
H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

D5.2

First Version of SIFIS-Home Security

Architecture Implementation

WP5 – Integration, Testing and Demonstration

SIFIS-Home

Secure Interoperable Full-Stack Internet of Things for Smart Home

Due date of deliverable: 30/09/2022

Actual submission date: 30/09/2022

Responsible partner: SEN

Editor: SEN

 E-mail address: hakan.lundstrom@sensative.com

30/09/2022

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-Home Project is supported by funding under the Horizon 2020 Framework Program

of the European Commission SU-ICT-02-2020 GA 952652

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Authors: Håkan Lundström (SEN), Marco Tiloca (RISE), Luca Barbato (LUM), Otto

Waltari (FSEC), Andrea Saracino (CNR), Domenico Deguglielmo (DOMO)

Reviewed by: CNR, Joni Jämsä (Centria), Tom Tuunainen (Centria), Matthias Schunter (INT),

Valerio Frascolla (INT)

Revision History

Version Date Name Partner Section Affected

Comments
0.1 13/02/2022 Initial version SEN All

0.2 12/04/2022 Restructured version SEN All

0.3 27/04/2022 Group OSCORE, ACE, Edhoc RISE Implementation

0.4 04/05/2022 Several new chapters added. UX;

FIWARE, etc.

SEN All

0.5 12/05/2022 Several chapters completed SEN, F-Sec Validation, Intro, Conclusion,

Executive summary

0.9 24/05/22 Ready for review SEN, CNR, LUM All

1.0 31/05/2022 Reviewer's comments addressed SEN All

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Executive Summary

In this deliverable the status and implementation aspects of the first version of the SIFIS-Home security

architecture is described based on the latest revised architecture defined in D1.4. It is a very extensive

implementation of state-of-the-art technologies done by many different partners across Europe with

different type of competences and know-how. Each and every defined SIFIS-Home framework

component is walked through in detail and the implementation aspects, as well as status including a

GitHub link to the released open-source code, are discussed.

The refined architecture is promising and solves the problems that were discovered during the

implementation so far. It is though inevitable that further problems will arise during the integration and

final development of all the components and when that happen, we will evaluate the situation and decide

on suitable way forward.

Since the implementation and integration of the system, according to plans, will be completed in the

next months, the system test activities have not started. Instead, the focus has been on unit testing of the

different components one by one to secure they work as planned, so once the integration of all

components is complete focus can be put on the SIFIS-Home use cases.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 6 of 41

Table of contents

Executive Summary ... 3

1 Introduction ... 7

2 Test bed used to verify implementation .. 7

3 Implementing the security architecture .. 8

3.1 Architecture .. 8

3.1.1 Architecture iterations .. 8

3.1.2 Allocation of components .. 10

3.2 User Interface - The application and Cloud framework .. 12

3.2.1 Cloud Framework: ... 13

3.2.2 Application Framework ... 15

3.3 Smart Device Framework .. 15

3.3.1 Secure Lifecycle Manager ... 15

3.3.2 Secure Communication Layer.. 17

3.3.3 Proactive Security Management Layer .. 18

3.3.4 Application toolboxes: ... 20

3.3.5 API Gateway .. 27

3.3.6 NSSD Manager .. 28

3.3.7 DHT Manager .. 29

3.4 NSSD Framework .. 30

3.4.1 Bootstrap Manager ... 31

3.4.2 Device API Manager.. 31

4 Integration ... 31

4.1 Integration strategy .. 31

4.2 Analytics integration (WP4) .. 31

4.3 Network and security solution integrations (WP3) .. 35

5 Verification status and results ... 36

5.1 wot-rust crates .. 36

5.2 sifis-generate .. 37

5.3 DHT ... 38

5.4 Security solutions (WP3) ... 39

5.5 Cloud UI components .. 39

5.6 Network Anomaly Detection / AUD Manager .. 39

6 Conclusion .. 40

7 References ... 41

Glossary ... 43

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 7 of 41

1 Introduction

This deliverable reports on the implementation of the first version of the SIFIS-Home security

architecture based on the architecture defined in deliverable D1.4. It starts by a short re-cap of the test

bed described in D5.1, then describes how the architecture has evolved from D1.3 until today, how it

has affected the implementation, and the main problems that have been solved with the revised

architecture.

A key topic during the implementation of the security architecture described in this deliverable is the

allocation of the different components to the different partners based on their competence and

committed contributions to the project. The report also describes the detailed implementation aspects

and status of every component in the security architecture including providing a GitHub link per

component to all code that has been released as open source. Special focus is put on the integration of

the security solutions developed in WP3 and the analysis methods developed in WP4.

