
H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

 

 

 

 

 

 

  
D5.4 

 
 
 

Final Version of SIFIS-Home Security 

Architecture Implementation 
 

 

WP5 – Integration, Testing and Demonstration 
 

SIFIS-Home 
 

Secure Interoperable Full-Stack Internet of Things for Smart Home 

 

 

 

Due date of deliverable: 30/06/2023 

Actual submission date: 30/06/2023 

Responsible partner: SEN 

Editor: SEN 

  E-mail address: hakan.lundstrom@sensative.com 

30/06/2023 

Version 1.0 

 

Project co-funded by the European Commission within the Horizon 2020 Framework Programme 

Dissemination Level 

PU Public X 

PP Restricted to other programme participants (including the Commission Services)  

RE Restricted to a group specified by the consortium (including the Commission Services)  

CO Confidential, only for members of the consortium (including the Commission Services)  

 
 

The SIFIS-Home Project is supported by funding under the Horizon 2020 Framework Program 

of the European Commission SU-ICT-02-2020 GA 952652 

 

 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

 

 

 

Authors: Håkan Lundström (SEN), Marco Tiloca (RISE), Otto Waltari (FSEC), Andrea 

Saracino (CNR), Marco Rasori (CNR), Domenico De Guglielmo (DOMO), Luca 

Barbato (LUM) 

 

Reviewed by:  Marco Tiloca (RISE), Rikard Höglund (RISE) 

 

Revision History 

 

Version Date Name Partner Section Affected 

Comments 

0.1 15/04/2023 ToC Defined SEN All 

0.2 30/04/2023 Integration from D5.2 All All 

0.3 06/05/2023 Continuous Integration LUM, DOMO, 

SEN 

6 

0.4 19/05/2023 Validation LUM, POL, 

CNR, SEN 

7 

0.5 10/06/2023 Ready for Review All All 

0.6 25/06/2023 Reviews Addressed All All 

1.0 30/06/2023 Ready to Submit All All 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

 

Executive Summary 

In this deliverable, which deprecates deliverable D5.2, the status and implementation aspects of the final 

version of the SIFIS-Home security architecture is described, together with a brief overview of the test 

beds and the successful validation results of the system. Since the overall security architecture is the 

same as in deliverable D5.2 and still consistent with what was defined in deliverable D1.4, the main 

differences with respect to deliverable D5.2 are primarily in terms of implementation details. The SIFIS-

Home security architecture represents a comprehensive implementation of state-of-the-art technologies, 

developed by multiple partners across Europe with diverse competences and know-how. Every 

component of the SIFIS-Home framework is examined in detail, discussing the final implementation 

aspects and integration status, and providing a GitHub link to access the released open-source code. 

 

The final version of the SIFIS-Home testbeds includes emulated and simulated devices for development 

and testing of the SIFIS-Home solution. Emulated devices are virtual and based on x86 hardware, while 

simulated devices are Raspberry Pis with an ARM architecture. The testbed integrates a cloud interface 

enabling external access from outside the Smart Home, and includes live NSSD – Not so smart devices 

that have been proven convenient to expedite cloud interface development and validation. 

 

The testbed has served as the platform for partners to develop, deploy, and test their applications for the 

defined SIFIS-Home use cases. The integration and deployment tools employed in this endeavour are 

cutting-edge, as utilizing Docker for containerization; GitHub as the code repository for version control 

and collaborative development, build, and integration; and Github ghcr.io in conjunction with Docker 

Watchtower for automated software deployment. 

 

These tools, combined with the static analysis tools developed by WP2, have allowed for the 

establishment of a comprehensive CI (Continuous Integration) and CD (Continuous Deployment) 

process. Furthermore, ghcr.io serves as a repository for third-party applications within the SIFIS-Home 

Marketplace. As a result, the development of third-party applications can follow and benefit from the 

same processes as the core SIFIS-Home framework components and modules. 

 

The final SIFIS-Home architecture is now confirmed, it does fulfil the promises of the SIFIS-Home 

framework as per the project description of work. In particular, all the problems encountered during the 

design and implementation phase have been properly addressed and overcome. It is rewarding to see 

real-time data flowing through the deployed testbeds as well as through the WP6 Pilot, while also being 

able to continuously interact with sensors and actuators and to install applications, and further knowing 

that applicable analytics suitable to the hardware architecture x86 or ARM are executing on the SIFIS-

Home smart devices to keep the system secure. 

 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 6 of 76 
 

Table of contents 

 

Executive Summary ............................................................................................................................... 3 

1 Introduction ..................................................................................................................................... 8 

2 Actors, devices and the Cyber-Perimeter ....................................................................................... 8 

2.1 Analysis of Components and Actors of the SIFIS-Home architecture .................................. 8 

2.2 Analysis of The Smart Home Cyber-Perimeter ..................................................................... 9 

3 Test beds used to verify implementation ...................................................................................... 10 

4 Implementation of the security architecture ................................................................................. 11 

4.1 Architecture .......................................................................................................................... 11 
4.1.1 Architecture iterations ...................................................................................................... 11 

4.1.2 Authorization and Access management integration ........................................................ 14 

4.2 The Application Framework and the Cloud Framework ..................................................... 14 

4.2.1 Application Framework (Mobile Application) ................................................................ 14 

Mobile Application UI.................................................................................................................... 15 

4.2.2 Cloud Framework ............................................................................................................ 16 

4.3 Smart Device Framework .................................................................................................... 24 

4.3.1 Secure Lifecycle Manager ............................................................................................... 24 

4.3.2 Secure Communication Layer.......................................................................................... 26 

4.3.3 Proactive Security Management Layer ............................................................................ 28 

4.3.4 Application Toolboxes ..................................................................................................... 30 

4.3.5 API Gateway .................................................................................................................... 38 

4.3.6 NSSD Manager ................................................................................................................ 43 

4.3.7 DHT Manager .................................................................................................................. 45 

4.4 VPN Manager ...................................................................................................................... 46 

4.5 NSSD Framework ................................................................................................................ 46 

5 Integration of analytics and security solutions ............................................................................. 46 

5.1 Overall integration strategy .................................................................................................. 46 

5.2 Analytics integration (WP4) ................................................................................................ 47 

5.3 Network and security solution integrations (WP3) .............................................................. 50 

6 Continuous integration and deployment ....................................................................................... 53 

6.1 Process ................................................................................................................................. 53 

6.2 GitHub .................................................................................................................................. 54 

7 Validation, verification status and results ..................................................................................... 58 

7.1 wot-rust crates ...................................................................................................................... 59 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 7 of 76 
 

7.2 UX ........................................................................................................................................ 60 

7.2.1 Cloud interface ................................................................................................................. 60 

7.2.2 Mobile Application .......................................................................................................... 60 

7.3 DHT ..................................................................................................................................... 61 

7.4 Security solutions (WP3) ..................................................................................................... 61 

7.5 Network Anomaly Detection / AUD Manager .................................................................... 63 

7.6 System verification and validation ....................................................................................... 63 

8 Conclusion .................................................................................................................................... 73 

9 References ..................................................................................................................................... 75 

Glossary ............................................................................................................................................... 77 

 

 

 

 

  



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 8 of 76 
 

1 Introduction  

This deliverable report provides a comprehensive overview of the implementation of the final version 

of the SIFIS-Home security architecture, as based on the architecture defined in deliverable D1.4. The 

report presents the evolution of the architecture throughout the SIFIS-Home project, its impact on the 

implementation process, and the resolution of key problems that have been encountered. Additionally, 

it focuses on the architectural components developed by different partners, based on their expertise and 

contributions in the other Work Packages. Detailed implementation aspects and status updates for each 

component are discussed, together with links to open-source code available on GitHub. The integration 

of security solutions from WP3 and analysis methods from WP4 is explored. The report further 

highlights the general integration strategy using Docker containers and presents the results of the 

verification and validation of the SIFIS-Home framework.  

 

Overall, the report provides a valuable insight into the implementation of the SIFIS-Home security 

architecture, offering a detailed account of the architecture's evolution, the individual architectural 

components, the specific integration efforts, and the overall progress towards the final, integrated 

security architecture. The reported findings contribute to the field of secure Smart Home systems and 

serve as a foundation for future research and development in this domain. 

 

2 Actors, devices and the Cyber-Perimeter 

2.1 Analysis of Components and Actors of the SIFIS-Home architecture 

The main components of the SIFIS-Home security architecture are the following: 

• Smart Devices: These are devices that implement a SIFIS-Home distributed hash table (DHT) 

that enables a client to set up a Peer-to-Peer (P2P) logical model. General examples of Smart 

Devices are Smart TVs, Smart Refrigerators, Laptops/Desktops, Family Hubs.  

o Internet Connected Smart Devices: This is a subset of the Smart Devices without a 

SIFIS-Home client App, like smart phones and tablets, but located inside the Smart 

Home Cyber-Perimeter and equipped with a network interface.  

• Not So Smart Devices (NSSD): These are constrained devices that cannot be customized by 

installing third party software or applications. In the SIFIS-Home testbeds, we are using several 

of these, such as smart sensors and smart lights. The NSSD devices are all connected to the 

SIFIS-Home network via Smart Devices that implements the DHT.   

 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 9 of 76 
 

 
Figure 1: Communication and interaction between components  

 

The actors we have defined for the SIFIS-Home architecture are the following: 

• SIFIS-Home Administrator: The administrator is a user who is the owner of an instance of the 

SIFIS-Home architecture.  

• SIFIS-Home Tenant: The SIFIS-Home tenant is the standard user of the Smart Home system.  

• SIFIS-Home Maintainer: The maintainer is an entity external to the Smart Home and trusted by 

the administrator to correctly configure the Smart Home security, privacy and safety policies.  

• SIFIS-Home Tenant with restrictions: This user is a Smart Home tenant with restrictions on the 

functionalities they can access.  

• Guest: A guest is a Smart Home user who is not resident in the Smart Home but is allowed to 

access and use the premises and some functionalities for a limited amount of time, upon 

authorization from the administrator or another tenant.  

• External Operator: The external operator could be a technician, a plumber, a gardener, or a 

house cleaner, as allowed to access the Smart Home premises for a limited amount of time, with 

the authorization from a tenant.  

 

In the testbeds, all these roles are represented and have their distinct access rights to the system. 

 

2.2 Analysis of The Smart Home Cyber-Perimeter  

In order to protect the Smart Home and its users from unintended disclosure of sensitive information, 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 10 of 76 
 

in WP1 we defined a logical distinction between the outside and inside of the Smart Home, based on 

what we called the Smart Home Cyber-Perimeter.  

 

 
Figure 2: Concept of Smart Home Cyber-Perimeter 

 

The Smart Home Cyber-Perimeter is secured by a firewall that isolates the SIFIS-Home network from 

the Internet on the outside. Inside the Smart-Home, the SIFIS-Home network analytics constantly 

monitor the activities of the network to ensure that no malicious actor has managed to penetrate the 

firewall.  

 

Since a user should also be able to access the SIFIS-Home network from outside the Smart Home, a 

cloud service is required as well, as part of the SIFIS-Home architecture. The SIFIS-Home network 

subscribes to a publish / subscribe broker in the cloud service, in order to share the status of the network 

with the cloud service and to receive commands from users outside the Smart Home via the cloud 

service. By employing a publish/subscribe communication model, the Smart Home guarantees that all 

communication sessions originate internally. This approach eliminates the requirement to open any 

incoming ports on the firewall, thereby ensuring no compromise related to security. 

 

3 Test beds used to verify implementation 

The testbeds are built on and around a server, called “Panarea”, which is located at the CNR facilities. 

To upload new code to the test beds the Continous Integration and Continous Deployment process  

(chapter 6 Continuous integration and deployment) are used with Ansible [ANSIBLE]  deployment 

scripts are used. Further, the testbeds can be reached directly by the partners via SSH - Secure Shell 

access – in order to debug their code. 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 11 of 76 
 

In the Panarea server, the SIFIS-Home cloud interface based on Sensative Yggio is running, as well as 

several virtual devices each serving as a SIFIS-Home Smart Device based on x86 hardware. These 

emulated devices comprise the full SIFIS-Home software stack including applicable analytics and 

network security solutions. 

 

The testbeds also include physical SIFIS-Home Smart Devices based on Raspberry Pi based on ARM 

hardware. Furthermore, some standard validation NSSD - IoT products based on the LoRaWAN 

protocol are used with the testbed, in order to collect data for analytics as well as to perform basic 

software quality control of the cloud interface.  

 

 
Figure 3: The SIFIS-Home testbed setup 

 

 

All Smart Devices are connected via the core technology used in SIFIS-Home, namely the DHT 

(Distributed Hash Table), and relying on a publish/subscribe communication model. The SIFIS-Home 

devices authenticate and register with the cloud interface, thus creating the SIFIS-Home network. A 

mobile application installed in an end user’s mobile phone is used to directly interface with the SIFIS-

Home network from inside the Smart Home, for example to turn on or turn off items without going via 

the cloud interface. End users outside the Smart Home can access the SIFIS-Home network via the 

cloud interface from anywhere, for example to check the system status of the Smart Home. 

 

 

4 Implementation of the security architecture 

4.1 Architecture 

4.1.1 Architecture iterations 

The design of the SIFIS-Home framework in WP1 is based on Docker containers with microservices 

design pattern. Each microservice subscribes to the DHT and, depending on its components’ type, may 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 12 of 76 
 

also define a REST API to interface with it. The high-level architecture of the SIFIS-Home framework 

was originally defined in deliverable D1.3 (see Figure 4 below), and was the basis for the start of the 

implementation of the security architecture and the test bed design.    

 

 
Figure 4 Original high-level architecture of the SIFIS-Home framework as defined in D1.3 

 

The original architecture had some issues and could not be implemented as is. WP1 studied the 

highlighted problems, and revised the security architecture to become modularized as composed of a 

few different frameworks. The revised architecture was described in detail in deliverable D1.4, where 

each framework fulfils a specific need, as summarized below: 

 

• SIFIS-Home Smart Device Framework: the set of software components that are executed on 

the Smart Devices (SD).  

• SIFIS-Home Application Framework: the set of software components that are installed on a 

mobile device (smartphone).  

• SIFIS-Home NSSD Framework: the set of software components that are executed on the Not 

So Smart Devices (NSSD). 

• SIFIS-Home Cloud Framework: the set of software components and applications that reside 

on the SIFIS-Home cloud that are mainly used to allow a user to control the Smart Home from 

a remote site.  

• SIFIS-Home Development Tools: the set of developer tools that have been developed in the 

context of WP2. The development tools, that are described in D2.4, are out of scope for this 

document. 

 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 13 of 76 
 

Figure 5: Latest version of the SIFIS-Home architecture as defined in D1.4 

 

The high-level architecture of the SIFIS-Home framework defined in deliverable D1.4 is the basis for 

the final version of the Security Architecture implementation and the final testbed design. The SIFIS-

Home API gateway hosts the Mobile Application API and the API for 3rd party applications, and it is 

only used by the SIFIS-Home mobile application and 3rd party applications inside the Smart Home. In 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 14 of 76 
 

the SIFIS-Home architecture, the cloud interface interacts with the DHT via the standard protocol 

MQTT secured by TLS 1.3. Using MQTT makes it possible to simply yet securely communicate 

through a firewall, by taking advantage of its publish/subscribe model while employing standard 

security settings that protect the Cyber Security perimeter. 

 

4.1.2 Authorization and Access management integration 

The integration challenges in authorization and access management for the SIFIS-Home framework 

involve handling devices, users, and access rights within the Smart Home and through the Yggio cloud 

interface. The main issue is synchronizing user and device states to enable the policy enforcement 

engine in the Smart Home to regulate user activities on each device. 

 

To address this, the cloud interface utilizes KeyCloak, a trusted open-source component for access and 

authorization management that meets security requirements. Within the SIFIS-Home network, a 

Distributed Hash Table (DHT) is employed for device and user management. The crucial integration 

activity involves synchronizing users by enabling the SIFIS-Home DHT to utilize the authentication 

mechanism of KeyCloak to obtain a valid JSON web token (JWT). This JWT grants the SIFIS-Home 

framework access to the cloud interface, facilitating synchronization of users, access rights, and devices. 

