by the

Smart Device at boot time. An API key is needed to access and use the Mobile API. We assume that a

QR code containing the API key needed to access the Mobile API is printed on the case/box of every

Smart Device. The mobile application can scan the API key QR code with the smartphone camera

(see also Figure 12, where full arrows represent API invocation and dotted arrows represent the

response message).

The mobile application retrieves device information using the API key. The information

contains both the device name and a unique device identifier. The mobile application shows this

information to the user and helps him choose the correct device if several devices are available.

The mobile application allows to send and change the configuration of the device. After the

configuration has been sent, the mobile application asks the device to restart. After the restart, the

device can start joining the SIFIS-Home network.

Device Information File

We assume that a specific file, named Device Information File, is created on every smart device when

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 20 of 39

it is flashed. The file contains the unique data of the device and the API key needed to access the

Smart Device Mobile API. The current file path is /opt/sifis-home/device.json. The file contains the

following information:

• Product name (product-name field)

• Unique identifier (uuid field)

• API key (authorization-key field)

• Private key path (private-key-file)

Device info file example:

{

 "authorization-key": "256-bits in hex format",

 "private-key-file": "/opt/sifis-home/private.pem",

 "product-name": "Name of the product (not unique)",

 "uuid": "128-bit UUID in standard hex format"

}

The file is accessed and used by the Mobile API component to provide device information to the

mobile application.

Device Configuration

A specific file, named Device Configuration File, is used to store the device configuration. Its current

file path is /opt/sifis-home/config.json file. If the Device Configuration file is present on the device file

system it means that the device has already been configured and, hence, the Smart Device has all the

needed information to join a SIFIS-Home network. If the Device Configuration file is not present, the

device has not been configured yet. In this case, the device goes in initialization mode. In detail, the

WiFi chip of the Smart Device is configured to operate in access point mode and a dedicated WiFi

network is created. Then, the SIFIS-HOME Mobile Application can be used to configure the device.

All the SIFIS-Home services running on the device can read the Device Configuration file, but only

the Smart Device Mobile API is allowed to create and change it. The SIFIS-Home services that are

not expected to run in initialization mode are not executed if the Device Configuration file is missing.

The configuration file contains the following fields:

• Device name (name field)

• Shared key for DHT (dht-shared-key field)

Example of configuration file:

{

 "dht-shared-key": "32 bytes in hex format",

 "name": "User-defined name for the device"

}

The operations executed by every smart device after boot are summarized in Figure 13.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 21 of 39

Figure 13: Smart device boot

SIFIS-Home Targets

Systemd is the most common solution for managing services on Linux systems. Figure 14 reports a

simplified graph of default boot targets and services of the multi-user systemd target. The multi-user

target has everything running except the graphical user interface. This is the target we used for testing

the Mobile Application API component on the Raspberry PI 4 device.

Figure 14: multi-user systemd target

For testing the SIFIS-Home Mobile API component we created two new systemd targets. The

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 22 of 39

selection of which target is active is based on whether the config.json file is or not present on the

device file system. In detail, systemd services can be set up to be wanted by one of the targets to

decide whether they are run at boot. Services that are only needed for configuration are installed under

sifis-config.target, and services for the fully configured system are installed under sifis-home.target.

Figure 15 below shows added targets with their conditions.

Figure 15: SIFIS-HOME systemd targets

Please note that some additional targets and services are left out of the picture for the sake of clarity.

Smart Device Mobile HTTP API

All the endpoints offered by the Smart Device Mobile API component require an API key to function.

The API key is provided to the Smart Device Mobile API component using the x-api-key header in an

HTTP query.