The deliverable then elaborates on the general integration strategy by using Docker containers and the

current status of the verification of the SIFIS-Home framework. Since the implementations of

framework is still ongoing, and it is not in a system verification testable state, the verification result is

focused on the unit testing of some selected components that have reached a sufficiently stable maturity

level.

This deliverable finally summarizes our view of the implementation status and the way forward.

2 Test bed used to verify implementation

The implementation of the components is first verified by respective partners and will after integration

be verified on the SIFIS-Home official test bed built around the “Panarea” server in CNR’s facilities.

The partners will upload their components via Secure shell (SSH) and configure them. In the Panarea

server the SIFIS-Home Cloud Framework will execute as well as other SIFIS-Home technologies like

simulated SIFIS-Home smart devices, analytics and network security solutions. The test is described in

Figure 1.

Figure 1: The SIFIS-Home test bed setup

Physical devices, both Not so smart devices (NSSD) and SIFIS-Home Smart devices built upon

Raspberry PI, will then be connected to the SIFIS-Home network and all components will be verified.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 8 of 41

3 Implementing the security architecture

3.1 Architecture

3.1.1 Architecture iterations

The design of the SIFIS-Home framework in WP1 is based on Docker containers with microservices

design pattern. Each microservice defines a Rest API to interface with it. The high-level architecture of

the SIFIS-Home framework was originally defined in D1.3 (see Figure 2 below) and was the basis for

the start of the implementation of the security architecture and the test bed design.

Figure 2 Original high-level architecture of the SIFIS-Home framework as defined in D1.3

As described in D5.1 “First version of the SIFIS-Home Test bed” there were some issues in the

architecture related to the API gateway and the Web-of-Things (WoT) that could not be implemented

and a revised architecture with some extra components was proposed to WP1 to study. See Figure 3

below.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 9 of 41

Figure 3: Revised SIFIS-Home architecture with some components moved to the API Gateway

WP1 studied the problems highlighted in D5.1 and revised the security architecture to become

modularised in a few different frameworks. The revised architecture was described in detail in

deliverable D1.4, where each framework fulfils a specific need:

• SIFIS-Home Smart Device Framework: the set of software components that are executed on

the Smart Devices (SD).

• SIFIS-Home Application Framework: the set of software components that are installed on a

mobile device (smartphone).

• SIFIS-Home NSSD Framework: the set of software components that are executed on the

NSSD (SD).

• SIFIS-Home Cloud Framework: the set of software components and applications that reside

on the SIFIS-Home cloud that are mainly used to allow a user to control the smart home from a

remote side.

• SIFIS-Home Development Tools: the set of developer tools that have been developed in the

context of WP2. The development tools are out of scope for this document.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 10 of 41

Figure 4: Latest version of the SIFIS-Home architecture as defined in D1.4

The latest version of the security architecture in Figure 4 is currently being implemented and is the main

focus of this document.

3.1.2 Allocation of components

The SIFIS-Home architecture is the representation of the devices and actors interacting with the SIFIS-

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 11 of 41

Home framework as originally defined in D1.3 and then refined in D1.4. To design and later implement

the test bed we started by finding out all partners capabilities, experience, commercial interest and

availability of legacy code, tools and devices. The combinations of the partners know-how and the

architecture and the requirements of the SIFIS-Home framework then led us to identify the optimal

allocation of all components to different partners to implement the security architecture.

The optimal partner allocation to implement a test bed of the D1.4 architecture is defined in the Table

1 below except for the User Interface (UI) part that resides on the application framework on mobile

phones that is still under technical design phase and marked with To Be Defined (TBD) in the table.

Component / Subcomponent Partner Notes

User Interface SEN / TBD Cloud interface / Application Framework

- Home SEN / TBD Cloud interface / Application Framework

- Device Management SEN / TBD Cloud interface / Application Framework

- Settings SEN / TBD Cloud interface / Application Framework

- Alarm / Logs SEN / TBD Cloud interface / Application Framework

- Marketplace SEN Cloud interface

- Fiware API SEN Ratatosk Context Broker on cloud

- Input Collection DOMO

Component that allows to capture audio
and images from the microphones and
cameras of the user smartphone.

- Policy Manager POL Application Framework

Secure Lifecycle Manager CNR

- Application Manager CNR Code inlining routines

- Node Manager CNR
Set of functionalities used by DHT-
Distributed hash table

- Authentication Manager RISE Set of functionalities and protocols

- Key Manager RISE Set of functionalities and protocols

- System Protection Manager CNR Set of functionalities

Secure Communication Layer RISE

-Secure Message Exchange Manager RISE Set of functionalities and protocols

- Content Distribution Manager RISE Set of functionalities and protocols

NSSD Manager DOMO

- CoAP Manager RISE Pub-sub-based command interface

- WoT Manager
LUM/DOMO/R
IOTS

It is an application that receives
commands from the DHT and forwards
them to WoT enabled devices. It also
updates the state of WoT enable devices
on the DHT.