 

4.2 The Application Framework and the Cloud Framework 

The SIFIS-Home Framework and Cloud Framework parts of the architecture incorporate user interface 

components that cater to the diverse needs of different user types. It consists of two user interface 

implementations: a mobile phone application, and a comprehensive web-based cloud interface. 

The mobile phone application is installed as a dedicated app on users' mobile devices, providing a 

convenient and user-friendly experience while they are within the Smart Home and have direct access 

to the SIFIS-Home network. On the other hand, the web-based interface, accessible through the Cloud 

Interface, allows easy interaction to the SIFIS-Home network both from within the Smart Home and 

remotely via the Internet. 

 

4.2.1 Application Framework (Mobile Application) 

This module handles the standard workflow of the SIFIS-Home framework. The actual UI of the 

Application Framework is implemented in the mobile application.  

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 15 of 76 
 

 
Figure 6 Components of the Application Framework module as defined in deliverable D1.4 

• Home: the home screen of the UI that the user will see after logging into to the home. From here 

the users a home in the SIFIS-Home system can access different applications that is used to 

interact with the SIFIS Home system like the device management, change settings, the 

application launcher and settings.  

• Application launcher: it provides a graphical UI from which the user can visualize the available 

applications in the SIFIS-Home system, as well as view the Market Place applications download 

them, install them, update them if new versions are available, and launch them. 

• Device management: this component enables the user to configure the devices in the SIFIS-

Home network. Each device status can be visualized and if the device is an actuator one can also 

send commands to it, for example turn on and off a light.  

• Settings: it provides a UI for the configuration of the SIFIS-Home infrastructure. Different 

interfaces are provided to different actors of the SIFIS-Home system. This is embedded into the 

Device management. 

• Alarms / Log: this component enables the user to extract and view the log stored in the cloud 

interface by the DHT. 

• Input collection: it collects input from the user in all the forms allowed by the system, such as 

voice commands. 

 

Mobile Application UI 

The Mobile Application within the SIFIS-Home system serves as a user-friendly interface for 

end users to interact with the SIFIS-Home framework. It utilizes the "API gateway" in the device 

framework part of the architecture to establish a direct connection with the SIFIS-Home 

framework residing within the Smart Home. 

 

Through the Mobile Application, users can easily manage the SIFIS-Home network basic 

functionalities. This includes listing the installed devices within the home, enabling users to 

perform various actions on these devices, such as collecting environment measure readings, or 

controlling actuators, or turning devices on or off.  



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 16 of 76 
 

 

Additionally, the Mobile Application provides access to system logs for monitoring purposes, 

as well as the ability to install third-party applications directly into the SIFIS-Home framework, 

in order to extend the capabilities of the system. 

 

The Mobile Application was written in Javascript and  Vue utilizing NativeScript framework 

and Stackblitz development environment. Mobile Application can run both on Android and iOS 

with the NativeScript preview application available at https://preview.nativescript.org/. 

 

 
Figure 7 Mobile Application UX 

 

4.2.2 Cloud Framework 

This module, see Errore. L'origine riferimento non è stata trovata., includes a set of high-level APIs 

and is used to access the SIFIS-Home networks and their UI both internally from inside the Smart Home 

network and externally. The web applications are a major development effort, are based on Node.js 

JavaScript, and utilize REACT components with Next.JS framework. The web applications execute on 

top the FIWARE Context Broker Ratatosk that resides inside Yggio from an architectural point of view, 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 17 of 76 
 

 
Figure 8: The Cloud Framework 

 

 
Figure 9: The start page of the Cloud Interface 

 

• Yggio / Cloud UI : 

The Sensative horizontal Internet of Things (IoT) integration platform Yggio is used as the 

backbone of the SIFIS-Home cloud interface. It provides the execution environment that makes 

Ratatosk FIWARE Context Broker possible to execute, and its API makes it possible to 

implement the SIFIS-Home overall web interface UI. Ratatosk in turn uses the open source 

KeyCloak component as a security plug-in for access and authentication that provides a JWT – 

JSON Webtoken. The JWT is used by the DHT and the Mobile Application to authenticate users 

and interact with the Ratatosk Rest API. 

 

The cloud interface can be used to interact with the SIFIS-Home framework both within the 

Smart Home and outside the Smart Home via a feature-rich web UI. 

 

FIWARE Context Broker Ratatosk: FIWARE NGSI v2 Ratatosk is a publish/subscribe 

Context Broker that holds the representation of a system state via FIWARE entities. The Context 

Broker implements [FIWARE NGSI v2 API] FIWARE NGSI v2 APIs. The FIWARE Context 

broker API is exclusively used to power the cloud user interface of the SIFIS-Home and is not 

involved in the actual secure SIFIS-Home network inside the Smart Home, which instead relies 

on a DHT to create a distributed and robust network without a single point of failure. 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 18 of 76 
 

  

Each of the FIWARE entities is described in JSON via a data model. FIWARE defines 

recommended data models to simplify interoperability between systems at 

https://github.com/smart-data-models but, if none fits, it is also possible to define one’s own 

data models or use a subset of an existing data model to represent the type of object one wants 

to describe.  

 

 
Figure 10 Ratatosk FIWARE Context Broker architecture 

 

An important distinction with Ratatosk is that it is a secure FIWARE Context Broker relying on 

the KeyCloak open-source component as a security plug-in, and that it always requires a valid 

authentication token to accept a command. This will be used to make sure that a user in the 

Smart Home who attempts to perform some actions has the required authorization to do so. 

 

A design aspect of SIFIS-Home is that the cloud interface that implements the FIWARE Context 

Broker must be able to send a command through a firewall to the DHT based network inside a 

Smart Home, and then execute some command, like turning on a lamp. The natural FIWARE 

solution to use NGSI subscriptions would unfortunately not work, since subscription requests 

are required to be IP addressable and will get blocked by the Smart Home firewall. The solution 

that we identified was to develop an MQTT-to-DHT bridge, i.e., the devices and analytics in the 

Smart Home both publish events and subscribe to the FIWARE Context Broker events not via 

the API and NGSI subscriptions, but rather via a standard, open-source MQTT broker that 

integrates with Ratatosk. The Ratatosk events will then be triggered either by the user via the UI 

or by other SIFIS-Home devices. There are more details about the MQTT-to-DHT bridge in 

chapter 4.3.7 DHT Manager.  

 

The Ratatosk implementation is available here: https://github.com/sifis-home/yggio-ratatosk 

 

Cloud Home: This is the main component of the User Interface and is used to launch other 

applications installed in the Smart Home system. The dashboard in the figure below shows some 

key metrics of the system, such as the number of devices and installed third party applications.  

 

https://github.com/sifis-home/yggio-ratatosk


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 19 of 76 
 

 
Figure 11 Home screen with a simple dashboard and a map 

Cloud Device management: This component enables the configuration of the devices in the 

SIFIS-Home network. This is a core system component that manages onboarding, configuration, 

displaying of device status, and other functionalities related to the devices added to the Smart 

Home system. Depending on what role the logged in user has, different activities like read or 

write data are allowed. 

 

 
Figure 12 Device Manager with a list of devices 

Cloud Settings: This component provides user interfaces for the configuration of the SIFIS-

Home infrastructure and most items in the cloud interface, such as devices and analytics. Each 

visible item is represented by FIWARE entities in the Ratatosk Context broker. This component 

allows the user to view and edit the values of FIWARE entities.  

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 20 of 76 
 

 
Figure 13 View status and edit settings for a SIFIS-Home Smart Device 

 
Figure 14 Compare time series data of 3 devices used for validation. 

 

 

 
Figure 15 Control actuators via command buttons in the cloud interface 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 21 of 76 
 

 
Figure 16 Create custom command buttons 

 

The Cloud UI implementation is available here: https://github.com/sifis-home/yggio-components 

 

• Cloud Market Place: 

The Market Place, as depicted in Errore. L'origine riferimento non è stata trovata., is 

accessible through both the cloud UI and the Mobile Phone Application within the SIFIS-Home 

system. It enables end users to download applications and install them either directly on their 

SIFIS-Home network or grant secure access to web applications to the SIFIS Home network via 

OAuth through the cloud interface. Presently, the Market Place API fully supports OAuth 2.0 

security integration, allowing third-party web applications to access the SIFIS-Home network. 

Installed web applications are regulated by the enforcement of access rights based on their 

intended users, ensuring secure sharing among household users, thus promoting a safe and 

controlled environment within the SIFIS-Home ecosystem. 

 

 

 
Figure 17 The Market Place 

 

https://github.com/sifis-home/yggio-components


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 22 of 76 
 

 
Figure 18 Register an OAuth application in the Market Place 

 

 
Figure 19 Share installed application with other users 

 

For seamless integration into the SIFIS-Home ecosystem, third-party Market Place applications 

are required to be uploaded to the SIFIS Home Docker repository. Subsequently, these 

applications undergo an automatic security scanning process utilizing tools developed by WP2. 

Once the applications pass the security scanning successfully, they are appropriately labeled and 

made available in the Market Place. This meticulous procedure ensures that only trusted and 

secure applications are accessible to users, in the interest of preserving the integrity and safety 

of the SIFIS-Home environment. 

 

The Market Place implementation is available here as an embedded application inside the 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 23 of 76 
 

control panel: https://github.com/sifis-home/yggio-components/tree/master/control-panel-

v2/src/pages/apps  

 

 

• VPN Server: 

This component was responsible for managing the set of VPN servers that would allow access 

to SIFIS-Home enabled Smart Homes from a remote site. Since we decided to use a 

publish/subscribe mechanism via MQTT to access the DHT from the cloud backend this 

component was no longer needed and will not get implemented.  

• Home Registration Manager:  

This component provides an interface through which it is possible to create a new SIFIS-Home 

enabled home. When a new home is created, a household organization with default users is 

created in the cloud interface dedicated to the house. 

• Alarm / Logs: 

The functionality of this component encompasses two key features: displaying alarms in the 

cloud interface and the mobile application and gathering logs pertaining to the operation of the 

SIFIS-Home infrastructure. Regarding to alarms, it provides a means to highlight any critical 

issues or events that require attention. Additionally, it facilitates the collection of logs, 

capturing essential information about the overall functioning of the SIFIS-Home system for 

analysis and monitoring purposes. 

 

 
Figure 20 The log in the cloud UI with quick filter on alarms activated. 

 

The alarm and log component receives logs from the Distributed Hash Table (DHT) via MQTT, 

these logs are received under a JSON key named "log" located at the top level of each message. 

The "log" key contains crucial information such as type, priority, category, and message, which 

collectively determine how the log message should be handled and displayed in the user interface 

(UI). 

When incoming logs have a priority level of "severe" or "high," they are categorized as alarms. 

As a result, the user will be notified via the cloud UI and the mobile application of these alarms 

and provided with the ability to dismiss them. 

 

https://github.com/sifis-home/yggio-components/tree/master/control-panel-v2/src/pages/apps
https://github.com/sifis-home/yggio-components/tree/master/control-panel-v2/src/pages/apps


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 24 of 76 
 

 
Figure 21 The log JSON structure 

 

Each log within the SIFIS-Home system is equipped with access rights, ensuring that only end 

users who have access to the device that generated the log can view and dismiss alarms related 

to that device. This ensures that the responsibility for handling and acknowledging device-

specific alarms lies solely with the users who have direct access to the respective device. 

 

4.3 Smart Device Framework 

4.3.1 Secure Lifecycle Manager 

This module, illustrated in Errore. L'origine riferimento non è stata trovata., handles the standard 

workflow of the SIFIS-Home framework. It consists of the components Key Manager, Application 

Manager, Authentication Manager, Node Manager, and System Protection Manager.  

 

 
Figure 22 Secure Lifecycle Manager 

 

• Application Manager 

The application manager is the component responsible for controlling the deployment, execution 

and removal of the SIFIS-Home third party applications. This component directly interacts with 

the SIFIS-Home marketplace triggering the download of applications and managing their 

deployment on one or more smart devices. The application manager has been implemented as a 

Python application which interacts with the Docker of the smart device where it is deployed. 

Third party applications, in fact, come as Docker containers, which will be deployed and run 

automatically.  



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 25 of 76 
 

 

 

 
Figure 23 Logical Schema of the Application Manager 

 

Thus, the application manager offers an API to download the Docker from a trusted and 

authenticated URL belonging to the marketplace. Another API is used to run an application 

container, which can be triggered automatically after installation or at user’s request. 

Furthermore, the application manager act as controller of the running applications. In fact, when 

instructed by the System Protection Manager, the Application Manager can stop a running 

container and eventually remove it from the smart device, if deemed as misbehaving. 

• Node Manager 

It is the component responsible for ensuring consistency of the list of smart devices in a SIFIS-

Home instance, with respect to those participating in the DHT. This component is implemented 

in the Rust programming language and exploits the LibP2P library as all the other DHT-based 

components related to the DHT. The component is fundamental for allowing the dynamic 

joining of nodes and also handles the removal of nodes in different circumstances. The Node 

Manager implements a majority trust-weighted mechanism to take and enforce decision on 

events such as joining of new nodes, or removal of existing nodes. Such a voting is needed, since 

a compromised node might autonomously perform attacks relevant for a DHT system, which 

endanger the whole SIFIS-Home architecture. In particular, a compromised node might add to 

the architecture malicious or even fictional nodes in an attempt to perform a sybil attack. 

Moreover, a compromised node might try to remove a node in an attempt to create a partition, 

or to damage the system availability. Furthermore, a malicious node might communicate false 

or wrong readings from the connected NSSDs to trigger unwanted reactions. To avoid such 

issues, with the lack of a root of trust, voting is used to find agreement on these topics and to 

filter malicious interactions coming from compromised nodes. The node manager enforces the 

decisions of voting procedures by acting directly on the DHT, to enable a new node to be part 

of the network, or by triggering a rekeying to forcefully remove compromised nodes from any 

interaction. As anticipated, the voting procedure is weighted on a trust score, which is defined 

by the Trust Manager.     

• System Protection manager 

It is the component that receives inputs from the various monitors and triggers action by 

communicating with the Application Manager and Node Manager through the DHT. The 

component also interacts with the Alarm and Log component to provide information on 

identified threats or to notify alarms. The system protection manager includes a set of rules that 

define the behavior to be applied on the response of each analytic which is relevant for intrusion 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 26 of 76 
 

detection tasks. In particular, all analytics related to anomaly detection, multi-level intrusion 

detection and network intrusion detection, will report either the identifier of a smart device or 

NSSD, or the identifier of an application, which is misbehaving. The System Protection Manager 

will either raise an alarm, communicating with the Notification Manager, or it shall command 

the force stop of an application through the application manager, or it will force the removal of 

a device from the system through the Node Manager.  

• Authentication Manager and Key Manager 

The following security solutions developed in WP3 pertain to the “Secure Lifecycle Manager” 

module, and a link to their implementation is also provided. These implementations build on the 

open-source Eclipse Californium CoAP framework available at [CALIFORNIUM], which 

provides the CoAP protocol and the OSCORE security protocol. A codebase collecting these 

implementations is accessible at [WP3-CODEBASE][ACE-UCS][ACE-ENTITIES], as 

available for use, integration, and testing within the SIFIS-Home project, and especially used in 

the WP5 testbed. 