HTTP

Method

Endpoint Parameters Description

GET http://<ADDRESS>:<PORT>/v1/device/status - Returns

device status

in JSON

format

GET http://<ADDRESS>:<PORT>/v1/device/configuration

- Return device

configuration

in JSON

format or 404

if the device

has not been

configured

yes

PUT http://<ADDRESS>:<PORT>/v1/device/configuration

Device

configuration

in JSON

Sets device

configuration

and returns

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 23 of 39

format 200 OK or

error status

GET http://<ADDRESS>:<PORT>/v1/command/factory_reset

The confirm

message “I

really want

to perform a

factory

reset”

Removes

device

configuration

file and runs

the

factory_reset

script on the

target system

GET http://<ADDRESS>:<PORT>/v1/command/restart - Runs restart

script on the

target system

GET http://<ADDRESS>:<PORT>/v1/command/shutdown - Runs

shutdown

script on the

target system

The structure of the JSON messages that are provided and used by the Mobile API component is

reported below.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 24 of 39

Figure 16: JSON messages stucture

SIFIS-HOME Mobile Application API code

The Mobile Application API component has been developed using the Rust language. The current

source code can be found at https://github.com/sifis-home/wp6_mobile_application_api.

4.4 DoMO GW OpenWRT distribution

OpenWRT is a Linux distribution geared towards building firmware for routers. It is inherently

focused on cross-compilation and is based on a GNUMake-based toolchain closely resembling the

Linux Kernel build system.

Its source distribution is split in multiple git repositories, the `openwrt` one contains the core

components and the toolchain machinery, additional `packages` repositories provide optional

components.

Its main configuration files are `.config` and `feeds.conf`. The former matches the file with the same

name used in the Linux Kernel, the latter resembles Debian’s `/etc/apt/sources.list` in format and

purpose.

The package layout is a directory containing a single Makefile implementing pre-named `defines` and

variables that are then sourced by the main Makefile if its source tree is `installed` using the feeds

management script. For each package present in the `installed` tree a metadata index is produced and

used by the build system .config machinery.

The packages are built as installable packages (opkg) or built and installed in the base image

depending on the `.config`.

In order to produce an openwrt image for the pilot the following are required:

- The OpenWRT core git tree

- A custom packages repository with packages for the custom software produced and the

toolchain required to build them, in our case the Rust compiler is the only component missing.

- A package containing our custom configurations regarding the network and the boot process

- A `feeds.conf` pointing to our package repository.

- A `.config` targeting the hardware and adding to the base image the software

Additional care had been taken to not diverge from the distribution philosophy to reduce the odds of

having clashing changes as the upstream distribution evolves:

- Every component providing a daemon has a procd-compliant initscript

- All the non-standard configuration is packaged as a uci-defaults script

- There is ongoing work on exposing all the daemon settings via uci.

4.5 DoMO GW OpenWRT distribution setup scripts

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 25 of 39

The whole SIFIS-HOME OpenWrt image creation is automated via a simple bash script. In detail, the

bash script performs the following steps:

- It clones the openwrt github mirror

- It generates the feeds.conf to include the SIFIS-specific packages

- It populates the .config file using the settings extracted using the diffconfig script

- It builds the full image and the upgrade image

4.6 DoMO GW upgrade procedure

The standard OpenWRT system layout presents a production partition and a recovery partition, both

read-only. The production mode mounts a read-write additional partition as overlay on top of the read-

only production partition while the recovery mode simply boots its partition w/out mounting anything

else.

The default OpenWrt upgrade process enables to save a tarball of the modified configuration files, kill

all the services and pivot to a minimal ram-backed setup to overwrite the production partition, reset

the overlay and optionally reload the configuration files.

Since there is a window of more than 10 seconds in which a power loss can cause the system to

become unbootable, we developed a fallback process without that flaw. We briefly describe it below.

The process relies on the OpenWrt preinit system and diverges from the default by first storing the

upgrade image and the modified configuration files tarball in a separate partition dedicated to store

upgrade images. Then, the partition is unmounted and the system is forced to enter the recovery mode.

From the recovery mode the upgrade system detects if there is an upgrade image available in the

dedicated upgrade partition and, in case, feeds it to the standard update system to update the

production partition from the recovery mode.

Currently, the standard OpenWrt upgrade procedure cannot restore the configuration files if launched

in recovery mode. Hence, our workaround is to have a preinit script that restores the configuration

files from production and deletes the update files only once the boot process completes.