Proactive Security Management
Layer CNR

- Monitors CNR Set of functionalities

- Distributed Trust CNR Set of functionalities

- Self-Healing CNR Set of functionalities

Application Toolboxes CNR

- Data Analysis Toolbox CNR Set of analysis functionalities and tools

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 12 of 41

for data format management

--Pre-Processing Layer/Post-
Processing DOMO

Software component that takes care to
change the format of data coming from
the devices such that it can be easily used
by the analytics applications.

-- Behavioral Analysis CNR Tools for data analysis

-- Network Analysis F-Secure Real time network monitor and analyzer

-- Multimedia Analysis LUM Tools for data analysis

-- Application Analysis CNR Tools for data analysis

-- Log storage SEN Monitoring and storage

-- Physical Analysis CNR Monitoring and storage

-- Data Analysis Engine CNR Container of analysis functionalities

- Anonymization Toolbox CNR Anonymization functionality

- Policy Enforcement Engine CNR Enforcement functionalities

SIFIS-Home API Gateway

Mobile Application API Centria / TBD

Joining of device, view status, send

commands.

3rd party API LUM / POLITO Extension of WoT API

Integration components

SD Web Interface to create users and
join an existing house DOMO

Set of APIs exposed by a Web Service that
allow i) adding a new SD to a SIFIS-Home
system, ii) adding new users

NSSD interface for joining DOMO

Set of APIs provided by NSSDs through
which it is possible to send them joining
information

DHT-MQTT integration component CNR, DOMO

Software component that allows
exchanging messages between the SIFIS-
Home DHT and the Yggio MQTT broker.

DHT-KeyCloack integration
component CNR, DOMO

Software component that allows user-
related data synchronization between
the DHT and Keycloack

WoT Discovery component CNR, LUM
Software component that allows
discovering WoT-enabled devices

Application Manager, Marketplace RIOTS, CEN,

The Application Manager allows
installing third-party SIFIS-Home
application on a SD. The Marketplace
component is a cloud service providing
the list of available third-party
applications that can be installed on a SD.

Policy Creation Component POLITO Integration
Table 1 Component allocation

3.2 User Interface - The application and Cloud framework

This component provides the Graphical User Interfaces to all different typologies of users that will

utilize the SIFIS-Home Framework.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 13 of 41

The Application Framework that contains the UI that executes on the SIFIS-Home smart devices

residing inside the home will contain, for the device, the relevant subset of the web interface. This UI

is still under design phase.

The web part of the user interface resides on the Cloud Interface since it needs to be accessible both

inside the SIFIS-Home network and externally from internet when the home users are outside of the

home. The web UI on the Cloud Interface runs on top of the RATATOSK Context broker, but FIWARE

does not implement all the needed APIs required by the cloud UI, so Sensative Yggio’s legacy

proprietary API’s and security APIs are used as well to simplify the implementation of the SIFIS-Home

Cloud Interface.

3.2.1 Cloud Framework:

This component, Figure 5, and includes a set of high-level APIs and is used to access SIFIS-Home

networks and their UI both internally from inside the network and externally. The web applications are

a major development effort and are being developed based on Node.js JavaScript and utilize REACT

components with Next.JS framework. For more details one can refer to D5.1.

Figure 5: The Cloud Framework

• FIWARE Context Broker Ratatosk

The core part of the API gateway is the FIWARE Context Broker Ratatosk, Figure 6, on top of

which its UI is built upon. Ratatosk Context broker contains the full description of every SIFIS-

Home network that is connected to the gateway.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 14 of 41

Figure 6: Ratatosk FIWARE Context Broker which is the core of the cloud UI

The Ratatosk implementation is available here: https://github.com/sifis-home/yggio-ratatosk

• Cloud UI powered by SIFIS Yggio:

The Sensative horizontal Internet of Things (IoT) integration platform is used as the backbone

of the SIFIS-Home cloud interface. It provides the execution environment that makes Ratatosk

possible to execute, and its API makes it possible to implement the SIFIS-Home overall web

interface UI. The web UI is feature rich with focus on device and user management and was

illustrated in D5.1.

The Cloud UI implementation is available here: https://github.com/sifis-home/yggio-components

• Market Place:

The Market Place, Figure 7, resides on cloud UI and will allow the end user can download

applications and install them in their SIFIS-Home network or directly allow web applications to

securely, via OAuth or basic credentials, access the SIFIS-Home network via the cloud interface.

Currently the Market Place via its API’s fully support OAuth 2.0 security integration to give 3rd

party application access to the SIFIS-Home network.