 

[CALIFORNIUM] https://github.com/eclipse/californium 

[WP3-CODEBASE] https://github.com/sifis-home/wp3-solutions 

[ACE-UCS] https://github.com/sifis-home/ace-ucs 

[ACE-ENTITIES] https://github.com/sifis-home/ace-entities 

 

- OSCORE profile of the ACE framework, as documented in Section 5.1 of deliverable 

D3.3. This security solution pertains to the “Authentication Manager” and the “Key 

Manager” components of the “Secure Lifecycle Manager” module. Together with the main 

ACE framework, the implementation is available at https://bitbucket.org/marco-tiloca-

sics/ace-java 

- Key provisioning for Group OSCORE communication using the ACE framework, as 

documented in Section 6.1 of deliverable D3.3. This security solution pertains to the 

“Authentication Manager” and the “Key Manager” components of the “Secure Lifecycle 

Manager” module. Together with the main ACE framework, the implementation is available 

at https://bitbucket.org/marco-tiloca-sics/ace-java 

- EDHOC key establishment, as documented in Section 6.2 of deliverable D3.3, including 

the specific workflow optimization for CoAP and OSCORE. This security solution pertains 

to the “Key Manager” component of the “Secure Lifecycle Manager” module. The 

implementation is available at https://github.com/rikard-sics/californium/tree/edhoc 

- Usage Control integration within the ACE AS and notification of revoked access 

credentials, as documented in Sections 5.2, 5.3, and 5.4 of deliverable D3.3. This security 

solution pertains to the “Authentication Manager” component of the “Secure Lifecycle 

Manager” module. The implementation is available at https://bitbucket.org/marco-rasori-

iit/ace-java/src/sifis-home/, and is also mirrored at https://github.com/sifis-home/ace-ucs. A 

related codebase consisting of an ACE AS, an RS, and a Client is available at 

https://github.com/sifis-home/ace-entities 

 

4.3.2 Secure Communication Layer 

This module, shown in Errore. L'origine riferimento non è stata trovata., handles the standard 

workflow of the SIFIS-Home framework. It consists of the components Secure Message Exchange 

Manager and Content Distribution Manager. 

 

https://github.com/eclipse/californium
https://github.com/sifis-home/wp3-solutions
https://github.com/sifis-home/ace-ucs
https://github.com/sifis-home/ace-entities
https://bitbucket.org/marco-tiloca-sics/ace-java
https://bitbucket.org/marco-tiloca-sics/ace-java
https://bitbucket.org/marco-tiloca-sics/ace-java
https://github.com/rikard-sics/californium/tree/edhoc
https://bitbucket.org/marco-rasori-iit/ace-java/src/sifis-home/
https://bitbucket.org/marco-rasori-iit/ace-java/src/sifis-home/
https://github.com/sifis-home/ace-ucs
https://github.com/sifis-home/ace-entities


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 27 of 76 
 

 
Figure 24 Secure Communication Layer 

 

• Secure Message Exchange Manager and Content Distribution Manager 

The following security solutions developed in WP3 pertain to the “Secure Communication 

Layer” module, and a link to their implementation from RISE is also provided. These 

implementations build on the open-source Eclipse Californium CoAP framework available at 

[CALIFORNIUM], which provides the CoAP protocol and the OSCORE security protocol. A 

codebase collecting these implementations is accessible at [WP3-CODEBASE][ACE-

UCS][ACE-ENTITIES], as available for use, integration and testing within the SIFIS-Home 

project and especially used in the WP5 testbed. 

 

[CALIFORNIUM] https://github.com/eclipse/californium 

[WP3-CODEBASE] https://github.com/sifis-home/wp3-solutions 

[ACE-UCS] https://github.com/sifis-home/ace-ucs 

[ACE-ENTITIES] https://github.com/sifis-home/ace-entities 

- Group OSCORE, as documented in Section 4.1 of deliverable D3.3. This security solution 

pertains to the “Secure Message Exchange Manager” and the “Content Distribution 

Manager” components of the “Secure Communication Layer” module. The implementation 

is available at https://github.com/rikard-sics/californium/tree/group_oscore 

- OSCORE profile of the ACE framework, as documented in Section 5.1 of deliverable 

D3.3. This security solution pertains to the “Secure Message Exchange Manager” and the 

“Content Distribution Manager” components of the “Secure Communication Layer” 

module. Together with the main ACE framework, the implementation is available at 

https://bitbucket.org/marco-tiloca-sics/ace-java 

- Key provisioning for Group OSCORE communication using the ACE framework, as 

documented in Section 6.1 of deliverable D3.3. This security solution pertains to the “Secure 

Message Exchange Manager” and the “Content Distribution Manager” components of the 

“Secure Communication Layer” module. Together with the main ACE framework, the 

implementation is available at https://bitbucket.org/marco-tiloca-sics/ace-java 

- EDHOC key establishment, as documented in Section 6.2 of deliverable D3.3, including 

the specific workflow optimization for CoAP and OSCORE. This security solution pertains 

to the “Secure Message Exchange Manager” and the “Content Distribution Manager” 

components of the “Secure Communication Layer” module. The implementation is available 

at https://github.com/rikard-sics/californium/tree/edhoc 

- Usage Control integration within the ACE AS and notification of revoked access 

credentials, as documented in Sections 5.2, 5.3, and 5.4 of deliverable D3.3. This security 

solution pertains to the “Secure Message Exchange Manager” and the “Content Distribution 

Manager” components of the “Secure Communication Layer” module. The implementation 

is available at https://bitbucket.org/marco-rasori-iit/ace-java/src/sifis-home/, and is also 

mirrored at https://github.com/sifis-home/ace-ucs. A related codebase consisting of an ACE 

AS, an RS, and a Client is available at https://github.com/sifis-home/ace-entities 

https://github.com/eclipse/californium
https://github.com/sifis-home/wp3-solutions
https://github.com/sifis-home/ace-ucs
https://github.com/sifis-home/ace-entities
https://github.com/rikard-sics/californium/tree/group_oscore
https://bitbucket.org/marco-tiloca-sics/ace-java
https://bitbucket.org/marco-tiloca-sics/ace-java
https://github.com/rikard-sics/californium/tree/edhoc
https://bitbucket.org/marco-rasori-iit/ace-java/src/sifis-home/
https://github.com/sifis-home/ace-ucs
https://github.com/sifis-home/ace-entities


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 28 of 76 
 

 

 

4.3.3 Proactive Security Management Layer 

 
Figure 25 Proactive Security Management Layer 

 

This module, shown in Errore. L'origine riferimento non è stata trovata., is responsible for 

proactively maintaining the security requirements of the SIFIS-Home infrastructure fulfilled. 

Proactivity implies taking preemptive measures before an incident occurs. The following proactive 

security measures have been developed as part of the SIFIS-Home project, and are part of the security 

architecture: 

 

• Monitors 

This component is a collection of services that log specific events at the following, different 

levels:  

- DHT Monitor: Implemented through the libP2P library, it logs the number and type of 

operations performed on the DHT.  

- Application Monitor: This service in-lines security critical APIs to log and control the 

event in which they are invoked by 3rd party applications. For example, when a SIFIS-

Home Developer invokes an API that might perform actions related to security, privacy 

or safety a log event is triggered and saved. This function is paired with the Policy 

Enforcement. Application monitor can also be in-lined in Linux-based applications, by 

inlining specific system calls, based on change of address in the system calls table. This 

monitor can be installed at runtime through the INSMOD command. Finally, a third 

implementation is available for Android systems by exploiting the XPosed Framework1, 

which is used to inline any API call in the Android system.   

- Network Monitor: It acquires traffic by capturing packets via iptables. It is intended to 

run on central networking devices, such as routers through which other devices 

communicate both inside the SIFIS-Home network and to the outer Internet. 

- SysCall Monitor: It collects system call events through a REST API and conveys them 

for further assessment to the responsible analytic in the Data Analytic Toolbox 

component of the Application Toolboxes module. 

• Distributed Trust 

 
1 https://xposed-installer.it.uptodown.com/android 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 29 of 76 
 

The distributed trust component continuously assigns to each smart device a trust score and 

manages distributed decisions under biased voting. This ensures that the devices with a trust 

score below a certain threshold cannot participate in further voting procedures, until their trust 

level is assessed as restored. The component is implemented in Java 8 and it is based on standard 

libraries. A porting to Rust has been made and at the implementation level, the distributed trust 

management has been integrated as a functional module of the Node Manager.  

 

The Distributed Trust component supports the node manager to enable the execution a set of 

workflows, such as the joining or leaving of a smart device, which trigger a voting protocol 

among all the other smart devices. Each smart device has a reputation score, which ranges 

between 0 and 1. The starting value of the reputation score is of 0.5. If the value is over the 

threshold of 0.5, then the vote of that node is considered in the voting process, discarded 

otherwise.  More in details, the final decision on each voting procedure is given by the sum of 

the votes for a specific decision (e.g. “node 3 is misbehaving, yes or not”), weighted by the 

reputation score for the smart node casting the vote. Hence, a higher reputation implies a major 

impact on the vote. However, if the reputation is lower than 0.5, the vote is not considered in the 

decision. The reputation is updated at each voting procedure for each node, depending on the 

agreement or not with the taken decision. 

 

 
Figure 26 Reputation update algorithm 

The reputation update algorithm is reported in Figure 26 Reputation update algorithm, where u 

are the smart nodes, 𝜌𝑙 is the reputation value and 𝑏𝑙, 𝑑𝑙 , 𝑢𝑙 are respectively the level of belief, 

disbelief, and uncertainty that define the reputation of each node at each vote. The belief 

component is increased when the vote of a node is in agreement with the collective decision. 

The disbelief is instead decreased when the vote is in contrast with the final decision. The 

uncertainty component is increased when a node does not vote. Even if the vote of nodes under 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 30 of 76 
 

threshold is not considered to take the collective decision, the reputation value of nodes below 

threshold is still updated according to the reported algorithm. Thus, a node below threshold can 

increase its reputation value through good behaviour. Still, nodes with a critically low reputation 

level can be removed from the system by the Node Manager component. The increment or 

decrement of each component is a customizable parameter, depending on the desired effect of 

each correct, wrong or missing vote.  

• Self Healing 

The self-healing component has two functionalities, which are executed once a device has been 

identified as compromised and made unable to interact with the SIFIS-Home architecture, thanks 

to the Node Manager, which performs a rekeying. The first functionality triggers a 

reconfiguration of the SIFIS-Home architecture to avoid network partitions and reconnects 

NSSDs which remained isolated after the removal of the responsible Smart Device they were 

associated with. 

The second functionality automatically runs a set of routines on Smart Devices which have been 

identified as misbehaving and therefore removed from the DHT. Depending on the identified 

misbehaviour, a number of actions can be taken, e.g., an application deemed as malicious can 

be removed forcefully, and then, after a satisfactory system analysis, the device can be re-

integrated in the network. As an alternative, the self-healing can trigger a full reset of a Smart 

Device, upon request from the System Protection Manager component of the Secure Lifecycle 

Manager module. 

 

4.3.4 Application Toolboxes 

This component, shown in Errore. L'origine riferimento non è stata trovata., collects related and 

interconnected sub-components that are all services inside the SIFIS-Home infrastructure.  

 

 

 
Figure 27 The application toolboxes 

 

• Data Analysis Toolbox 

This component of the SIFIS-Home framework is devoted to the execution of the analytics on 

the data collected from the sensors and Smart Devices in the Smart Home, in order to analyze 

voice and gesture commands, provide advanced smart services to the Smart Home users, and 

detect misbehavior, intrusions, and failures. This component is activated by other components 

of the framework that request the execution of analytic functions on given sets of data. A request 

could ask for a single execution of one analytic function on a given set of data, or to repeat the 

execution of an analytic function several times on distinct sets of data. The interactions between 

the Data Analysis Toolbox and the other components of the SIFIS-Home Framework occur 

through the DHT. In particular, the Data Analysis Toolbox creates a topic for each of the 

analytics it provides and subscribes to all such topics. When a component of the SIFIS-Home 

Framework needs the execution of an analytic, it simply publishes a message on the topic related 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 31 of 76 
 

to that analytic, embedding in the message a JSON string with the details of this invocation (e.g., 

the link to the set of data to be used, whether the request must be executed once or repeated 

multiple times, etc.). As shown in Figure TBD, the interaction between the Data Analysis 

Toolbox and the DHT starts with a message published to a specific topic associated with the 

analytic to be performed on the data shared in the JSON format. The published JSON message 

is composed of the topic name, the topic Id, the ID of the component requesting the data 

analytics, the description of the requested analytics, and the data inputs needed to perform data 

analysis. Data inputs include an audio file and privacy parameters for privacy-aware speech 

recognition, or a list of temperature values for device anomaly detection analytics. This JSON 

message is published via HTTP REST or a WebSocket-based API.  

 

 

 
Figure 28 Interaction between the Data Analysis toolbox and the DHT 

 

The Data Analysis Toolbox receives the requests from the DHT, having subscribed to the related 

topics. Once a published message has been received by the Data Analysis Toolbox, the data 

analysis service related to the specified topic is called and executed on the provided input as 

shown in the code in Errore. L'origine riferimento non è stata trovata.. 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 32 of 76 
 

 
Figure 29 The data analysis module is called to evaluate a specific topic. 

 

Each analytic has its own execution workflow. Some analytics require the data to be pre-

processed before being analyzed. The Data Analysis Toolbox offers a set of data preparation 

functions that also clean missing and noisy data, convert data into an appropriate and unified 

format, normalize data according to a given range of values, and reduce data dimensions by 

selecting or combining variables into features. 

Pre-processing functions are provided by the Data Analysis Toolbox based on the analytics 

being invoked. The analytics integrated within the Data Analysis Toolbox have the required pre-

processing steps integrated within the analytics services. 

The Data Analysis Toolbox embeds a set of analytic engines that actually implement the 

provided analytics. Since each analytic engine requires its own execution environment (e.g., 

based on a specific library or a specific version of a library, on specific or customized utilities, 

etc.) and the environment of one engine could be not compatible with the environment of other 

ones, we have isolated such environments by using the container virtualization technology. 

Hence, each analytic engine is deployed in distinct containers, using the Docker technology, and 

the Data Analysis Toolbox invokes each such engine through the HTTP REST or the 

WebSocket-based interface that each engine exposes. 

This engine receives as input the dataset and performs the pre-processing. Some analytics 

require the results to be post-processed before being returned. Therefore, the post-processing 

step is also integrated as a function into the data analysis service depending on the analytics 

being invoked. 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 33 of 76 
 

 

Finally, the Data Analysis Toolbox returns the result to the component which has requested the 

analysis through the DHT by including the analytics Requestor ID and Request ID parameters, 

again in a JSON format as shown in Errore. L'origine riferimento non è stata trovata.. 

 

 
Figure 30 The data analysis result is returned to the requester component. 

 

• Anonymization Toolbox 

The anonymization toolbox contains software tools that preserve privacy of data before, during, 

and after the analysis of such data. Depending on the data type and the desired level of privacy, 

the Anonymization Toolbox can generalize or suppress data, supporting differential privacy for 

privacy-preserving data analysis. The Anonymization Toolbox uses several privacy mechanisms 

listed below, according to the data type and the analysis function to be performed on such data: 

1. Time Series Data Analysis: 

Input data: autoencoders are a type of neural networks used for anomaly detection and 

data reconstruction, so they are used to anonymize original data and share only 

reconstructed data [ZP17]. While the original data are kept private and only the 

reconstructed data are shared. Moreover, differential privacy is used with autoencoders 

during the analysis phase to minimize data memorization by the analytics model and 

protect individual data instances privacy [Dwo08]. 

Results: analysis results are classified into categories to prevent information inference 

of the original dataset. 

2. Graphical Data Analysis: 

Input data: the mechanisms of Autoencoders [ZP17] and Differential privacy [Dwo08] 

are used for privacy-preserving graphical datasets analysis. Autoencoders act as data 

compressor, reducing the size of data to be analysed by keeping only the most important 

features, thus improving performance and privacy. Instead, Differential Privacy is used 

for privacy preservation and for minimizing memorization by the learning model. 

Therefore, the original data are protected, and the results cannot be used to reconstruct 

the datasets. 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 34 of 76 
 

Results: analysis results are classified into categories to prevent information inference 

of the original dataset. 

3. Audio Data Analysis: 

Input data: the analytics performs anonymizations for all the sensitive information, 

including spoken information and speaker’s voice which could reveal his identity. 

Results: In the output translation, all the sensitive textual entities detected by the analytic 

are replaced by default phrases which preserve the essence of the word without revealing 

the exact word. Also, the audio reconstruction of the anonymized textual translation 

preserves the privacy of the sensitive entities and replaces the speaker’s voice. 