The event of a power outage would cause the process to restart from the last successful stage and

complete once the power is back.

4.7 DoMO GW flashing procedure

The Banana-pi R3 SoC sports a 128MB NAND and a 32MB NOR memory in mutually exclusive

access and a SD port sharing the I/O pins with the internal 8GB eMMC storage.

The OpenWRT build system generates images that can target all the possible I/O. The SD image can

flash the NAND and the NOR with an image, directly from u-boot. The NAND image can flash the

eMMC from u-boot; the NOR image cannot, due to the constrained memory available.

The manufacturer’s suggested procedure to flash the system is to boot from the SD with a modern

image, flash the NAND storage, reboot from the NAND and flash the eMMC.

The alternative process leverages the u-boot tftp support to directly flash from network. Beside the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 26 of 39

requirement of having a dedicated network configuration it has the potential to be completely

unattended.

5 DoMO WiFi actuators firmware

We decided that the NSSD devices, being part of the pilot, need to expose a Web of Things compliant

API. In detail, in a WoT-based architecture every NSSD is a server that exposes a set of

functionalities to possible clients. Web of Things does not mandate the use of a specific protocol to

make the functionalities of a WebThing accessible to an external application. In our implementation,

we decided that our NSSDs are HTTPS servers exposing their functionalities through a WebSocket

API. In a WoT server properties are used to expose settings and characteristics of a WebThing. For

example, we can have a property description that is a textual description of a certain WebThing (e.g.

“kitchen light”). In addition, actions are used to request the execution of a certain operation to a

WebThing. A possible action to allow a user to turn on and off a certain light can be, for example,

turn. Web of Things also provides events to allow a WebThing to signal anomalous conditions. Our

implementation only uses WoT properties and actions.

5.1 Firmware implementation and structure

The WoT firmware for the NSSD devices has been developed using the C++ language and the

Arduino ESP8266 Framework. Its code is available on GitHub (https://github.com/sifis-home/domo-

wot-actuator). We also used PlatformIO (https://platformio.org/) to simplify the firmware

development and building processes. All the different WiFi actuators that we use in the pilot share the

same code base. This allows to reduce code repetition and speeds up testing operations.

Figure 17: WoT firmware modules

In detail, our WoT firmware is composed of 4 different modules (Figure 17):

• WiFi Manager: it is the module responsible for managing the WiFi connection of the

actuator. It communicates with the Flash Memory Manager to get the WiFi SSID and

Password of the network to which the WiFi actuators should connect to. Also, it signals to the

WoT Manager events of connection/disconnection from the WiFi network. The default WiFi

network to be used is specified in the firmware code.

• Flash Memory Manager: it is the module that is responsible for reading/writing data from/to

the persistent memory of the actuator. It provides WiFi credentials to the WiFi Manager. Also,

it provides the WoT Manager with the server certificate and credentials to be used by the

WiFi Manager WoT Manager

HW Manager

Flash Memory

Manager

https://github.com/sifis-home/domo-wot-actuator
https://github.com/sifis-home/domo-wot-actuator
https://platformio.org/

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 27 of 39

HTTPS WebSocket server needed to expose the WoT API (see below for additional details).

• HW Manager: it is the module responsible for managing the physical peripherals/devices of

the actuators. It uses the ESP8266 GPIO pins to activate/deactivate the actuator relays and to

get the current status of attached input devices such as bistable buttons. Also, it communicates

with the energy monitoring chips to provide power/energy readings to the user.

• WoT Manager: it is the module responsible for creating a WoT compliant API for the WiFi

actuators. In particular, the WoT Manager main task is to start and monitor an HTTPS

WebServer with WebSocket support. Also, the WoT Manager is responsible for starting up an

m-DNS resolver that allows the discovery of the actuator by part of the NSSD Manager. In our

implementation every actuator is identified by the m-DNS name <shelly_model>-

<mac_address>.local, where shelly_model identifies the particular actuator type (i.e. shelly1,

shelly_1pm, etc) and mac_address is the MAC address of the actuator. The WoT manager is

informed about network connection/disconnection events from the WiFi Manager. Also, it

receives the security material needed to correctly start up the HTTPS Web Server from the

Flash Memory Manager (see section Security for additional details). Finally, it communicates

with the HW Manager module to activate/deactivate the physical relays, get energy/power

readings and updates on the input channels states.