Figure 7: The marketplace with some initial applications

The Market Place implementation is available here: https://github.com/sifis-home/yggio-

components/tree/master/control-panel-v2/src/pages/apps

https://github.com/sifis-home/yggio-ratatosk
https://github.com/sifis-home/yggio-components
https://github.com/sifis-home/yggio-components/tree/master/control-panel-v2/src/pages/apps
https://github.com/sifis-home/yggio-components/tree/master/control-panel-v2/src/pages/apps

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 15 of 41

• VPN Manager:

This component is responsible for managing the set of VPN servers that allow access to SIFIS-

Home enabled houses from a remote side. It provides an HTTP API through which it is possible

to create a dedicated VPN instance associated to every SIFIS-Home house. A dedicated DNS

record for every VPN instance is created. Our intention is to use Wireguard as VPN server.

• Home Registration Manager:

it provides an interface through which it is possible to create a new SIFIS-Home enabled house.

When a new house is created, a VPN server and an Yggio instance dedicated to the house are

created.

• Alarm / Logs:

a component including features to show alarms to the user, and to gather logs of the

functioning of the SIFIS-Home infrastructure. The log storage component was decided to be

based on the well proven standard UNIX SYSLOG format

(https://datatracker.ietf.org/doc/html/rfc5424).

This component is still to be developed and final design and architecture has not been locked

down. No code base available yet.

3.2.2 Application Framework

This module handles the standard workflow of the SIFIS-Home framework. It consists of the modules

Application Manager, Node Manager, Device Registration Manager and System Protection Manager.

The actual UI in the Application Framework is being implemented as a web view application so it can

utilize the same applications that are being developed for the cloud interface.

• Home: the principal component of the UI, containing commands that lead the resident user of

the SIFIS-Home system to the lead features of the infrastructure. From here the user can launch

device management, user management and the application launcher.

• Application launcher: it provides graphical UI from which the user can visualize available

applications to be installed on to the SIFIS-Home system, connect, download, install, update

them if new versions are available, and launch them.

• Device management: this component enables user to do configuration of the available devices

in the SIFIS-Home network, each device status can be visualized and if the device supports it

also configuration downlinks can get sent. Metadata can be added to each device.

• Settings: it provides UI for the configuration of the SIFIS-Home infrastructure. Different

interfaces are provided to different actors of the SIFIS-Home system. This is embedded into the

device manager.

• Input collection: it is in charge of providing the facility of collecting the inputs from the user,

in all the forms that are allowed by the system.

3.3 Smart Device Framework

3.3.1 Secure Lifecycle Manager

https://datatracker.ietf.org/doc/html/rfc5424

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 16 of 41

This module, illustrated in Figure 8, handles the standard workflow of the SIFIS-Home framework. It

consists of the modules Application Manager, Node Manager, Device Registration Manager and System

Protection Manager.

 Figure 8: Secure Lifecycle Manager

• Application Manager

It handles installation and removal of SIFIS-Home 3rd party applications. The component is

under development and is now available as an interface to enable control of executables in

different system, such as operating on Docker Containers, Linux Executables, or Mobile

Applications.

• Node manager

It is the component responsible for keeping consistent the list of smart devices in a SIFIS-Home

instance, with the participant to the DHT. This component is implemented in the Rust

programming language and exploits the LibP2P library as all the other components related to

the DHT. The component is fundamental to allow dynamic joining of nodes and also handles

the removal of nodes in different circumstances.

• System Protection manager

It is the component that receives inputs from the various monitors and triggers action by

communicating with the Application Manager and Node Manager through the DHT.

• Authentication Manager and Key Manager

The following security solutions developed in WP3 pertain to the “Secure Lifecycle Manager”

module, and a link to their implementation from RISE is also provided. These implementations

build on the open-source Eclipse Californium CoAP framework available at [CALIFORNIUM],

which provides the CoAP protocol and the OSCORE security protocol. A single codebase

collecting these implementations is accessible at [WP3-CODEBASE], as available for use,

integration and testing within the SIFIS-Home project and especially in the interest of the WP5

testbed.

[CALIFORNIUM] https://github.com/eclipse/californium

[WP3-CODEBASE] https://github.com/sifis-home/wp3-solutions

- OSCORE profile of the ACE framework, as documented in Section 5.1 of D3.2. This

security solution pertains to the “Authentication Manager” and the “Key Manager”

components of the “Secure Lifecycle Manager” module. Together with the main ACE

framework, the implementation is available at https://bitbucket.org/marco-tiloca-sics/ace-

https://github.com/eclipse/californium
https://github.com/sifis-home/wp3-solutions
https://bitbucket.org/marco-tiloca-sics/ace-java

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 17 of 41

java

- Key provisioning for Group OSCORE communication using the ACE framework, as

documented in Section 6.1 of D3.2. This security solution pertains to the “Authentication

Manager” and the “Key Manager” components of the “Secure Lifecycle Manager” module.