• Policy Enforcement Engine 

The Policy Enforcement Engine is implemented following the Usage Control (UCON) model 

[Park et al., 2004]. The UCON model allows dynamic evaluation of access policies through 

mutable attributes. Attributes are mutable when they change their value over time. For instance, 

the number of people in a room is an example of mutable attribute. A request to be authorized 

to perform an operation (access request) is evaluated against a policy, and, if the policy is 

satisfied, access is granted. If mutable attributes are included in the policy, the policy is re-

evaluated as soon as any of the mutable attributes' value changes. If the re-evaluation produces 

a negative decision (Deny), the right to access, which was previously authorized, is revoked. 

  

A Java implementation of the Usage Control System (UCS) has been exploited to implement 

the Policy Enforcement Engine. A codebase collecting this implementation is accessible at 

[USAGE-CONTROL], as available for use, integration and testing within the SIFIS-Home 

project and especially used in the WP5 testbed. This implementation is an extension of the 

XACML reference architecture [XACML, 2017] to enforce usage control, it exploits the WSO2 

Balana library [Balana, 2021] for implementing the Policy Decision Point (PDP), and it realizes 

all the other modules of the UCON model, as described in detail in Sections 3.9 and 5.3 of D3.4. 

 
Figure 31: Policy Enforcement Engine  

 

[USAGE-CONTROL] https://github.com/sifis-home/usage-control 

 

The policy is expressed in a language derived from the XACML one, called UPOL, while the 

communications with the policy enforcement engine occur using the XACML request format. 

https://github.com/sifis-home/usage-control


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 35 of 76 
 

A Policy Enforcement Point (PEP) has been implemented in Java and in Python languages, and 

it is used to integrate the UCS within the SIFIS-Home framework. The PEP sends XACML 

requests to the front end of the UCS, which is the Context Handler (CH).  

The communication between PEP and UCS leverages the DHT. In particular, the PEP publishes 

an XACML request on the topic the UCS is subscribed to, while the UCS publishes the response 

on the topic the PEP is subscribed to. The connection to the DHT is performed through web 

sockets. 

Internally, the CH communicates with all the other modules of the UCS. At first, it retrieves all 

the mutable attributes from the Policy Information Points (PIPs) and "enriches" the XACML 

request with their values Figure 32 shows an XACML request coming from the PEP after the 

manipulation performed by the UCS.  

  



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 36 of 76 
 

 

 

 
Figure 32 An "enriched" XACML request. The original XACML coming from the PEP has a white 

background color, while the mutable attribute added by the UCS is highlighted in grey. 

              

Then, the CH retrieves an applicable policy from the Policy Administration Point (PAP) module. 

Policies stored at the PAP are called Usage Control Policies (UCPs) and are written in UPOL 

policy language [Di Cerbo et al., 2018], which is XACML-based. Those are composed of three 

different sections, i.e., pre-, on- and post-sections, which are evaluated separately and at different 

times. Errore. L'origine riferimento non è stata trovata. shows an example of UPOL policy. 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 37 of 76 
 

 
Figure 33 Example of UCP showing the pre-, on-, and post- sections of the policy. The mutable attribute 

"thermometer-reachable" must match "yes" for the on- section to be satisfied against a request. 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 38 of 76 
 

Then, the CH queries the PDP module to obtain an access decision. The PDP uses the XACML-

based WSO2 Balana decisional engine for policy evaluation. However, being Balana a pure-

XACML decisional engine, the CH extracts either the pre-, on-, or post- section from the UCP 

and creates an XACML policy before feeding it to the PDP. If the access decision produced by 

the PDP is Permit, the CH sends the original XACML request and the UCP to the Session 

Manager (SM) module, which selects a new session identifier and creates a new entry in the 

database (an in-memory JDBC database) with the received information. Finally, the CH sends 

back a message to the PEP communicating the access decision, and the session identifier if the 

decision was positive (Permit). 

  

A PIP monitors a mutable attribute, which is stored at an Attribute Manager (AM). In our 

implementation, AMs can be a database or a file, and PIPs retrieve the attribute values, either 

by querying the database or by retrieving the file. When a PIP is monitoring a mutable attribute, 

it periodically polls the AM to retrieve the current value and compares it with the value obtained 

during the previous poll. If these values differ, the CH starts a routine to re-evaluate all the 

sessions in the SM's database that are currently using that attribute in their on- section of the 

UCP. If a policy is not satisfied anymore, the corresponding right to access must be revoked. In 

such a case, the CH sends a revocation message to the PEP, which interrupts the access to the 

resource and notifies the CH. 

 

 

4.3.5 API Gateway  

This module, as shown in Errore. L'origine riferimento non è stata trovata., provides the API’s used 

by applications executed on the SIFIS-Home Smart Devices. 

 

 

Figure 34 The API Gateway with the mobile and 3rd party API 

• Mobile Application API 

  

This component allows the SIFIS-Home mobile application to interact with the Smart Home and 

to initialize new SIFIS-Home-compliant Smart Devices. The smart device contains a Mobile 

Application API which communicates with the smart phone mobile application. 

  

When the Smart Device is started for the first time, it starts in initialization mode. In initialization 

mode, the device presents itself as a Wi-Fi access point which allows the smart phone mobile 

application to communicate with the Mobile Application API on the smart device.  

 

The mobile application requires an access token to use Mobile Application API securely. The 

access token consists of pre-generated 256 random bits. This token is delivered as a QR code 

with the Smart Device. All API functions require this access token except the device info which 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 39 of 76 
 

is available without the token. Device info has product name and UUID. 

  

The mobile application provides the new Smart Device with all the information needed to join 

the SIFIS-Home network. This information includes DHT credentials, and device's information 

such as its name in the SIFIS-Home network. After configuration, the device is restarted. Once 

the reboot is completed all the SIFIS-Home services on the device are started. 

  

The Smart Device Mobile Application API provides the following functionalities: 

• Read and set device configuration: 

▪ DHT shared key 

▪ User defined device name 

 

• Retrieving device status: 

▪ CPU usage 

▪ Memory usage 

▪ Disk space usage 

▪ Uptime 

▪ Load average 

 

• Sending commands: 

▪ Factory reset  

▪ Restart device 

▪ Shut down device 

 

Endpoints 

• Device information and configuration: 

▪ [GET] device/status 

▪ [GET, PUT] device/configuration 

 

• Commands: 

▪ [POST] command/factory_reset 

▪ [POST] command/restart 

▪ [POST] command/shutdown 

 

 

 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 40 of 76 
 

Smart Device initialization 

 

 
Figure 35 Smart Device initialization 

 

The mobile application defines the Smart Device's configuration.The configuration file is stored 

on the device in the /opt/sifis-home/config.json file. The boot process is shown in figure 24 

Smart Device Boot. 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 41 of 76 
 

 
Figure 36 Smart Device Boot 

 

All SIFIS-Home services running on the Smart Device can read this file, but only operations 

requested through the Mobile Application API can write it. Other SIFIS-Home services are not 

started on the device if the file is missing. 

 

The system service manager is probably the most common solution for managing services on 

Linux systems. into. System target refers to a different states where Linux system can boot into. 

Each target defines a set of services and resources that are available in that state. 

 

Figure 37 below shows a simplified graph of default boot targets and services to the multi-user 

target. The multi-user target has everything running except the graphical user interface. It was 

chosen as a state for the system because SIFIS-Home devices do not have embedded display. 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 42 of 76 
 

 
Figure 37 Default Boot Targets 

 

There are two targets for the SIFIS-Home Smart Device. The selection of which target is active 

is based on whether the config.json file exists. Services that are only needed for configuration 

are installed under sifis-config.target, and services for the fully configured system are installed 

under sifis-home.target. Figure 26 below shows added targets with their conditions. 

 
Figure 38 Added targets and conditions. 

 

These targets are added to the /etc/systemd/system directory. Other targets relevant to the boot 

process were left out of Figure 26 for simplicity of illustration. 

 

 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 43 of 76 
 

• 3rd party API 

This component provides the API that allows downloaded 3rd party applications to interact with 

the Smart Home system.   

It is implemented as a rust crate based on “tarpc” to implement both applications (that act as 

untrusted clients) and runtimes (that act as trusted endpoint and interface to the DHT).  

The API models the following devices:  

• Lamp  

• Sink  

• Door  

• Fridge  

  

The application binaries are expected to run in a segregated environment such as “ujail” or 

docker and interact only with the runtime via a Unix socket.  

  

 
Figure 39 The manifest generator/validator 

  

The manifest generator/validator detects the API usage by inspecting the binary and the runtimes 

can consume the manifest to further restrict the application capabilities.  

  

 

 

4.3.6 NSSD Manager 

The NSSD Manager is the module that allows the management of the NSSDs that are part of the Smart 

Home. 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 44 of 76 
 

• CoAP Manager 

On a device acting as CoAP client, the CoAP Manager receives commands and retrieves 

information from the DHT Manager, and then takes care to accordingly execute the requested 

operations, by interacting with the targeted CoAP server device(s). The communication with 

such CoAP server device(s) is performed and protected by using the advanced security protocols 

and solutions that have been designed and developed in the context of WP3. 

 

This approach enables a more convenient, remote provisioning of commands to devices acting 

as CoAP client, issued by applications within or outside the Smart Home. This becomes 

especially relevant when: i) a CoAP client does not provide a direct or convenient input 

interface; or ii) the user prefers to remotely instruct the CoAP client or simply has to, e.g., as 

currently not present in the Smart Home and relying on a remote access over the Internet. 

To this end, a CoAP client acts as pub-sub client in the DHT-based pub-sub system enforced in 

the Smart Home. That is, the CoAP client interacts with a DHT-based pub-sub broker in order 

to receive published commands. Then, it takes an appropriate course of action based on the 

received command, and accordingly communicates with the target CoAP server(s). Finally, it 

publishes corresponding results to the DHT-based pub-sub broker, so that that they are also 

available to applications subscribed to the DTH pub-sub broker for obtaining such results. 

Further details about the implementation of this component are provided in Section 4.3. 

• WoT Manager 

WoT enables direct control of Smart Home devices over the web by giving them URLs, thus 

making them discoverable and linkable, and also by defining a standard data model and APIs to 

make the devices interoperable and to enable the exchange of data between devices and 

systems.   

 

 
Figure 40 The WoT manager interaction flow. 

  

The implementation keeps a separation between the WoT general sub-components listed in 

Table 2, that can be reused by a larger public, and the SIFIS-Home-specific ones augmented 

using the Hazard Ontology.  

The interface between the DHT and the demo-things is based on the wot-bridge used also in 

WP6, it uses the sifis-dht crate, wot-discovery, and wot-consume.  



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 45 of 76 
 

 

 

Crates  Description  Status  

wot-td  Produce and consume Thing Description  Release 0.2  

wot-serve  Serve Things using HTTP and mDNS-SD  Release 0.2  

wot-discovery  Discover Things in the network  Release 0.1  

libsifis  Initial Proof of Concept  Being replaced by sifis-ext  

sifis-ext  Thing Description extension  Work in Progress  

Table 1 WoT sub-components 

 

4.3.7 DHT Manager  

The DHT Manager (see Errore. L'origine riferimento non è stata trovata.) is composed of two 

different software components, namely the DHT and the Fiware API. The DHT component manages 

the DHT and allows other applications and services to access it. Instead, the Fiware API component 

interacts with Yggio in order to provide a FIWARE-compatible API [FIWARE, 2021] to a SIFIS-Home-

enabled Smart Home.  

 

 
Figure 41 The DHT manager components 

 

• FIWARE API  

This component forwards the persistent messages published through the DHT to the Ratatosk 

FIWARE Context broker that is part of the Yggio instance residing on the SIFIS-Home cloud. 

Also, it forwards commands entered by the user in the Yggio user interface to the DHT. The 

Fiware API component uses both Rest API and the MQTT protocol to set up and receive/publish 

messages from/to Yggio. More in detail, the FIWARE API component is provided with a set of 

dedicated credentials that allow it to access the Yggio Rest API and MQTT broker. It then uses 

the Rest API to associate and reserve a dedicated MQTT topic for each DHT topic. The 

FIWARE API component has been developed using the Rust language. Its source code can be 

found at https://github.com/sifis-home/dht-to-mqtt. 

 

• DHT 

The SIFIS-Home DHT is a component that offers a completely distributed publish/subscribe 

mechanism (i.e., a central broker is not present), through which SIFIS-Home applications can 

exchange messages. The SIFIS-Home DHT allows to publish persistent as well as volatile 

messages. Persistent messages are stored in a persistent way on Sqlite and PostgreSQL 

databases, so that they are available even after a node reboot Volatile messages are instead 

https://github.com/wot-rust/wot-td
https://github.com/wot-rust/wot-serve
https://github.com/wot-rust/wot-discovery
https://github.com/sifis-home/libsifis-rs
https://github.com/sifis-home/sifis-ext


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 46 of 76 
 

delivered to all the running applications but are not stored. The SIFIS-Home DHT has a built-in 

mechanism to solve possible data conflicts that can arise when a network partition occurs. In 

particular, every time a message is published on the DHT, the DHT also em a publication 

timestamp to it. Then, the publication timestamp is used to assure that only the most recently 

published messages will be stored and made available to the applications.  

The SIFIS-HOME DHT has been developed using the Rust language. Rust applications can 

include the DHT by embedding it as a library. Non-Rust applications can access the DHT by 

means of a REST + WebSocket API provided by the DHT Manager. The current version of the 

SIFIS-Home DHT code can be found at . 

  

4.4 VPN Manager 

Since the VPN Server was replaced by the MQTT publish subscribe mechanism to manage interactions 

between the SIFIS Home network inside a Cyper Security perimeter the VPN Manager is no longer 

required and will not get implemented. 

 

 

4.5 NSSD Framework 

The SIFIS-Home NSSD Framework (see Errore. L'origine riferimento non è stata trovata.) is the 

set of components that are expected to be present on every NSSD device that should be part of a SIFIS-

Home-enabled Smart Home. In particular, the NSSD Framework is composed of the Bootstrap Manager 

component and the Device API Manager component. Please refer to D6.2 for all the details of the NSSD 

Framework implementation. 

 
Figure 42 The NSSD Framework components 

 

5 Integration of analytics and security solutions 

5.1 Overall integration strategy 

The design of the SIFIS-Home framework in WP1 is based on Docker containers using the 

microservices design pattern. Each microservice defines an API, usually a Rest API or specific DHT 

messages, for interfacing with it. In order to add new modules to the system, one just needs to add new 

Docker containers that hold the new modules. The new modules can then directly start interacting with 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 47 of 76 
 

the existing modules in the system, based on the APIs that they provide or via the DHT. This makes it 

fast and easy to add new functionalities. 

 

5.2 Analytics integration 

The integration of the code implementing the analytics designed and implemented in WP4 within the 

Data Analysis Toolbox is performed through a common procedure: 

1. The analytics designed for SIFIS-Home require different (and sometimes even conflicting) 

execution environments, depending on the software libraries they use (sometimes even on their 

version). For this reason, we decided to use virtualization and to deploy each analytic in its 

customized container, leveraging on the Docker technology. Hence, each analytic environment 

is structured and created within a specific Docker image. 

2. Docker images are used to create Docker containers on the SIFIS-Home devices for deploying 

the analytics. A repository of Docker container images for analytics is created to easily store and 

retrieve available images. 

3. The analytics running within the Docker containers resulting from the previous step are invoked 

by the Analytics APIs. Each analytic provided by the Data Analysis Toolbox is paired with  a 

DHT topic that is dedicated to publishing input data for each analytic invocation. Moreover, 

each analytic has a separate topic for the results obtained by running it on some data, so that the 

results are published to another topic that is dedicated only for the analytic results. 

4. The interactions between the Data Analysis Toolbox and the other components of the SIFIS-

Home Framework that need to ask for analytics executions occur through the DHT, which 

provides a publish/subscribe mechanism.  