5.2 WoT API: properties and actions

As mentioned before, our WoT implementation uses both WoT properties and actions. They are

detailed below.

Properties

We use a single property named status, of type String, to represent the current state of the actuator. In

detail, the property status is the serialization of a JSON Object that contains a number of different

fields. We report in Figure 18 a possible value for the status property for a shelly1 actuator and a

description of the various fields.

{

"ap_mac_address":"9483c413a0d4",

"fw_version":"v1",

"gateway":"192.168.1.1",

"input1":false,

"ip_address":"192.168.1.26",

"mac_address":"98:cd:ac:2d:4c:35",

"mcu_temperature":94.01399994,

"mode":0,

"output1":false,

"rssi":-61,

"topic_name":"shelly_1",

"wifi_ssid":"****"

}

Figure 18: example of WoT status property

Field name Description

ap_mac_address MAC address of the WiFi Access Point to which

the actuator is currently connected

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 28 of 39

fw_version Firmware version

Gateway IP address of the WiFi actuator gateway

input1 State of input channel 1

ip_address IP address of the WiFi actuator

mac_address MAC address of the actuator

mcu_temperature temperature of the MCU

Mode Current operation mode

output1 State of output channel 1

Rssi RSSI signal level

topic_name topic_name of the persistent message used to

store the status of the actuator inside the DHT

wifi_ssid SSID of the WiFi network to which the actuator

is connected to

Please note that the various fields of the status property are updated over time. For example, in case

the relay number 1 of the actuator is activated the output1 field value changes from false to true. A

WebSocket client connected to the actuator receives a PropertyStatusUpdate message whenever the

status property value changes.

Action

We use an action named shelly_action, of type Object, to allow an external application to request the

execution of specific operations to the actuators. The shelly_action contains two mandatory fields:

action_name and action_payload. The former is used to identify the specific type of action that must

be executed by the actuator. The latter contains parameters for the action execution. Our

implementation currently provides the actions reported in the table below.

action_name action_payload Description

set_output output_number: number of the

relay to be

activated/deactivated

desired_state: desired state of

the relay

Action that allows to

activate/deactivate output

relays.

set_dimmer dim_value: desired dimming

level

Action that allows to request a

dimming operation.

pulse_action output_number: relay to use for

the pulse operation

duration: duration of the pulse

signal in ms

Action that allows to request a

pulse operation using an output

relay.

set_shutter desired_state: OPEN,

CLOSED, STOPPED

Action that allows to

open/close/stop a roller shutter.

set_rgbw Rgbw_value: desired rgbw

value

Action that allows to set

RGBW values .

set_led_dimmer output_number: output channel

to be used,

dim_value: desired dimming

level

Action that allows changing the

dimming values of LED lights.

change_wifi wifi_ssid, wifi_password Action that allows changing the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 29 of 39

WiFi network to which the

actuator should connect to.

change_mode mode Action that allows changing the

actuator operation mode (i.e.

RELAY mode or SHUTTER

mode).

update_action fw_url Action that allows updating the

firmware of the actuator.

A WebSocket client can request the execution of a specific action by sending a specific ActionRequest

message.

5.3 Security

As mentioned above, the WoT Manager module takes care to expose a Web of Things compliant API

that can be used by external applications to access the functionalities of the WiFi actuators.