Together with the main ACE framework, the implementation is available at

https://bitbucket.org/marco-tiloca-sics/ace-java

- EDHOC key establishment, as documented in Section 6.3 of D3.2, including specific

profiling for CoAP and OSCORE. This security solution pertains to the “Key Manager”

component of the “Secure Lifecycle Manager” module. The implementation is available at

https://github.com/rikard-sics/californium/tree/edhoc

3.3.2 Secure Communication Layer

This module, shown in Figure 9, handles the standard workflow of the SIFIS-Home framework. It

consists of the modules Secure Message Exchange Manager, Content Distribution Manager and

Network Protection Manager.

 Figure 9: Secure Communication Layer

• Secure Message Exchange Manager and Content Distribution Manager

The following security solutions developed in WP3 pertain to the “Secure Communication

Layer” module, and a link to their implementation from RISE is also provided. These

implementations build on the open-source Eclipse Californium CoAP framework available at

[CALIFORNIUM], which provides the CoAP protocol and the OSCORE security protocol. A

single codebase collecting these implementations is accessible at [WP3-CODEBASE], as

available for use, integration and testing within the SIFIS-Home project and especially in the

interest of the WP5 testbed.

[CALIFORNIUM] https://github.com/eclipse/californium

[WP3-CODEBASE] https://github.com/sifis-home/wp3-solutions

- Group OSCORE, as documented in Section 4.1 of D3.2. This security solution pertains to

the “Secure Message Exchange Manager” and the “Content Distribution Manager”

components of the “Secure Communication Layer” module. The implementation is available

at https://github.com/rikard-sics/californium/tree/group_oscore.

- OSCORE profile of the ACE framework, as documented in Section 5.1 of D3.2. This

security solution pertains to the “Secure Message Exchange Manager” and the “Content

Distribution Manager” components of the “Secure Communication Layer” module.

Together with the main ACE framework, the implementation is available at

https://bitbucket.org/marco-tiloca-sics/ace-java.

https://bitbucket.org/marco-tiloca-sics/ace-java
https://bitbucket.org/marco-tiloca-sics/ace-java
https://github.com/rikard-sics/californium/tree/edhoc
https://github.com/eclipse/californium
https://github.com/sifis-home/wp3-solutions
https://github.com/rikard-sics/californium/tree/group_oscore
https://bitbucket.org/marco-tiloca-sics/ace-java

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 18 of 41

- Key provisioning for Group OSCORE communication using the ACE framework, as

documented in Section 6.1 of D3.2. This security solution pertains to the “Secure Message

Exchange Manager” and the “Content Distribution Manager” components of the “Secure

Communication Layer” module. Together with the main ACE framework, the

implementation is available at https://bitbucket.org/marco-tiloca-sics/ace-java.

- EDHOC key establishment, as documented in Section 6.3 of D3.2, including specific

profiling for CoAP and OSCORE. This security solution pertains to the “Secure Message

Exchange Manager” and the “Content Distribution Manager” components of the “Secure

Communication Layer” module. The implementation is available at

https://github.com/rikard-sics/californium/tree/edhoc.

• Network Protection manager

The Network Protection Manager is a security solution responsible for taking pre-emptive and

reactive actions against different security attacks. It takes actions based on commands from other

microservices, such as DHT Monitor, Network Monitor, and Analytic Toolbox.

For external threats to SIFIS-Home, the Network Protection Manager keeps an updated database

of known malicious networks from open-source threat intelligence feeds and takes pre-emptive

measures by blocking those networks.

For reactive actions, the Network Protection Manager provides an HTTP REST API that has a

function to start an emergency action to isolate the device from the network. For example,

suppose a device is detected as part of a DoS attack or can’t be trusted for different reasons. In

those cases, the Network Protection Manager tries to disable the network from the problematic

device.

The Network Protection Manager is run on all Smart Devices, mainly taking action against the

Smart Device where it is run when malicious activities are detected. When possible, the

problematic device reports about itself through DHT and is isolated from other Smart Devices

by their respective Network Protection Managers. This ensures that if the infected device can’t

communicate with other devices, in case the malware cancels the action made by Network

Protection Manager on that device, the attack still gets isolated.

The implementation of the Network Protection manager is available at https://github.com/sifis-

home/wp5_network_protection_manager.

3.3.3 Proactive Security Management Layer

Figure 10: Proactive Security Management Layer

https://bitbucket.org/marco-tiloca-sics/ace-java
https://github.com/rikard-sics/californium/tree/edhoc
https://github.com/sifis-home/wp5_network_protection_manager
https://github.com/sifis-home/wp5_network_protection_manager

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 19 of 41

This component, shown in Figure 10, is responsible for maintaining the security aspects of the SIFIS-

Home infrastructure in advance. Proactivity implies taking preemptive measures before an incident

occurs. The following proactive security measures are being developed as part of SIFIS-Home project,

and will be part of the security architecture:

• Monitors

This component is made by a collection of modules used to log specific events at different levels.