5. Interactions start from the analytics' consumer side requesting the execution of an analytic. This 

request is sent as a message in JSON format published on the topic related to the analytic in 

question. The JSON message contains invocation details including the topic name, topic ID, 

description, in addition to a set of input data to be processed by the analytics and optional 

privacy-related parameters. 

6. Upon receiving a message published on a topic, the Analytics APIs subsystem invokes the 

analytic associated with that topic. As previously mentioned,  each analytic engine is deployed 

in distinct containers, using the Docker technology. The invocation of an analytic by the 

Analytics APIs subsystem occurs by means of the HTTP or the WebSocket protocol, depending 

on the analytic deployment on the related container. Each analytic relies on one of the two 

protocols and needs to be provided with different parameters. 

7. Once the analytic has been executed and the result is available, the Data Analysis Toolbox 

returns the result to the component which has requested the analysis through the DHT. 

 

 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 48 of 76 
 

 

Figure 43 Analytics components 

 

• Pre-Processing Layer/Post-Processing Layer 

This sub-system pre-processes data (by adjusting its format and removing unnecessary 

information) coming from different sensors and devices, before sending it to the different SIFIS-

Home analytics. Also, it collects the information produced by the different analytics and 

prepares it for use by part of the frontend applications. 

 

On the one hand, data Pre-processing for privacy protection purposes is performed locally on 

the device requesting analytics before data publishing, such as using autoencoders or Gaussian 

Blurring on graphical datasets. However, data pre-processing for data cleaning and preparation 

is performed before the giving control to the analytics sub-system on the device performing data 

analysis. On the other hand, data post-processing is performed directly after the execution of the 

analytics method on the same device analysing the data, for aggregation and categorization 

purposes of the results as an example. 

 

• Analytics API 

As previously explained, the Analytics API sub-system interacts with the DHT for subscribing 

to the topics representing all the analytics provided by the Data Analysis Toolbox and for 

collecting the requests sent by the other components of the SIFIS-Home framework through 

their publication on these topics. Depending on the topic published by the component requesting 

the execution of an analytic, the right sub-component of the Analytics API sub-system is 

invoked. Such a sub-component knows how to interact with the requested analytic running in its 

Docker container. If a pre-processing operation is required, the right function of the pre-

processing layer sub-system is also invoked. The following sub-component are included in the 

Analytics API sub-system: 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 49 of 76 
 

• Behavioural Analysis 

This API uses WebSocket to invoke analytics toolboxes responsible for the analysis of 

behavioral and environmental data collected from IoT devices like sensors, smart 

watches, smart thermostats, and smart cameras in order to derive insights, track user 

behaviour, predict user behaviour, and identify anomalous actions, or for activity 

classification. Behavioral and environmental data are captured by SIFIS-Home sensors 

and devices and published with the device ID to the required analytic topic. The analytic 

topic is used to invoke the WebSocket-based API that the analytic expose, in order to 

execute the responsible Docker container with the provided shared data and input 

parameters. The results are then published by the Analytics Engine to the related topic.  

• Network Analysis 

Network analysis is concerned with performing network traffic analysis to identify 

hidden and complex patterns and anomalous behaviors or security threats using stream 

data and packet data. Common functions carried out by this WebSocket-based API 

include continuous monitoring of network traffic, malware detection, and network 

abnormal behavior detection and troubleshooting. Stream data and packet data are 

captured and published with the device ID to the required analytics topic. The analytics 

topic is used to invoke the related WebSocket-based API for Docker container execution 

with the shared data and parameters. The results are then published by the Analytics 

Engine to the desired topic. Centria’s analytics provide REST API for retrieving service 

status (start/stop/restart/is_running), available interfaces, configurations, data, and 

alarms. Optionally, webhooks for data and alarms are also available. 

The network anomaly detection analytic called Aggregated Usage Description (AUD), 

developed by FSEC is implemented as a background service. The analytic is executed in 

a container labelled “aud_manager”, and it is intended to continuously analyze network 

traffic. AUD manager operates directly with the network and transport layer (L3 & L4) 

information, which reside below session and application layers through which 

vulnerabilities such as session hijacking and man-in-the-middle attacks are often 

exploited. The analytic developed in WP4 strives to spot the anomalous network events 

before the data packets reach their destinations, i.e., target devices. The AUD manager 

provides a REST API for starting and stopping the analytic. The REST API also provides 

methods to retrieve the current state of the analytic, as well as runtime diagnostics, such 

as network statistics and information about recent anomalies. Upon detecting an 

anomaly, the analytic calls the Evaluator/Notifier in the Proactive Security Management 

Layer. 

• Multimedia Analysis 

The WebSocket-based API of this sub-component is invoked after messages with 

recorded and captured multimedia data are published on the DHT to topics concerned 

with such data analytics. The Docker container related to the topic is triggered to execute 

the analysis on the captured data and parameters, The produced results are published by 

the Analytics Engine to the related topics.  

• Application Analysis 

Application data are captured by SIFIS-Home components and published with the 

component ID to the related analytic topic. This results in the invocation of the 

WebSocket-based API that the analytic exposes, with the consequent execution of the 

related Docker container that takes as input the provided shared data and parameters. 

The results are then published by the Analytics Engine to the related topic. 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 50 of 76 
 

• Physical Analysis 

Physical data are collected by SIFIS-Home components and published with the 

component ID to the related analytic topic. This results in the invocation of the 

WebSocket-based API that the analytic exposes, with the consequent execution of the 

related Docker container that takes as input the provided shared data and parameters. 

The results are then published by the Analytics Engine to the related topic. 

 

• Analytics Engine 

This sub-system performs the execution of the SIFIS-Home analytics, providing statistical-

based, machine learning, and deep learning tools for the analysis of data collected by sensors. 

The analytics engine processes collected data and makes logical predictions based on the 

provided data input and instructions that it has been configured on. Finally, it releases the data 

as output and shares it back with the analytics consumer. 

The Analytics Engine is implemented as a collection of Docker containers, invoked based on   

the received message topic from components publishing data to be processed. Depending on the 

topic where the message was published, the right Docker container is selected and executed, 

taking as input the data and parameters included in the message. After the Docker execution is 

finished, the results are also published by the Data Analytics Engine to the related analytic result 

topic. The details concerning the implementation of each single analytic are provided in D4.2 

and D4.3. 

 

5.3 Network and security solution integrations 

The security solutions developed in WP3 build on the CoAP web-transfer protocol and the OSCORE 

security protocol for CoAP, and provide related security services to enforce secure end-to-end (group) 

communication, management of keying material, and fine-grained enforcement of access and usage 

control. These security solutions are presented in deliverable D3.3. 

  

Irrespective of the specifically considered, possibly combined, security solutions, the interacting parties 

are devices acting as CoAP client and/or CoAP server. In stand-alone, proof-of-concept 

implementations used for focused demonstrations (see Annexes C and D of deliverable D3.3), the user 

could interact with a CoAP client, provide it with a command available from a basic set, and make it 

take a corresponding course of action in communicating with the intended CoAP server(s). 

  

Such a user interaction was simply based on a command line interface. That is, the user could provide 

a command via a keyboard terminal to the CoAP client, which in turn provided any relevant output (e.g., 

responses obtained from the CoAP servers) on a display monitor. 

  

While this approach made it possible to effectively run stand-alone demonstrations, it is inconvenient 

in a broader, more realistic setup where the user wants to remotely provide the CoAP client with a 

command to process, e.g., by using an application running the SIFIS-Home framework. Also, the user 

might not even be presently at home, hence requiring to reach out the CoAP client through the Internet. 

In either case, rather than relying on a physical interaction with a keyboard to feed a command line 

interface, it would be more convenient for the user to remotely provide CoAP clients with commands 

to process. 

 

To this hand, the following strategy was considered and implemented during the activities in WP5 that 

integrated the security solutions developed in WP3 into the SIFIS-Home solution at large. 

  



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 51 of 76 
 

From a logical point of view, the CoAP clients expecting commands from a user additionally rely on 

the availability of a publish-subscribe system in order to: i) obtain user commands as content published 

on a related, device-specific topic, rather than input provided on a keyboard terminal; and ii) relay back 

any relevant output following the course of action triggered by a command, as content published on a 

related, device-specific topic rather than as output on a display monitor. 

    

Practically, this has been enforced by leveraging the DHT-based pub-sub system used in the SIFIS-

Home solution and deployed in the Smart Home network. That is, the DHT enforces a distributed pub-

sub broker, exposing an interface based on WebSocket for publishing on and subscribing to its topics. 

 

Then, a device acting as a CoAP client also acts as a pub-sub client, by bi-directionally interacting with 

the DHT-based pub-sub broker through WebSocket. In particular, the CoAP client subscribes to a topic 

on which it receives user commands, and publishes on a separate related topic in order to provide the 

output from the actions performed following those commands. Instead, the user application that issues 

such commands takes the reversed pub-sub roles, in order to publish the issued commands and subscribe 

to the outputs from the CoAP client. The two companion topics are specific for the exact CoAP client 

in question, i.e., one for providing commands to that client and one to disseminating the outputs from 

that client. 

 
Figure 44 Control of CoAP devices through the DHT-based pub-sub broker 

 

Figure 44 shows an example of complete interaction workflow discussed above, considering some of 

the security solutions developed in WP3. The example assumes that the CoAP client acts as a subscriber 

for the pub-sub topic “Command_dev1”, and as a publisher for the pub-sub topic “Output_dev1”. 

Conversely, an application run by the user within the Smart Home (e.g., a mobile application) acts as a 

publisher for the pub-sub topic “Command_dev1”, and as a subscriber for the pub-sub topic 

“Output_dev1”. The CoAP client is a member of a device group, within which communication is based 

on CoAP and protected with the security protocol Group OSCORE (see Section 4.3.2). The group also 

includes three CoAP servers, and all the group members have previously joined the group and obtained 

the required keying material from an OSCORE Group Manager (not shown in the figure), following an 

access control workflow based on the ACE framework and its OSCORE profile (see Sections 4.3.1 and 

4.3.2). 

 

At step A, the user application publishes the command “Group1 on” to the pub-sub topic 

“Command_dev1”. As it is subscribed to the same topic, the CoAP client receives such a command 

from the DHT-based pub-sub broker. In particular, the command is intercepted by the “CoAP Manager” 

component of the “NSSD Module” running on the CoAP client, and it triggers the CoAP client to take 

the same course of actions as it would have when receiving the same command from a keyboard 

terminal. That is, the CoAP client sends a CoAP group request protected with Group OSCORE, in order 

to securely switch on the lights controlled by the three CoAP servers within the group “Group 1”. After 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 52 of 76 
 

that, the three CoAP servers reply to the CoAP client, confirming that the operation succeeded. 

 

Then, at step B, the CoAP client collects the responses from the different CoAP servers, and provide 

those to the “CoAP Manager” component, by means of which the CoAP client publishes the output 

from those responses to the pub-sub topic “Output_dev1”. As it is subscribed to the same topic, the user 

application receives such an output, and can display it to the user. 

 

The actual interaction between the DHT-based pub-sub broker and the “CoAP Manager” component at 

CoAP clients has been implemented by relying on the Eclipse Tyrus library available at 

https://projects.eclipse.org/projects/ee4j.tyrus. The codebase of the WP3 security solutions available at 

https://github.com/sifis-home/wp3-solutions also comprise such a component to enable the interaction 

between the CoAP clients and the DHT-based pub-sub system. 

 

As discussed above, a pair of topics has been considered for each CoAP client. That is, one topic where 

commands are published and to which the CoAP client subscribes to; and one where the same CoAP 

client publishes outcomes from the execution of those commands, and the original command issuers 

subscribe. To this end, a consistent and easy-to-synchronize semantics was enforced for the topic names, 

as based on the following schema: pub-sub topics where commands are published have a name 

“command_devX” while pub-sub topics where outcomes from the execution of those commands are 

published have name “output_devX”, where X is an identifier of the CoAP client in question within the 

Smart Home. Of course, it is possible to easily customize the topic names. 

 

Building on the same principle, an "outer" user can also interact with the CoAP clients through the 

Internet, when not presently in the Smart Home. This requires an additional step, also based on a pub-

sub model and relying on the Sensative MQTT broker deployed in the cloud. The outer user would 

leverage the same model discussed above, although having a direct interaction specifically MQTT-

based and specifically with the Sensative MQTT broker. Then, the Sensative MQTT broker, aided by 

an MQTT-to-WebSocket bridge, will interact with the DHT-based pub-sub system deployed in the 

Smart Home, just like the user would do for the case discussed above where presently at home. It is 

worth noting that this has no impact and makes no difference for the CoAP clients, as they would still 

interact via WebSocket only with the DHT-based pub-sub broker deployed in the Smart Home. 

  

When setting up such a pub-sub route, care must be taken when setting the "outer" pub-sub topics at the 

Sensative MQTT broker to be consistent with the "inner" pub-sub topics of the pub-sub system deployed 

in the Smart Home. For example, given an inner topic "command_dev1" used to publish commands 

intended to Device "1" acting as a CoAP client, the corresponding outer topic can be 

"home_42_command_dev_1", where "home_42_" is a pre-established prefix to use for uniquely 

identifying the specific Smart Home and thus enforce per-smart-home topic namespaces. 

 

 

Finally, the same principle used by the “CoAP Manager” component on CoAP clients has been also 

used on two devices acting as ACE Authorization Server (AS) and OSCORE Group Manager (GM). 

By doing so, the two devices are able to interact via WebSocket with the DHT-based pub-sub broker, 

and to publish log messages documenting relevant, pertaining events. Such log messages are published 

on a dedicated pub-sub topic and would thus persist on the DHT in the first place. In addition to that, 

such log messages will be available to any interested subscriber to such topic. 

 

One such particular subscriber that has considered and tested is in fact the Yggio platform. That is, by 

taking advantage of the MQTT-to-Websocket bridge mentioned above, a cloud instance of Yggio 

subscribes to such log-related pub-sub topic at the DHT-based pub-sub broker in the Smart Home. 

https://projects.eclipse.org/projects/ee4j.tyrus
https://github.com/sifis-home/wp3-solutions


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 53 of 76 
 

Consequently, the logs published by the AS and GM on the logging pub-sub topic effectively reach the 

Yggio platform, that can effectively store such logs, show them to authorized users logged into Yggio 

and potentially perform automatic analysis and monitoring based on the logged events. 

 

Specifically, on a dedicated pub-sub topic “log”, the GM publishes log events related to successful or 

failed attempts from CoAP endpoints to join an OSCORE group. Similarly, on the same pub-sub topic 

“log”, the AS publishes log events related to: i) successful or failed attempts from endpoints acting as 

ACE Clients in requesting Access Tokens as evidence of their authorization towards accessing protected 

resources at an ACE Resource Server; as well as ii) Access Token revocation operations. 

 

6 Continuous integration and deployment 

6.1 Process 

The CI (continuous integration) and CD (continuous deployment) are implemented based on GitHub 

actions, Docker MultiArch files, the GitHub container registry (ghcr.io) and a Docker feature called 

“Watchtower”. Once a Docker MultiArch file, which contains executables for both x86 and ARM 

architectures, is built with the help of GitHub actions, it is uploaded to the GitHub container registry. 

The exact steps for GitHub actions to build each file are defined by the partner developing the 

component. 

 

The first time a new SIFIS-Home Smart Device is deployed, some manual interaction is required to 

install on the target device all the microservice Docker containers that the SIFIS-Home framework 

consist of. However, once a device is deployed, the Watchtower feature checks every five minutes if 

any newer version of any of the included Docker containers is available. If that is the case, then the 

Watchtower automatically updates the Docker container with the latest version. Since all SIFIS-Home 

devices run Watchtower within a 5 minute interval, all of them converge to having the same collection 

of Docker containers. Using Docker Watchtower is an elegant way to use state-of-the-art tools to 

complete the most difficult step in the CI/CD tool chain, namely the actual continuous automatic 

deployment to all devices after the initial manual deployment via the Ansible deployment script. Figure 

22 below illustrates all the steps in the SIFIS-Home CI/CD process. 
 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 54 of 76 
 

 
Figure 45 The SIFIS-Home CI/CD process 

 

 

Example CI/CD scenario:  

1. The developer commits new code to GitHub.  

2. The GitHub actions are triggered by the new commit. These include automatic testing of the 

new code and if they fail the build will automatically fail as well. 