Communication between WebSocket clients and the WoT-enabled actuator are encrypted and

protected. In particular, only allowed users/applications are able to communicate with the actuator and

request the execution of specific actions. To this end, the WoT manager uses an HTTPS server with

WebSocket support. The server certificate and server key to be used are generated during the actuator

flashing phase and stored on the flash memory of the actuator (see section below). In addition, every

WebSocket client should provide a user/password pair in order to access the WebSocket server

functionalities. In detail, every WebSocket client should use the HTTP basic access authentication to

send its username and password when making a request to the actuator. In basic HTTP authentication,

the request contains a header field in the form of Authorization: Basic <credentials>, where

credentials is the Base64 encoding of the username and password joined by a single colon. Our

implementation uses a dedicated user/password pair for every actuator. They are generated and stored

on the flash memory of the actuator during the actuator flashing phase. In this way, we provide

encrypted communication and can guarantee that only allowed applications have access to the WiFi

actuators functionalities.

5.4 Flashing procedure

The flashing procedure is the operation through which we install the WoT firmware on our WiFi

actuators and provide them with the needed security material. We developed a flashing tool to ease the

actuator flashing operation. Before starting the flashing procedure, the actuators should be put in

programming mode and connected to a PC where the flashing tool is executed.

The flashing tool follows a number of steps that are detailed in the following:

1) The user selects the model (actuator_model) of the actuator to be flashed (i.e shelly1,

shelly1pm, etc). The corresponding firmware is selected.

2) The MAC address (mac_address) of the actuator to be flashed is retrieved.

3) The security material to be used by the actuator is generated. In detail, a random user/password

pair is generated. Also, a server private/public key pair and a server certificate with CN field

equal to “actuator_model-mac_address.local” is created. The server certificate is signed using

the SIFIS-HOME Certification Authority key. Please note that the SIFIS-HOME Certification

Authority certificate is contained in the SIFIS-HOME OpenWrt distribution used by the

DoMO Gateways. It is stored in the trust store of the DoMO gateways by installing a dedicated

OpenWrt package that we created. Please note that we are currently assuming that the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 30 of 39

device/PC used to flash the WiFi actuators is trusted. In detail, we are assuming that that the

CA private key used to sign the actuator certificates has been provided and saved on the

flashing device/PC using a secure channel. In a production environment, the use of an

intermediate CA that is only used to sign the actuator certificates is recommended.

4) The flash memory of the actuators is completely erased.

5) The security material (serverKey, serverCert, user/password) is stored on the flash memory of

the actuator (SPIFFS partition).

6) The WoT firmware is installed.

The user/password pair and the MAC address of the flashed actuator are saved in a local text file.

Please note that the NSSD Manager needs to know the user/password pair used by a specific actuator

for being able to connect to it. Hence, they need to be inserted in the DHT of the SIFIS-HOME house

where the actuator will be installed. Currently, the credentials are stored inside the DHT using a Web-

based control panel that we created (see below).

5.5 WoT firmware operations

The following figure reports the operations that are performed by our WoT-enabled actuators. When

the actuator is turned on, the Flash Memory and the HW peripherals are initialized. Then, the WiFi

Manager requests the WiFi network SSID/Password to use to the Flash Memory Manager. Then, the

WiFi connection is activated and the HTTPS WebSocket WoT server is started by getting the security

material from the flash memory. Also, the m-DNS resolver is activated. At this point, Websocket

clients, such as the NSSD Manager, can connect to the actuator to get property updates and send

action requests.

The actuator continuously waits for i) updates from the physical peripherals that produce an update of

the WoT status property, ii) requests to execute a specific shelly_action by part of a WebSocket client

that, in general, cause the WoT Manager to communicate with the Hardware Manager to start

operations involving the physical devices.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 31 of 39

Figure 19: WoT firmware operations

6 Smart home use case workflow

In this section we focus on a specific smart home use case, i.e., allowing a user to control its lights by

using a web-based control panel. Our goal is to show the interaction and the communication between

the software components and the devices used in our pilot. We assume that a number of DoMO

gateways and WiFi Actuators have been prepared and flashed according to the procedures described

before and have been turned on. The actuators have also been connected to the lights they need to

control. Hence, our environment is similar to the one reported in Figure 9. At the very beginning, an

instance of the DHT Manager and NSSD Manager is present and operational on every DoMO

gateway. Also, the WiFi actuators are connected to the network offered by the DoMO gateway and are

waiting for WebSocket client connections. The DHT is also empty since no messages have been

published yet. The user will use a Web-based control panel in execution on its PC to control its lights.