The levels are the following:

- DHT Monitor: Implemented through the libP2P library, it logs the number and type of

operations performed on the DHT.

- Application Monitor: Under development, this component in-lines security critical

APIs to log when they are invoked by 3rd party applications. The component is being

implemented to support different platforms. We are currently working on three

implementations. The first one is designed to be inserted in the SIFIS-Home API. Each

API includes a first code line which is used to check authorizations and is able to

terminate the execution of the function if authorization is not present. The second one

targets Linux applications by inlining specific system calls, based on change of address

in the system calls table. This monitor can be installed at runtime through the INSMOD

command. Finally, a third implementation is available for Android systems by exploiting

the XPosed Framework1, which is used to inline any API call in the Android system.

- Network Monitor: It acquires traffic through capturing packets via iptables. It is

intended to run on central networking devices, such as a router through which devices

communicate both inside the SIFIS-Home and to the wider Internet.

- SysCall Monitor: It collects system call events through a REST API and conveys them

further to the responsible analytic in the analytic toolbox for assessment.

• Distributed Trust

The distributed trust component is a mechanism that assigns continuously to each smart device

a trust score and manages distributed decisions under biased voting. The mechanism ensures

that those devices with a trust score below threshold cannot participate in further voting

procedures, until their trust level is not re-assessed. The component is implemented in Java 8

and it is based on standard libraries. A porting to Rust is also being performed as well as the

integration in the SIFIS-Home platform.

• Self Healing

The self-healing component of SIFIS-Home has two functionalities which are executed once a

device has been identified as compromised and made unable to interact with the SIFIS-Home

architecture. The first functionality triggers a reconfiguration of the SIFIS-Home architecture to

avoid network partitions and reconnect NSSDs which remained isolated after the removal of

their responsible device.

This component is then also used to run a set of routines automatically on smart devices which

have been identified as misbehaving. Depending on the identified misbehaviour a number of

actions can be taken, e.g., an application deemed as malicious can be removed forcefully, then,

after a memory analysis, the device can be re-integrated. As an alternative, the self-healing can

1 https://xposed-installer.it.uptodown.com/android

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 20 of 41

trigger a full reset of the smart device. The component is currently under development as a RUST

module partially based on the LibP2P library.

• Manufacturer Usage Description (MUD)

MUD [RFC8520] is a proposed standard to define the network behavior of an IoT device. The

usage description itself is an access control list defined by the vendor. It explicitly defines

protocols, ports, and endpoints with which a particular IoT device is allowed to communicate

with. However, as of today, vendors that provide MUD support are very few. Through

leveraging the usage description models created by one of the SIFIS-Home analytics, AUD -

Aggregated Usage Description manager (described in Section 4.2), we can create access control

lists for any local IoT device and mimic the proactive security mechanisms specified in the MUD

standard. Through enforcing such an access control measure for a home IoT device, one would

block any incoming harmful network intrusion attempts. The code related to MUD adaptation

and AUD Manager is available at https://github.com/sifis-home/wp4-aud_manager.

• Evaluator / Notifier

The evaluator component is a software entity responsible for evaluating the relevance of detected

anomalies. Since all network anomalies are not inherently harmful, the evaluator decides based

on given parameters the severity of an anomaly, and whether it should be reported to end users.

Evaluator components are highly specific to the type of anomaly they are expected to evaluate.

The evaluator for network anomaly detection is implemented in Python. The notifier component

implements the link through which anomaly reports are conveyed to end users.

3.3.4 Application toolboxes:

This component, shown in Figure 11, collects related and interconnected sub-components that are all

services inside the SIFIS-Home infrastructure.

 Figure 11: The application toolboxes

• Data Analysis Toolbox

This component of the SIFIS-Home framework is devoted to the execution of the analytics on

the data collected from the sensors and smart devices in the smart home, aimed at analyzing

voice and gesture commands, providing advanced smart services to the smart home users,

detecting misbehavior, intrusions, failures, and so on. This component is activated by the other

components of the framework, which request the execution of analytic functions on given sets

of data. A request could ask for a single execution of one analytic function on a given set of data,

or to repeat the execution of an analytic function several times on distinct sets of data. The

interactions between the Data Analysis Toolbox and the other components of the SIFIS-Home

Framework occur through the DHT. In particular, the Data Analysis Toolbox creates a topic for

each of the analytics it provides and subscribes to the smart home devices to all these topics.