3. The final GitHub actions step is a build command that produces a Docker image. The new 

Docker image is pushed automatically to the GitHub’s container registry at ghcr.io. 

4. For every SIFIS-Home Smart Device, once an updated version of a Docker image is detected by 

Watchtower, Watchtower will upgrade any local Docker image running older versions. 

 

Since SIFIS-Home is a research project, our decision was to just use one step in the deployment phase 

of new software.  

 

 

6.2 GitHub 

The code developed in SIFIS-Home is available in GitHub at the link sifis-home (github.com), the code 

is reviewed by the partners as part of the WP2 activities. The SIFIS-generate tool is available to 

streamline the process of adding GitHub Actions to projects to have a working Continuous Integration. 

 

https://github.com/sifis-home


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 55 of 76 
 

The sifis-generate crate is also using its own continuous integration template as shown in Errore. 

L'origine riferimento non è stata trovata.. 

 
Figure 46 Continuous integration template for sifis-generate 

 

Being an executable, it also peruses the deployed components to provide prebuilt binaries (see Figure 

47) for Linux, Windows and macOS (for every release). 

 

 
Figure 47 Prebuilt binaries 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 56 of 76 
 

 
Figure 48 The SIFIS generate tool. 

 

A checklist had been provided to the partners to make them aware of what to check about the status of 

their code and self-assess what is missing and what should be better addressed. 

 
Figure 49 Code integration check list 

 

Currently there are 87 code repositories under the SIFIS-Home GitHub organisation. There are many 

activities listed and regular code contributions are made. 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 57 of 76 
 

 
Figure 50 The SIFIS-Home repositories 

 

 

 

GitHub links: 

The source code for the developed SIFIS-Home components is available on GitHub via the following 

link:  https://github.com/sifis-home  

 

Some direct links to components are provided here for reference: 

• Secure Message Exchange Manager, Content Distribution Manager, Authentication Manager, 
Key Manager, CoAP Manager (Group OSCORE communication, Group OSCORE key 
provisioning using the ACE framework, ACE OSCORE profile, EDHOC key establishment, 
DHT-based command/output interface for CoAP clients) https://github.com/sifis-home/wp3-
solutions  

o Californium (CoAP and OSCORE)  https://github.com/eclipse/californium  

• Network Protection manager: https://github.com/sifis-
home/wp5_network_protection_manager.  

• Network analysis: https://github.com/sifis-home/wp4-edge_ids/releases 

• MUD adaptation and AUD Manager: https://github.com/sifis-home/wp4-aud_manager.  

• DHT:  

o https://github.com/sifis-home/libp2p-rust-dht.  

o https://github.com/sifis-home/domo-wot-bridge  

• Smart Device Mobile API: https://github.com/sifis-home/wp6_mobile_application_api  

• WebThings Arduino Library: https://github.com/WebThingsIO/webthing-arduino   

• WoT Wi-Fi actuators Firmware: https://github.com/sifis-home/domo-wot-actuator  

• Privacy Dashboard: https://github.com/sifis-home/privacydashboard 

https://github.com/sifis-home
https://github.com/sifis-home/wp3-solutions
https://github.com/sifis-home/wp3-solutions
https://github.com/eclipse/californium
https://github.com/sifis-home/wp5_network_protection_manager
https://github.com/sifis-home/wp5_network_protection_manager
https://github.com/sifis-home/wp4-edge_ids/releases
https://github.com/sifis-home/wp4-aud_manager
https://github.com/sifis-home/libp2p-rust-dht
https://github.com/sifis-home/domo-wot-bridge
https://github.com/sifis-home/wp6_mobile_application_api
https://github.com/WebThingsIO/webthing-arduino
https://github.com/sifis-home/domo-wot-actuator
https://github.com/sifis-home/privacydashboard


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 58 of 76 
 

• WoT rust:  

o https://github.com/sifis-home/wot-td 

o https://github.com/sifis-home/wot-serve 

o https://github.com/sifis-home/wot-consume  

o https://github.com/sifis-home/wot-discovery 

o https://github.com/sifis-home/demo-things  

• Behaviour testing PoC for demo things: https://github.com/sifis-home/wot-test 

• SIFIS-Home developer API: https://github.com/sifis-home/sifis-api 

• Policy Enforcement Engine: https://github.com/sifis-home/usage-control 

• Analytics Toolbox: sifis-home/analytics-toolbox: This repository includes the analytics that 
have been developed for the SIFIS-Home framework (github.com) 

• Mobile app:  https://github.com/sifis-home/sifis-home-mobile 

• FIWARE Context Broker (Ratatosk): https://github.com/sifis-home/yggio-ratatosk  

• SIFIS-Home Cloud UI (Yggio): https://github.com/sifis-home/yggio-components  

• The Market Place: https://github.com/sifis-home/yggio-components/tree/master/control-panel-
v2/src/pages/apps   

 
The DHT topics used in the SIFIS Home security architecture is defined in Github as JSON schemas. 

• DHT Topics: sifis-home/json-schemas: A collection of json schemas defined within SIFIS-
Home (github.com) 

 

 

7 Validation, verification status and results 

Verification and validation have been carried out through the following separate tests: 

• Unit test: This test is usually designed and executed by the developers of the code under testing, 

to confirm that the implementation works as expected. 

• Integration test: These are usually automatic tests that are executed once code has been 

committed. If the integration test fails, then the code will get rejected by the CI system. 

• System test: These tests are executed on the fully integrated and deployed system, in the 

available test beds and according to appropriate test cases. In SIFIS-Home, both emulated and 

the simulated test beds are considered.  

• Validation: This provides a high-level confirmation that the execution of a software 

implementation results in the expected behaviour. For example, it confirms that that the data is 

flowing between the various parts of the system in the expected way.  

  

In the SIFIS-Home project, the partners have different internal environments to develop and verify their 

code before committing it to the pertaining repositories. Also, except for what is mandated by WP2 and 

for the continuous integration and continuous deployment processes, the partners could rely on the 

Github actions for configuring and adapting the unit test and integration test strategy to suit their specific 

requirements. Some of the partners, e.g. during the development of the cloud interface, have also run 

very extensive tests that go far beyond unit test before committing the related code to the SIFIS-Home 

https://github.com/sifis-home/wot-td
https://github.com/sifis-home/wot-serve
https://github.com/sifis-home/wot-consume
https://github.com/sifis-home/wot-discovery
https://github.com/sifis-home/demo-things
https://github.com/sifis-home/wot-test
https://github.com/sifis-home/sifis-api
https://github.com/sifis-home/usage-control
https://github.com/sifis-home/analytics-toolbox
https://github.com/sifis-home/analytics-toolbox
https://github.com/sifis-home/sifis-home-mobile
https://github.com/sifis-home/yggio-ratatosk
https://github.com/sifis-home/yggio-components
https://github.com/sifis-home/yggio-components/tree/master/control-panel-v2/src/pages/apps
https://github.com/sifis-home/yggio-components/tree/master/control-panel-v2/src/pages/apps
https://github.com/sifis-home/json-schemas
https://github.com/sifis-home/json-schemas


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 59 of 76 
 

repositories. Several partners have also developed automatic test scripts that are automatically executed 

via Github actions on code that is being integrated and then automatically deployed via Docker 

Watchtower to all SIFIS Home systems that have a deployment of the component . 

The system tests were defined in deliverable D1.2 to be executed on the test beds, and the produced 

results are provided in Section 7.6 System verification and validation. It is worth noting that the 

verification of a system like SIFIS-Home can be carried out to a considerable extent by simply validating 

the flow of data in the system, and confirming that all the expected services are running and that data is 

flowing between the different system entities as expected.  

 

  

 

7.1 wot-rust crates 

All the crates use the continuous integration setup for GitHub-Actions provided by the sifis-generate 

(see Figure 50). 

 

 
Figure 51 Continuous integration setup 

 

The crates aim at staying above 90% coverage for every commit (Figure 51). 

 

  

 

 

 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 60 of 76 
 

 

 
Figure 52 Automated tests of every commit 

 

The built-in cargo test ensures that both the code and the examples in the documentation are tested. 

 

 

7.2 UX 

7.2.1 Cloud interface 

The SIFIS Home cloud interface (Yggio) uses a combination of automatic integrations tests for every 

PR –Pull Request (PR) to the code base and of system tests before releasing the code. Every PR is also 

code reviewed by an independent developer according to a check list, to ensure that the code design 

follows architectural and security guidelines as well as that the code quality as such is high without 

obvious flaws. Before integrating an updated version of the Cloud interface to the SIFIS-Home 

repository and deploying to the test beds in the Panarea server, the software must also pass the release 

test, which is equivalent to reach commercial quality level of the cloud software.  

 

 
Figure 53 Test execution ongoing. In the end 40 test cases were not executed. 

 

 
Figure 54 Release test result of Yggio v3.19 that become the commercial release v3.20. 

    

Blocked test cases are items that for some reasons cannot be verified altogether. Often, this is caused 

by missing hardware equipment or other type of environments that are required to execute the tests. 

Failures are tests that do not successfully pass. All of these will get analysed one by one, towards making 

a judgement on whether any of them is a blocker for a release or not. 

 

7.2.2 Mobile Application 

The SIFIS-Home Mobile Application in the UI component is developed using Javascript technology. 

Most of its functionality is provided by services used through an exported API. The Mobile Application 

itself is tested through functional testing methods to validate that it meets all the pertaining functional 

requirements. 

The API is tested using the Python unittest framework. The unit tests call operations on the same 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 61 of 76 
 

interfaces as the actual Mobile Application, and test that the returned values are correct and as expected. 

 

 
Figure 55 Mobile Application unit test verification results 

 

7.3 DHT 

The current implementation of the SIFIS-Home DHT has been tested using standard unit tests. The 

following Errore. L'origine riferimento non è stata trovata. reports the current test results obtained 

using the cargo test utility. 

 

 
Figure 56 The DHT verification results 

 

7.4 Security solutions (WP3) 

The security solutions developed in WP3 and indicated in Sections 4.3.1 and 4.3.2 have been 

successfully tested through focused demonstrators, by relying on the corresponding implementations 

and real hardware platforms. In particular: 

• The first demonstrator considered a CoAP group communication scenario, where: i) devices rely 

on the ACE Framework and its OSCORE profile, in order to securely interact with an OSCORE 

Group Manager and obtain keying material for Group OSCORE; ii) as members of the security 

group, such devices securely communicate with other group members using CoAP and Group 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 62 of 76 
 

OSCORE, protecting group messages with its group mode or pairwise mode. 

• The second demonstrator considered a CoAP client and a CoAP server that first establish an 

OSCORE Security Context through the EDHOC key establishment protocol, and then securely 

communicate with one another using the established OSCORE Security Context. The EDHOC 

key establishment considered: i) peer authentication based on either signatures through private 

signing keys, or MACs through static-static Diffie-Hellman keys; and ii) the original EDHOC 

workflow or an optimized, shortened EDHOC workflow which requires one round-trip less by 

combining the last EDHOC message with the first OSCORE-protected message. 

Further details on the two focused demonstrators are in Annexes C and D of deliverable D3.3. 

 

Building on the two focused demonstrators above as a starting point, such security solutions have been 

integrated in the SIFIS-Home solution within the WP5 activities. The integration process encompassed 

especially two aspects. 

On one hand, it enabled the actual interoperation of such security solutions for CoAP within the SIFIS-

Home solution at large, mainly by means of the “CoAP Manager” component of the “NSSD Manager” 

architecture module (see Section 4.3.6) and relying on the DHT-based pub-sub broker used in the 

context of the SIFIS-Home solution, as an additional interface for circulating commands as well as 

resulting output. On the other hand, the integration process covered the practical automation of code 

verification and deployment, leveraging state-of-the-art approaches relying on multi-architecture 

containerization of Software images, in concert with partners providing the required infrastructure. 

Further details on the integration of the security solutions from WP3 are provided in Section 5.3. 

 

Finally, the security solutions from WP3 can also undergo automatic testing within the WP5 testbed, 

through the Python script at https://github.com/sifis-home/wp3-solutions/blob/master/wp3-tester.py  

From a high-level point of view, the Python script in question: i) sends commands to be delivered to the 

CoAP clients through the DHT; and then ii) checks that the correct, expected messages conveying the 

result of such commands execution are received back from the DHT, as relaying responses received by 

the CoAP client from the targeted CoAP server(s). 

The script effectively tests CoAP communications between one CoAP client and one CoAP server 

protected with OSCORE, as well as between one CoAP client and multiple CoAP servers in a group 

protected with Group OSCORE (see Sections 4.3.1 and 4.3.2). The script produces an output like the 

one shown in the example below. 

  

 
Figure 57 Example of output from the automatic testing script for the WP3 security solutions 

As to the one-to-one communication case protected with OSCORE, the script indirectly tests also the 

prior, successful execution of the EDHOC key establishment protocol yielding an OSCORE Security 

Context between the CoAP client and the CoAP server (see Sections 4.3.1 and 4.3.2). This is because 

https://github.com/sifis-home/wp3-solutions/blob/master/wp3-tester.py


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 63 of 76 
 

the establishment of such an OSCORE Security Context is a pre-requirement for OSCORE-protected 

communications to occur in the first place. That is, if such initial establishment was not successful, the 

script would not pass successfully either. 

Similarly, as to the group communication case protected with Group OSCORE, the script indirectly 

tests also the successful execution of the authorized group joining through the ACE framework, with 

the consequent acquisition of Group OSCORE keying material and parameters from the Group Manager 

for the CoAP client and CoAP servers joining as group members (see Sections 4.3.1 and 4.3.2). This is 

because the prior, successful group joining and related key provisioning is a pre-requirement for group 

communications protected with Group OSCORE. That is, if such initial group joining and key 

provisioning were not successful, the script would not pass successfully either. 

 

7.5 Network Anomaly Detection / AUD Manager 

Basic functionality and operation of the AUD manager (see Section 5.4) have been tested with virtual 

mock devices and synthetic test scenarios. The anomaly detection analytic implemented in the AUD 

manager relies on learning network activity patterns of connected devices in a live system. Therefore, 

validation of operation with synthetic tests does not directly translate to operation in a feature-complete 

testbed and/or real system deployment. 

 

7.6 System verification and validation 

This section reports the verification and validation results of  the non-functional and security 

requirements of the SIFIS-Home framework from deliverable D1.2 that we used to design and verify 

the security architecture.  

  

Independent of the programming language used to develop the different components, the SIFIS Home 

architecture were designed via Github and Docker Watchtower to support both continuous integration 

and continuous deployment. The integration and deployment processes enabled the SIFIS-Home test 

beds to be continuously up and running with a live communication flow from the Smart Devices, the 

NSSD – Not so smart devices, the Analytics, as well as some standard IoT validation devices to support 

a fast and efficient total verification and validation of the architecture including bug fixing.  

  

The verification has been performed by testing the requirements independently on the emulated and 

simulated testbed. When performance are reported, the worse performance between emulated and 

simulated testbed is reported. Validation results are reported in the following table: 

 

Req. ID    Req. description    FR    Priority  Validation strategy Validation status 

PE-01    
The user authentication shall happen in less 

than 2s. 

F-02   

Critical  UI performance test 

Through automated UI 

performance test the 

user authentication is 

verified to be 

performed in less than 

900 ms 

F-03   

PE-02    

The user recognition (identification/ 

biometric-based) shall happen in less than 

5s.  

F-06   Critical  UI performance test 

Through automated UI 

performance test the 

user recognition is 

verified to be 

performed in less than 

5 seconds. 

PE-03   
Biometric-based authentication should be 

performed in less than 5 seconds.  
F-03   Standard Under consideration 

Through automated UI 

performance test the 

biometric user 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 64 of 76 
 

authentication is 

verified to be 

performed in less than 

5 seconds. 