In detail, we developed a Web application using Vue.js that allows the users of a SIFIS-HOME house

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 32 of 39

to control their devices. The Web application uses the WebSocket and the REST API of the SIFIS-

HOME DHT Manager to interact with the system. The following picture shows all the involved

components and devices.

Figure 20: Smart home use case

As mentioned before, the NSSD Managers in execution on the DoMO gateways should be provided

with the user/password pairs of the actuators they are intended to control. In detail, the security

credentials to be used to connect to every WiFi actuator should be inserted into the DHT. We created

a specific control panel in our Web application to allow a user to add a new WiFi actuator to its SIFIS-

HOME house.

Figure 21: Add Shelly 1PM actuator to the DHT

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 33 of 39

Figure 21 shows the panel. As it can be observed the user should select the type of actuator to add and

insert information such as its MAC address and user/password pair. The Vue application will use the

DHT REST API to publish a persistent message with the provided information. Please note that the

message is distributed by the DHT and available on every DoMO gateway.

Let us focus now on the actuator that has just been added to the DHT. It is connected to the network

advertised by one of the DoMO gateways and it is operational, i.e. it executes a Web server providing

a WoT API, whose access is protected by means of the user/password pair that has been provided to

the actuator during flashing (see also Figure 22).

Figure 22: WiFi actuator connection to a DoMO gateway

The presence of the actuator on the network advertised by the DoMO gateway is discovered by means

of the m-DNS protocol. Since the actuator is now registered on the DHT, a WebSocket connection to

it is started by the NSSD Manager using the credentials stored in the DHT (see Figure 23).

Figure 23: WiFi actuator discovery and connection

The user can now use the Web Application to send commands to the actuator, e.g. to turn on the light

that is connected to it. The Web Application will use the DHT REST API to publish a volatile

message that contains the command to be executed. The DHT Manager will forward the command

message to all the NSSD Managers in execution on the various DoMO Gateways of the house. When

the message is received by the DoMO gateway to which the destination actuator is connected to, the

NSSD Manager in execution on the gateway, requests the execution of the WoT action corresponding

to the requested command using the actuator WoT API. When the light is actually turned on, a

Property update is received by the NSSD Manager. Then, the NSSD Manager updates the status of the

actuator (the relay is now activated) on the DHT. The update is also received by the Vue application

that can show the new updated status to the user.

bookmark://_SIFIS-HOME_DHT_Manager/
bookmark://_SIFIS-HOME_DHT_Manager/

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 34 of 39

Figure 24: command execution workflow

7 Validation strategy

In deliverable D6.1 we defined the different smart home use cases to be demonstrated through our

pilot implementation. For each one of them, we reported the functional, performance and security

requirements. Also, an updated list of workflows has been reported in deliverable D1.4. Some of them

(e.g. workflow 6.2 and 6.3) have a direct mapping with the use cases defined in D6.1. We not only

need a validation strategy that verifies that our pilot implementation satisfies all the requirements of

the different defined use cases but also a clear procedure to test the quality of the developed software

components. In the following we detail our validation strategy reporting both the procedure to test the

software component quality and the steps to verify that the use cases requirements are met by our

implementation.

7.1 Testing software component quality

Every time the source code of a WP6 software component is uploaded on the SIFIS-HOME Github

organization, a series of quality checks provided by the WP2 partners is applied to it. In detail, for

every developed component it is required that both a README file and a LICENSE file are present in

the component repository. Also, it is recommended that unit tests are present and that an automated

procedure (or a Dockerfile) to easily build the component is provided. In addition, when possible, the

sifis-generate tool is used to easily setup a Continuous Integration procedure. In detail, the sifis-

generate tool automatically generates a series of GitHub actions that allow to calculate metrics such as

the code coverage or signal the presence of known security issues in the project dependencies. Also, it

is checked that code warnings are not produced by the build procedure. Finally, if possible, an

additional manual code review is performed to improve code quality and signal possible problems.