https://github.com/sifis-home/wp4-aud_manager

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 21 of 41

When a component of the SIFIS-Home Framework needs the execution of an analytics, it simply

publishes a message on the topic related to these analytics, embedding in the message a JSON

string with the details of this invocation (e.g., the link to the set of data to be used, whether the

request must be executed once or repeated n times, etc.). The interaction between the Data

Analysis toolbox and the DHT starts with a published message as illustrated in Figure 12 to a

specific pre-defined topic representing the name of the analytics to be performed on the shared

data via JSON format. The published JSON message is composed of the topic name, the topic

Id, the ID of the component requesting the data analytics, the description of the requested

analytics, and the data inputs needed to perform data analysis, such as an audio file and privacy

parameters, and for privacy-aware speech recognition, or a list of temperature values for device

anomaly detection analytics. This JSON message is published via an HTTP REST or a

WebSocket-based API.

Figure 12: Interaction between the Data Analysis toolbox and the DHT

The Data Analysis Toolbox receives the requests from the DHT, having subscribed to the related

topics, and the parameters are included in the messages paired to the requests. Once a published

message has been received by the DHT, the data analysis module related to the specified topic

is called and executed on the data as in the code presented in Figure 13.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 22 of 41

Figure 13: The data analysis module is called to evaluate a specific topic

Each analytic has its own execution workflow. Some analytics require the data to be pre-

processed before being analyzed. The Data Analysis Toolbox will offer a set of data preparation

functions which will involve cleaning missing and noisy data, transforming data into an

appropriate and unified format, normalizing data according to a given range of values, and

reducing data dimensions by selecting or combining variables into features.

Pre-processing functions will be provided by the Data Analysis Toolbox based on the analytics

being invoked. At the time of writing, the analytics integrated within the Data Analysis Toolbox

have the required pre-processing steps integrated within the analytics module.

The Data Analysis Toolbox embeds a set of analytics engines, implementing the analytics it

provides. Since each analytics engine requires its own execution environment (e.g., a specific

library or a specific version of a library, specific or customized utilities, and so on) and the

environment of one engine could be not compatible with the environment of one of the others,

we have isolated such environments using the container virtualization technology. Hence, each

analytics engine is deployed in distinct containers, using the docker technology, and the Data

Analysis Toolbox invokes each of such engines through the HTTP REST or the WebSocket-

based interface the engine exposes.

Hence, the Data Analysis Toolbox invokes the analytics engine implementing the requested

analysis. This engine receives as input the dataset and performs the pre-processing. Some

analytics require the results to be post-processed before being returned. Therefore, the post-

processing step is also integrated as a function into the data analysis module depending on the

analytics being invoked.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 23 of 41

Finally, the Data Analysis Toolbox returns the result to the component which has requested the

analysis through the DHT as well in a JSON format as shown in Figure 14.

 Figure 14: The data analysis result is returned to the requester component

For further details about the analytics toolbox and how each of the analytics is integrated into

the security architecture see Section 4.1.

• Anonymization Toolbox

The anonymization toolbox contains software tools to preserve privacy of data before, during,

and after analysis. Depending on the data type and the desired level of privacy, the

anonymization toolbox can generalize or suppress data, supporting differential privacy for

privacy preserving data analysis. At the time of writing, we use several privacy mechanisms

according to the data type and the analysis function as below:

1. Time Series Data Analysis:

Input data: autoencoders are used for anomaly detection and data reconstruction, while

the original data are kept private and only the reconstructed data are shared. Moreover,

differential privacy is used with autoencoders during the analysis phase to minimize data

memorization by the analytics model and protect individual data instances privacy

[Dwo08].

Results: analysis results are classified into categories to prevent information inference

of the original dataset.

2. Graphical Data Analysis:

Input data: the mechanisms of Autoencoders [ZP17] and Differential privacy [Dwo08]

are used for privacy-preserving graphical datasets analysis. Autoencoders act as data

compressor, reducing the size of data to be analyzed by keeping only the most important

features only, thus improving performance and privacy. Instead, Differential Privacy is

issued for privacy preservation and minimizing memorization by the learning model.

Therefore, the original data are protected, and the results cannot be used to reconstruct

the datasets.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 24 of 41

Results: analysis results are classified into categories to prevent information inference

of the original dataset.

3. Audio Data Analysis:

Input data: the analytics performs anonymizations for all the sensitive information.

Results: In the output translation, all the sensitive textual entities detected by the analytic

are replaced by default phrases which preserve the essence of the word without revealing

the exact word. Also, the audio reconstruction of the anonymized textual translation

preserves the privacy of the sensitive entities and replaces the speaker’s voice.