PE-04  

Activation of features based on user 

identity (biometric recognition) should be 

performed in less than 5 seconds.   

F-04   

Standard UI performance test 

Through automated UI 

performance test the 

biometric user 

authentication is 

verified to be 

performed in less than 

5 seconds. 

F-05   

PE-05  

Recognition of the start of an interaction 

through voice command should be 

performed in less than 2 seconds.  

F-06   Standard UI performance test 

Through automated UI 

performance test the 

start of interaction 

through voice 

commands is verified 

to be performed in less 

than 2 seconds. 

PE-06  

The interpretation of the voice commands 

provided by the user should be performed 

in less than 2 seconds.   

F-07    Standard UI performance test 

Through automated UI 

performance test the 

interpretation of voice 

commands is verified 

to be performed in less 

than 2 seconds. 

PE-07  

A command should be invoked within 5 

seconds from the event that triggered its 

execution  

F-08   Standard UI performance test 

Through automated UI 

performance test the 

activation of 

commands is verified 

to be performed in less 

than 200ms 

PE-08  
The maintainer must be able to access and 

watch a recording in less than one minute.  
F-13   Standard UI performance test Not verified 

PE-09  

If requested to, the SIFIS-Home system 

shall contact law enforcement or private 

surveillance services to receive assistance 

in less than 30 seconds.  

F-14   Optional 

Event performance 

test. Use test mobile 

as receiver. 

Partially verified. 

Notifications and 

communications are 

verified to be sent in 

less than 5s. 

PE-10  

An abnormal (suspicious) behavior caused 

by malware shall be identified and notified 

within 60 seconds  

F-19    Optional 
Event performance 

test. 

Partially verified. 

Notifications and 

communications are 

verified to be sent in 

less than 5s. 

PE-11  

The user should be informed of the 

presence of malware no later than 5 

seconds after the malware is recognized.  

F-20   Standard 
Event performance 

test. 

Partially verified. 

Notifications and 

communications are 

verified to be sent in 

less than 5s. 

PE-12  

Self-healing algorithms should be started 

in less than 60 seconds if available when 

malware is recognized.   

F-21   Critical 
Event performance 

test. 

Notifications and 

communications are 

verified to be sent in 

less than 100ms after 

malware identification. 

PE-13  
The registration of a new device should be 

completed in less than 30 seconds.  
F-23   Standard 

Event performance 

test. 

Through automated UI 

performance test the 

registration of a new 

device is verified to be 

performed in less than 

1 second. 

PE-14  

The list of registered devices shall be 

shown by the SIFIS-Home system in less 

than 30 seconds.  

F-24   Standard UI performance test 

Through automated UI 

performance test the 

listing of registered 

devices is verified to 

be performed in less 

than 1 second. 

PE-15  
The de-registration of a device should be 

completed in less than 30 seconds.  
F-25   Standard UI performance test 

Through automated UI 

performance test the 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 65 of 76 
 

de-registration of 

devices is verified to 

be performed in less 

than 1 second. 

PE-16  

The correct configuration changes should 

be propagated successfully in less than 30 

seconds.  

F-26   Critical UI performance test 

Through automated UI 

performance test the 

configuration changes 

are verified to be 

propagated in less than 

1 second. 

PE-17  
The current configuration of a device 

should be retrieved in less than 10 seconds.  
F-26   Standard UI performance test 

Through automated UI 

performance test the 

visualization of the 

current configuration 

of a device is verified 

to be performed in less 

than 200ms 

PE-18  
The marketplace should be accessible in 

less than 60 seconds.  
F-28   Standard UI performance test 

Through automated UI 

performance test the 

access to the 

marketplace is verified 

to be performed in less 

than 2s 

PE-19  

The configuration of policies for groups of 

users should be applied and enforced in 

less than 60 seconds.   

F-32    Critical UI performance test 

Through automated UI 

performance test the 

configuration of 

policies is verified to 

be performed in less 

than 200ms 

PE-20  

The configuration of policies for groups of 

devices should be applied and enforced in 

less than 60 seconds.  

F-33    Critical  
Event performance 

test 

Through automated 

event performance test 

the configuration of 

policies for devices is 

verified to be 

performed in less than 

200ms 

PE-21  
The list of policies should be retrieved in 

less than 30 seconds.  
F-30   Standard 

Event performance 

test 

Through automated 

event performance test 

the list of policies is 

verified to be retrieved 

in less than 100ms 

PE-22  

The configuration of profiles should be 

applied and enforced in less than 60 

seconds.  

F-37   Critical 
Event performance 

test 
1s 

PE-23  
The change of current profile should be 

performed in less than 60 seconds.  
F-38   Critical  

Event performance 

test 
1s 

PE-24  

The statistics about usage and behavior of 

devices should be presented to the 

administrator in less than 30 seconds.   

F-41   Standard UI performance test Not verified 

PE-25  

The statistics about usage of profiles 

should be presented to the administrator in 

less than 30 seconds.  

F-42   Standard UI performance test Not verified 

PE-26  
Remote log-in should be performed in less 

than 60 seconds.  
F-43    Critical   

Event performance 

test 
1s 

PE-27  

In case of an incomplete or unsuccessful 

command execution, an error response 

should be sent within 5 seconds  

F-08   Standard 
Event performance 

test 

Partially verified. 

Notifications and 

communications are 

verified to be sent in 

less than 5s. 

PE-28 

The used solutions for communication and 

system security shall be as much as 

possible lightweight to enforce in terms of 

performance and especially feasible also 

All Critical By design 

Verified by design of 

the SIFIS-Home 

framework architecture 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 66 of 76 
 

for resource-constrained devices. 

PE-29 

The performance impact due to 

communication and system security shall 

not result in unacceptable impact on the 

user experience. 

All Critical UI performance test 

Actuation with 

overhead of less than 

200ms. 

PE-30 

The network infrastructure shall provide 

means also for one-to-many message 

delivery, e.g., over IP multicast. 

F-47 

Critical By design 

Verified by design of 

the SIFIS-Home 

framework architecture 

F-48 

F-49 

F-50 

PE-31 

It must be possible to have multiple 

security groups simultaneously active in 

the system. 

F-47 

Critical By design 

Verified by design of 

the SIFIS-Home 

framework architecture 

F-48 

F-49 

F-50 

PE-32 

When relevant, support shall be ensured 

for communication intermediaries 

performing, e.g., message forwarding 

and/or (transport-) protocol translation. 

This applies also in secure scenarios and in 

(secure) group communication scenarios. 

All Critical By design 

Verified by design of 

the SIFIS-Home 

framework architecture 

PE-33 

When relevant, it shall be possible to 

enable one-to-many response messages, 

sent at once to multiple requesters. This 

applies also to secure communication 

scenarios and in presence of 

communication intermediaries. 

All Critical By design 

Verified by design of 

the SIFIS-Home 

framework architecture 

PE-34 

When relevant and limited to read-only 

operations, it shall be possible to enable 

cache ability of response messages at 

communication intermediaries, also when 

protected end-to-end. 

All Critical By design 

Verified by design of 

the SIFIS-Home 

framework architecture 

PE-35 

Devices should, if available, utilize low-

power modes of operation to further 

mitigate the performance impact of 

ongoing (D)DoS attacks. 

All Standard By design 

Verified by design of 

the SIFIS-Home 

framework architecture 

PE-36 

There should be a means to enable an 

optimized, combined establishment of a 

cryptographic secret with a first message 

protected with key material derived from 

that secret. 

All Standard By design 

Verified by design of 

the SIFIS-Home 

framework architecture 

PE-37 

In case of an incomplete or unsuccessful 

configuration change, an error message 

should be returned within 5 seconds  

F-26   Standard UI performance test 

Partially verified. 

Notifications and 

communications are 

verified to be sent in 

less than 5s. 

RE-01    
The system shall not fail more than once a 

week (on average).  
All    Critical 

Event performance 

test 

Not testable in the 

scope of the project 

RE-02    
The system shall not take more than one 

day to be repaired (on average).  
All   Critical 

Event performance 

test 

Repair of the system 

after failure is verified 

to be completed in less 

than 1h 

AV-01    
The SIFIS-Home system services and 

devices shall be available 99% of the time  
All    Critical   

Event performance 

test 

Not testable in the 

scope of the project 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 67 of 76 
 

AV-02    

The SIFIS-Home system shall ensure basic 

services availability in case of system 

failures.  

All   Critical 
Event performance 

test 
By design 

AV-03 

Support should be ensured for devices to 

dynamically react to (D)DoS attacks, by 

gradually adapting their availability. This 

includes relying on communication 

intermediaries for traffic offloading during 

intense (D)DoS attacks. 

All Standard By design By design 

AV-04 

Devices under (D)DoS attacks should be 

able to continue providing a (best-effort) 

service to legitimate requests, i.e., by 

displaying a graceful degradation of 

quality of service. 

All Standard 
Event performance 

test 
By design 

US-01    
The system shall be easy to use for users 

with no technical background  
All    Critical   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 

US-02    

The SIFIS-Home system shall be 

autonomous and learn based on the 

users’ habits, still according to defined 

privacy policies.   

All    Critical   By design By design 

US-03  

The SIFIS-Home system shall consider 

special cases in its design, such as color 

blindness.    

All    Optional By design By design 

US-04  

The SIFIS-Home system shall preserve 

consistency among all devices, related 

databases, and constraints.   

All   Critical    By design By design 

US-05  

The SIFIS-Home hardware components 

should be easy to use for the elderly and 

users with no engineering background.   

All   Optional  Not Verifiable Not Verifiable 

US-06  
The SIFIS-Home system shall have an 

explorable interface.  
All   Standard By design By design 

US-07  
Proper and easy hardware installation 

should be considered.  
All   Standard By design By design 

US-08  

The image-based identification through 

biometrics in a room (interior) or in an 

open space (exterior), without obstacles or 

face covering elements, it should be 

performed by the system in a radius of at 

least 10 meters from the device.   

F-01   Standard 
Event performance 

test 

Limited by image 

resolution. 

US-09  

An untrained user should be able to 

understand that an attack is ongoing in less 

than a minute from reading the SIFIS-

Home alert or notification.  

F-09   

 Critical   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed F-13   

US-10  

An untrained user should be able to 

recognize a software intrusion in less than 

one minute.  

F-19   

 Critical   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 
F-20   

US-11  

An untrained user should be able to 

perform the device registration procedure 

in less than 5 minutes.   

F-23   Standard    UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 

US-12  

An untrained user should be able to 

perform the device de-registration 

procedure in less than 5 minutes.  

F-26    Standard   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 68 of 76 
 

deployed 

US-13  

An untrained user should be able to 

perform the configuration of devices in less 

than 5 minutes.  

F-26    Standard   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 

US-14  

An untrained user should be able to 

perform the installation of an application in 

less than 5 minutes.   

F-28    Standard   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 

US-15  

An untrained user should be able to 

complete the configuration of policies for 

groups of users in less than 5 minutes.  

F-32    Standard   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 

US-16  

An untrained user should be able to 

complete the configuration of policies for 

groups of devices in less than 5 minutes.   

F-33    Standard   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 

US-17  

An untrained user should be able to 

complete the configuration of profiles in 

less than 5 minutes.  

F-37   Standard    UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 

US-18  

An untrained user should be able to 

perform a profile change in less than 30 

seconds.  

F-38    Standard   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 

US-19  

An untrained user should be able to access 

the statistics for visualizing and 

interpreting them in less than 5 minutes.   

F-41    Standard   UI performance test 

The requirement is 

planned to be verified 

once the pilot is 

deployed 

US-20 

The Multi-Level Anomaly Detection 

system (MLADS) must monitor network 

traffic provided by several input sources 

and several locations.  

F-15   

C   By design By design 
F-16   

F-17   

F-18   

US-21 
The workload of the devices should be 

available to the MLADS.   

F-15   

C   By design By design 
F-16   

F-17   

F-18   

US-22 
The list of applications running on each 

device should be available to MLADS.  

F-15   

C   By design By design 
F-16   

F-17   

F-18   

US-23 
Raw sensor data must be available to be 

analyzed by MLADS.  

F-15   

C   By design By design 
F-16   

F-17   

F-18   

US-24 

Features from different devices should be 

aggregable directly or by means of pre-

processing through specific analysis tools.   

F-15   

C   By design By design 
F-16   

F-17   

F-18   

US-25 

When possible, a dataset should not be 

present as a whole on a single device for 

analysis.  

All   S   By design By design 

US-26 The presence of a GPU is needed to F-15   S   By design By design 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 69 of 76 
 

perform DL-based analysis.  F-16   

F-17   

F-18   

DE-01   

Identification through biometrics should be 

performed correctly in more than 95% of 

cases.  

F-01    Critical   
Test on public 

datasets 

Verified as reported in 

deliverable 4.3. 

DE-02   

The start of an interaction command should 

be recognized properly and correctly in 

more than 99% of cases.   

F-06    Critical   
Event performance 

test 

Verified as reported in 

deliverable 4.3. 

DE-03   

The commands to execute should be 

recognized properly and correctly in more 

than 95% of cases.  

F-06   
 Critical   

Event performance 

test 

Verified as reported in 

deliverable 4.3. F-07    

DE-04   

Record of intrusions must be available for 

a configurable time (default six months) 

after the recording.   

F-10    Standard   By design By design 

DE-05   

Identity of the successfully recognized 

intruders must be available for a 

configurable time (default six months) 

after the recording.  

F-12    Standard   By design By design 

DE-06   

Core functionalities should be replicated 

on multiple devices to avoid single points 

of failure.  

F-21    Critical    By design By design 

DE-07   
The registration of a new device should be 

successful in at least 99% of the cases.  
F-23     Critical   

 Event performance 

test 

The operation is 

verified to be 

successful in 100% of 

cases if the device is 

properly functioning 

DE-08   
The de-registration of a new device should 

be successful in at least 99% of the cases   
F-25    Critical    

 Event performance 

test 

The operation is 

verified to be 

successful in 100% of 

cases if the device is 

properly functioning 

DE-09   

The configuration changes should be 

propagated successfully to the devices 

more than 99% of the time.  

F-26     Critical   
 Event performance 

test 

The operation is 

verified to be 

successful in 100% of 

cases if the device is 

properly functioning 

DE-10   

The SIFIS-Home system should be able to 

restore the previous configurations if there 

are errors in applying configuration 

changes.   

F-26    Standard   
Event performance 

test 

The operation is 

verified to be 

successful in 100% 

DE-11   

The installation of the selected app should 

be completed successfully in at least 95% 

of cases.  

F-28   Critical    
Event performance 

test 

The operation is 

verified to be 

successful in 100% of 

cases if the app is 

properly functioning 

DE-12   
The application of policies should always 

be completed successfully.  

F-31   

 Critical    
Event performance 

test 

The operation is 

verified to be 

successful in 100% 

F-34   

F-33   

DE-13   

The configuration of profiles should be 

completed successfully in at least 99% of 

cases.   

F-37    Critical    
Event performance 

test 

The operation is 

verified to be 

successful in 100% 

DE-14   

The change of current profile should be 

completed successfully in at least 99% of 

cases.  

F-38    Critical    
 Event performance 

test 

The operation is 

verified to be 

successful in 100% 

DE-15   
The statistics must be shown correctly in at 

least 99% of cases.  
F-41     Critical   

  Event performance 

test 

The operation is 

verified to be 

successful in 100% 

DE-16   
Remote log-in for the configure should be 

successful in at least 99% cases.  
F-43    Critical    

 Event performance 

test 

The operation is 

verified to be 

successful in 100% if 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 70 of 76 
 

network is available 

DE-17   

The SIFIS-Home system should be able to 

distribute the processing among multiple 

machines in separate places if required.   

All    Critical   
  Event performance 

test 

The operation is 

verified to be 

successful in 100% if 

network is available 

DE-18   

The SIFIS-Home system is required to be 

fault tolerant, it should continue to operate, 

even if one or more of the nodes fail.  