7.2 Validate the smart home use cases

The validation strategy for the use cases will abide to the strategy defined by WP1 and WP5 activities.

In fact, also for the use cases validation, we will exploit a General Quality Management (GQM)

approach. The use cases validation will be fully addressed in D6.3.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 35 of 39

7.3 NSSD WoT API testing

The WP6 smart home use cases require to interact and communicate with physical devices. As

mentioned above, communication with the NSSD devices of the pilot is performed by means of a

WebThing API. Given that it is of paramount importance to verify the correctness of the WoT API

offered by the NSSD devices, the following procedure has been defined to test it. In detail, for every

NSSD offering a WoT API, a wot-test program will be developed to automatically perform the below

actions and verify that:

- Every WoT property that is read/write must be set to know values and its value retrieved to confirm

- Every WoT property that is read-only must fail an attempt to write

- Every physical sensor that can be influenced (e.g. contact sensors) should be manually manipulated

and their status change recorded and then manually verified

- Every WoT action should be invoked and their effects evaluated (polled in WoT 1.1) until

completion.

If the wot-test program reports successful tests, the following integration test is also performed for

every WoT enabled NSSD. This is to verify that it is possible to successfully interact with the NSSD

using the DHT layer. In detail, the test verifies that every NSSD controlled via the DHT layer has the

same behaviour as when directly controlled via the WoT API, that is:

- Every WoT property mapped to a DHT topic must be confirmed to be written if its value changes

- Every action triggered via a DHT command should result in the expected outcome

The wot-test and wot-consume repositories contain the proof-of-concept of the testing programs

mentioned above.

7.4 Use cases testing

The activities of WP6 are ongoing and implementation tasks have not finished yet. However, D6.1 use

case requirements are periodically checked to verify that our final pilot implementation will be able to

satisfy them. In detail, we plan to follow the below procedure to produce a final detailed testing report.

For every reported use case in D6.1 we are going to verify that:

1) The pilot implementation is able to demonstrate it (answer yes/no)

2) The performance requirements are met (e.g. the maximum latency to turn on a light is above

the actual experimented latency to turn on a light in our testbed) (answer yes/no, deviation)

3) The security requirements of the use case are satisfied by the implementation (if not, specify

what requirements are not met)

4) The use case implementation is compliant with the GDPR guidelines and personal data is

handled correctly (if not, a clear explanation will be provided)

8 Next actions

In the next months a number of actions need to be performed to be able to successfully demonstrate

the smart home use cases reported in D6.1. We report the main ones below:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 36 of 39

• WP4 Analytics Integration: we need to integrate the analytics developed in WP4 in our pilot.

To this end, we need to produce OpenWrt packages to include in our SIFIS-HOME OpenWrt

distribution.

• Policy Manager Integration: the Policy Manager component needs to be integrated in our pilot.

This will allow the definition and monitoring of smart home policies. We plan to include the

Policy Manager by creating an OpenWrt package for our custom OpenWrt image.

• Remote Control: we are going to integrate the Fiware API component in our pilot so that it

will be possible to control a SIFIS-HOME enabled house by using the Fiware APIs provided

by Yggio.

• Third-party applications: we need to develop the Application Manager component that will

allow the installation of third-party applications on the smart devices being part of our pilot.

• Testing: we need to test the quality of the developed applications and the performance of our

system and report the obtained results.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 37 of 39

Appendix A: List of Code Components

Code Component GitHub Public Link

DHT Manager https://github.com/sifis-home/libp2p-rust-dht

NSSD Manager https://github.com/sifis-home/domo-wot-bridge

WoT firmware for DoMO WiFi actuators https://github.com/sifis-home/domo-wot-actuator

Smart Device Mobile API https://github.com/sifis-

home/wp6_mobile_application_api

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D6.2

Version: 1.0 Page 38 of 39

Appendix B: List of Acronyms

Acronym Meaning

RGBW Red Green Blue White Light

EMMC Embedded MultiMediaCard

WoT Web of Things

DHT Distributed Hash Table

SD Smart Device

NSSD Not So Smart Device