All    Critical   
  Event performance 

test 

The operation is 

verified to be 

successful in 100% if 

network is available 

DE-19   

The SIFIS-Home system is required to be 

scalable dynamically by adding or 

removing nodes according to demand.   

All    Critical   
 Event performance 

test 

The operation is 

verified to be 

successful in 100% if 

network is available 

TE-01   

The SIFIS-Home system needs Java 

version 8 or higher to interact with the 

ontology.  

   Critical     By Design   By Design 

TE-02   

The process for getting and inserting 

information into the ontology will be 

through APIs provided via HTTP(S).   

   Critical     By Design   By Design 

TE-03   

The software for handling the ontology 

should be hosted on a high-availability 

server.   

   Critical     By Design   By Design 

TE-04   Internet connectivity should be present.     Standard   By Design   By Design 

Table 2 Finalized list of Non-Functional requirements for the SIFIS-Home framework. 

 
Table 3: Validation for the security requirements 

Req ID    Requirement Description.    FR    Testable    Priority    Validation   

SE-01     APIs for the communication with internal devices must be secured.    C-02    NT    Critical    -    

SE-02     
APIs for the communication with external devices must 

be secured.     
C-04    NT    Critical    -    

SE-03     Personal data stored must be encrypted.    

F-49    

T    Critical    By design    F-56    

S-04    

SE-04     
The system shall protect and avoid disclosure of sensitive 

information.     

F-56    

NT    Critical    -    F-62    

S-04    

SE-05     The SIFIS-Home system shall prevent data alteration or deletion.    

F-56    

NT    Critical    -    F-61    

S-04    

SE-06     
Wifi access should be protected against known WiFi security 

attacks.    

C-01    
T    Critical    By design    

C-03    

SE-07    Biometrics must be stored safely in the SIFIS-Home database.    F-03    NT    Critical    -    

SE-08    Log-in information should be stored in a protected database.    F-62    NT    Critical    -    

SE-09    
The information about the registered devices, their characteristics 

and their configurations should be stored in a protected database.    

F-25    

NT    Critical    -    F-38    

F-44    

SE-10    
The information about policies should be stored in a protected 

database.    
F-33    NT    Critical    -    

SE-11    The information about user profiles and configuration aspects should F-39    NT    Critical    -    



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 71 of 76 
 

be stored in a protected database.    F-42    

F-44    

SE-12    
Data paths should be identified to allow data tracking and detect data 

leaving the smart-home perimeter, according to policies.    
General    T    Critical    By design    

SE-13    Data confidentiality shall be ensured all the time.    General    NT    Critical    -    

SE-14    The system should not be affected by MITM attacks.    General    T    Critical    By design    

SE-15    
Software and apps shall only be installed with authorisation of the 

smart home administrator or resident users.    
General    T    Critical    -    

SE-16    
Users must be able to configure and allow the usage of data  from the 

SIFIS-Home framework and third- party software.    
General    T    Critical    By design    

SE-17    
Anomalous device behaviours should be identified and signalled in 

less than 60 seconds.    
General    T    Critical    

Verified via 

dedicated 

analytics.   

SE-18    Minimum needed privilege principle must always be enforced.    General    NT    Critical    -    

SE-19    
Access to devices functionalities should be protected and 

controlled     
General    NT    Critical    -    

SE-20    
Access to critical functionalities and services of the SIFIS-Home 

framework shall be protected and controlled.    
General    NT    Critical    -    

SE-21    
Privacy preferences shall be configurable for data, analytics and 

functionalities.    
General    NT    Critical    -    

SE-22    
Analytics shall be able to work with anonymized data when 

possible.    
General    NT    Critical    -    

SE-23    
The SIFIS-Home architecture shall be resilient to network-based 

attacks.    
General    T    Critical    

Verified 

through 

dedicated 

analytics.    

SE-24    The SIFIS-Home architecture shall be resilient to DoS attacks.    General    T    Critical    

Verified 

through 

dedicated 

analytics.       

SE-25    The SIFIS-Home architecture shall be resilient to sybil attacks.    General    T    Critical    By Design   

SE-26    
The SIFIS-Home architecture shall be resilient to device 

compromising attacks.    
General    T    Critical    

Verified 

through 

Node 

Manager   

SE-27    
The SIFIS-Home architecture shall be resilient to Internet connection 

failure.    
General    T    Critical    By Design  

SE-28    
The SIFIS-Home architecture shall be resilient to physical device 

damage or failure.    
General    T    Critical    By Design    

SE-29    Devices must have unique identifiers.    General    NT    Critical    -    

WP3 - SE-

30   

Unless thoroughly assessed and acceptable for the specific 

application, communications in the networked environment shall be 

secured, by ensuring confidentiality/integrity/authenticity of 

messages, as well as protecting from replay protection.   

General   T   C    By Design   

WP3 - SE-

31   

It shall be possible and feasible to provide devices with the necessary 

key material to establish their security associations and to 

communicate securely, with preference for automatic procedures.   
General   T   C   

 By 

Design      

WP3 - SE-

32   

It shall be possible to achieve end-to-end protection of CoAP 

messages at the application layer, by ensuring 

confidentiality/integrity/authenticity of messages, as well as 

protecting from replay protection. This applies also in case 

communication intermediaries are used, as well as for both one-to-

one and one-to-many (group) communication.   

General   T   C   
 By 

Design      

WP3 - SE-

33   
Cryptographic binding between a protected request message and one 

or many corresponding protected response(s) shall be ensured.   
General   T   C   

  By 

Design     



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 72 of 76 
 

WP3 -SE-

34  

Source authentication of protected messages shall be ensured, also in 

a group communication setup where one-to-many messages are 

exchanged.  
General  T  C  

 By 

Design     

WP3 -SE-

35  

Cryptoagility shall be ensured, as a way to allow a seamless possible 

switch to different existing algorithms as well as a seamless possible 

migration to future algorithms.  
General  T  C  

   By 

Design   

WP3 -SE-

36  

Operations related to the creation, configuration, deletion, 

registration and discovery of security groups shall be secured and 

shall be allowed only to authorized entities.  

F-23  

T  C  
   By 

Design   

F-25  

F-26  

F-30  

F-31  

F-32  

F-33  

F-34  

F-35  

F-47  

F-48  

F-49  

WP3 -SE-

37  
When relevant, it shall be ensured that a possible communication 

intermediary can securely identify its adjacent communication hops.  
General  T  C  

 By 

Design     

WP3 -SE-

38  

It shall be ensured that possible secure cacheable response messages 

do not break security properties that are critical for the application 

and specific communication exchanges.  
General  T  C  

 By 

Design     

WP3 -SE-

39  
Devices should be able to detect ongoing (D)DoS attacks based on 

intensity and distribution of invalid traffic.  
General  NT  S  -   

WP3 -SE-

40  

The system shall provide a means to enforce flexible, fine-grained 

and reactive authorized access control for devices to access remote 

resources at other devices.  
General  T  C  

  By 

Design    

WP3 -SE-

41  

It shall be possible to establish security material to use for end-to-end 

secure (group) communication in an authorized way, achieving 

confirmation of the established material.  
General  T  C  

   By 

Design   

WP3 -SE-

42  

The system shall provide a means for enabling devices to get agile 

and possibly automatic notification, in order to signal pertaining 

access credentials that have been revoked while still unexpired.  
General  T  C  

   By 

Design   

WP3 -SE-

43  

There shall be means for two devices to securely establish a new 

cryptographic secret with perfect forward secrecy, while also 

achieving mutual authentication and confirmation of the established 

material.  

General  T  C  
   By 

Design   

WP3 -SE-

44  

There shall be an authorization-based means to securely join/leave a 

security group and retrieve/provide updated key material to 

communicate in the group.  

F-23  

T  C  
   By 

Design   

F-25  

F-26  

F-30  

F-31  

F-32  

F-33  

F-34  

F-35  

F-50  

WP3 -SE-

45  

There shall be a means to securely renew the key material in a 

security group, both periodically and in case the application requires 

backward/forward security.  

F-19  
T  C  

   By 

Design   F-23  



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 73 of 76 
 

F-25  

F-26  

F-50  

WP3 -SE-

46  

When limits on usage of cryptographic material for encryption and 

decryption are exceeded, devices owning that key material shall stop 

using it and specific actions shall be taken to acquire new material 

before possibly resuming communication. The just invalidated key 

material may be temporarily retained and used only for processing 

incoming messages for a limited, pre-configured amount of time.  

General  T  C  
   By 

Design   

WP3 -SE-

47  
There shall be a means for two devices to securely update their 

pairwise key material.  
General  T  C  

   By 

Design   

WP4-SE-

01    
Device administrable domain should be known.    all    NT    S    -  

WP4-SE-

02    
Definition of a template for each type of device which describes the 

features of the specific type of device.    
all    NT   S       - 

WP4-SE-

03    
The identity of the speaker should not be identifiable if the analysis 

is outsourced to external services.    
UC-02    NT    S       - 

WP4-SE-

04    
The background noises in the audio streams must be anonymized if 

the analysis is outsourced to external services.    
UC-02    NT  S       - 

WP4-SE-

05    

Personal information recognizable from audio (e.g., name, telephone 

number, email address, age, physical condition) must be anonymized 

if the analysis is outsourced to external services.    
UC-02    NT   S       - 

 

A number of requirements are verified by design, thanks to the SIFIS-Home framework and/or SIFIS-

Home architecture design that ensure by construction all requirements concerning confidentiality and 

integrity of data. Validation of some usability requirements has been moved to WP6, since involvement 

of non-trained users in the tests will be performed directly on the use case.  

8 Conclusion 

In this deliverable, we have presented the final design, implementation, and integration of the SIFIS-

Home security architecture, along with the latest verification and validation results. The implementation 

and integration consisted in a comprehensive and extensive effort, leveraged state-of-the-art 

technologies and tools. 

The allocation of the SIFIS-Home framework components, completed in 2021 and revised in 2022, has 

proven to be a vital decision. The collaboration with the right partners for each component has been 

instrumental in reaching this point. All partners have worked diligently together to complete the 

necessary implementation and testing tasks, address challenges, and resolve issues that arose during the 

process. This includes technical aspects, communication interfaces, security, access rights, data flow, 

as well as the processes for the software continuous integration and continuous deployment. 

The verification and validation activities, including unit testing and system testing in the test beds, 

required detailed coordination and clarification of expectations among all the partners. The success of 

the third iteration of the SIFIS-Home security architecture defined in deliverable D1.4 served as the 

backbone for both the implementation and deployment of the test beds and of the actual security 

architecture. 

The utilization of the Distributed Hash Table (DHT) technology, which forms the core of the SIFIS-

Home network, has been proven suitable for creating distributed and self-healing networks. 

In summary, based on our self-assessment, verification and validation results, we have succeeded in 

implement, integrate, deploy, verify and validate the SIFIS Home security architecture with help of the 

test beds. The next step will be to finalize the pilot in WP6. 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 74 of 76 
 

 

 

 

 

  



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 75 of 76 
 

9 References 

[Maymounkov et al. 2002] P. Maymounkov, D. Mazières, "Kademlia: A Peer-to-Peer Information 

System Based on the XOR Metric", Peer-to-Peer Systems. IPTPS 2002. Lecture Notes in Computer 

Science, vol 2429. Springer, Berlin, Heidelberg 

 

[Faiella et. al 2016] Mario Faiella, Fabio Martinelli, Paolo Mori, Andrea Saracino, Mina Sheikhalishahi: 

Collaborative Attribute Retrieval in Environment with Faulty Attribute Managers. ARES 2016: 296-

303 

 

[WoT, 2020] Web Of Things (WoT) Architecture, W3C recommendation 9 April 2020, 

https://www.w3.org/TR/wot-architecture/ 

 

[ANSIBLE] Continuous integration and delivery with Ansible, 

https://www.redhat.com/en/engage/delivery-with-ansible-20170906  

 

[FIWARE, 2021] What is FIWARE?, https://www.fiware.org/developers/ 

 

[FIWARE NGSI v2 API] FIWARE NGSI v2 API definition: https://swagger.lab.fiware.org/ 

 

[YGGIO, 2021] Yggio DiMS, Digitalization infrastructure Management System,  

https://sensative.com/yggio/ 

 

[La Marra et al, 2017]  Antonio La Marra, Fabio Martinelli, Paolo Mori, Andrea Saracino: 

Implementing Usage Control in Internet of Things: A Smart Home Use Case. 

TrustCom/BigDataSE/ICESS 2017: 1056-1063 

 

[Facchini et al, 2020] Simone Facchini, Giacomo Giorgi, Andrea Saracino, Gianluca Dini: 

Multi-level Distributed Intrusion Detection System for an IoT based Smart Home Environment. ICISSP 

2020: 705-712 

 
[Saracino et al, 2021] M Sheikhalishahi, A Saracino, F Martinelli, A La Marra, Privacy preserving 

data sharing and analysis for edge-based architectures, International Journal of Information Security, 

1-23  

 

[XACML, 2017] eXtensible Access Control Markup Language (XACML) version 3.0 plus errata 01 

(2017). URL: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html 

 

[Perkins, 1999] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, Proceedings 

WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications 

 

[Dwo08] C. Dwork. Differential privacy: A survey of results. In International conference on theory 

and applications of models of computation, pages 1–19. Springer Berlin Heidelberg, 2008. 

 

[ZP17] Zhou, C., & Paffenroth, R. C. (2017, August). Anomaly detection with robust deep 

autoencoders. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge 

discovery and data mining (pp. 665-674). 

 

[Park et al., 2004] Park, J., & Sandhu, R. (2004). The UCONABC usage control model. ACM 

transactions on information and system security (TISSEC), 7(1), 128-174. 

https://www.w3.org/TR/wot-architecture/
https://www.redhat.com/en/engage/delivery-with-ansible-20170906
https://www.fiware.org/developers/
https://sensative.com/yggio/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 76 of 76 
 

 

[Di Cerbo et al., 2018] Di Cerbo, F., Lunardelli, A., Matteucci, I., Martinelli, F., & Mori, P. (2018, 

September). A declarative data protection approach: from human-readable policies to automatic 

enforcement. In International Conference on Web Information Systems and Technologies (pp. 78-98). 

Springer, Cham. 

 

[Balana, 2021] WSO2 Balana implementation. URL: https://github.com/wso2/balana 

 

[RFC8520] Lear, E., Droms, R., and D. Romascanu, "Manufacturer Usage Description Specification", 

RFC 8520, DOI 10.17487/RFC8520, March 2019. URL: https://www.rfc-editor.org/info/rfc8520 

  

https://github.com/wso2/balana
https://www.rfc-editor.org/info/rfc8520


H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.4 

 

 

Version: 1.0 Page 77 of 76 
 

Glossary 

 

Acronym Definition 

ACE Authentication and Authorization for Constrained Environments 

AM Attribute Manager 

AODV Ad-hoc On-demand Distance Vector 

API Application Programming Interface 

CoAP Constrained Application Protocol 

CH Context Handler 

DHT Distributed Hash Table 

EDHOC Ephemeral Diffie-Hellman Over COSE 

FR Functional Requirements 

HTTP Hyper Text Transfer Protocol 

JSON JavaScript Object Notation 

MQTT MQ Telemetry Transport 

MUD Manufacturer Usage Description 

NFR Non-functional requirement 

NSSD Not So Smart Device 

OS Operative System 

OSCORE Object Security for Constrained RESTful Environments 

PAP Policy Administration Point 

PDP Policy Decision Point 

PEP Policy Enforcement Point 

PIP Policy Information Point 

PTP Policy Translation Point 

P2P Peer to Peer 

REST Representational State Transfer 

SD Smart Device 

SIFIS-Home Secure Interoperable Full Stack Internet of Things for Smart Home 

SSH Secure Shell 

SM Session Manager 

TBD To Be Defined 

UC Use case 

UCON Usage Control 

UCP Usage Control Policy 

UCS Usage Control System 

UI User Interface 

US User story 

WoT Web of Things 

WP Work Package 

XACML eXtensible Access Control Markup Language 

 