• Policy Enforcement Engine

The Policy Enforcement Engine is implemented following the Usage Control (UCON) model

[Park et al., 2004]. The UCON model allows dynamic evaluation of access policies through

mutable attributes. Attributes are mutable when they change their values over time, due to the

normal operation of the system. For instance, the number of people in a room is an example of

mutable attribute. An access request is evaluated against a policy, and, if the policy is satisfied,

access is granted. Mutable attributes can be part of the policy, which is re-evaluated if some

attribute's value change. If the re-evaluation produces a decision of Deny, the access that was

previously authorized and, consequently, is currently in progress, is revoked.

A Java implementation of Usage Control System (UCS) has been exploited to implement the

Policy Enforcement Engine. This implementation is an extension of the XACML reference

architecture [XACML, 2017] to deal with usage control, it exploits the WSO2 Balana library

[Balana, 2021] for implementing the Policy Decision Point (PDP), and it realizes all the other

modules of the UCON model, as described in detail in D3.2. The policy is expressed in a

language derived from the XACML one, called UPOL, while the communications with the

policy enforcement engine occur using the XACML request format. A Policy Enforcement Point

(PEP) has been written (in Java) to integrate the UCS within the SIFIS-Home framework. The

PEP sends XACML requests to the front end of the UCS, which is the Context Handler (CH).

The CH communicates with all the other modules of the UCS. At first, it retrieves all the mutable

attributes from the Policy Information Points (PIPs) and "enriches" the XACML request with

their values. Figure 15 shows an XACML request coming from the PEP after the manipulation

performed by the UCS.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 25 of 41

 Figure 15: An "enriched" XACML request. The original XACML coming from the PEP has a white

background colour, while the mutable attribute added by the UCS is highlighted in grey

Then, the CH retrieves an applicable policy from the Policy Administration Point (PAP) module.

Policies stored at the PAP are called Usage Control Policies (UCPs) and are written in UPOL

policy language [Di Cerbo et al., 2018], which is XACML based. They are composed of three

different sections, i.e., pre-, on- and post- sections, which are evaluated separately and at

different times. Figure 16 shows an example of UPOL policy.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 26 of 41

Figure 16: Example of UCP showing the pre-, on-, and post- sections of the policy. The mutable attribute

"thermometer-reachable" must match "yes" for the on- section to be satisfied against a request

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 27 of 41

Then, the CH queries the PDP module to obtain an access decision. The PDP uses the XACML-

based WSO2 Balana decisional engine for policy evaluation. However, being Balana a pure-

XACML decisional engine, the CH extracts either the pre-, on-, or post- section from the UCP

and creates an XACML policy before feeding the PDP. If the access decision produced by the

PDP is Permit, the CH sends the original XACML request and the UCP to the Session Manager

(SM) module, which selects a new session identifier and creates a new entry in the database (an

in-memory JDBC database) with the received information. Finally, the CH sends back a message

to the PEP communicating the access decision, and the session identifier if the decision was

Permit.

A PIP monitors a mutable attribute, which is stored at an Attribute Manager (AM). Currently,

in our implementation, AMs can be a database or a file, so PIPs implement the logic to retrieve

the attribute values, either by querying the database or by retrieving the file. When a PIP is

monitoring a mutable attribute, it periodically polls the AM to retrieve the current value and

compares it with the value obtained during the previous poll. If these values differ, the CH starts

a routine to re-evaluate all the sessions in the SM's database that are currently using that attribute

in their on- section of the UCP. If a policy is not satisfied anymore, the corresponding access

must be revoked. So, the CH sends a revocation message to the PEP, which interrupts the access

to the resource and notifies the CH.

3.3.5 API Gateway

This component, Figure 17, provides the API’s used by applications executed on the SIFIS-Home smart

devices.

Figure 17: The API Gateway with the mobile and 3rd party API

• Mobile Application API

This component allows the SIFIS mobile application to interact with the smart home and

initialize new SIFIS-Home-compliant Smart Devices.

When the Smart Device is started for the first time, it starts in the initialization mode. In the

initialization mode, the device presents a Wi-Fi access point allowing the mobile application to

join the device's local configuration network and set up the device.

The mobile application provides all information needed for the new Smart Device to join the

SIFIS-Home network. This information includes network settings, DHT credentials, and the

device's information, such as its name in the SIFIS-Home network. After configuration, the

device is restarted, and all SIFIS-Home services are started on the next boot.

The mobile application requires an access token to use Mobile Application API securely. This

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 28 of 41

token is delivered as a QR code with the Smart Device.

• 3rd party API

This component keeps the API for that allows downloaded 3rd part applications to interact with

the smart home. This module is still under definition.

3.3.6 NSSD Manager

The NSSD Manager is the component that allows the management of the NSSDs that are part of the

smart home.

• CoAP Manager

On a device acting as CoAP client, the CoAP Manager receives commands and retrieves

information from the DHT manager, and then takes care to accordingly execute the requested

operations, by interacting with the targeted CoAP server device(s). The communication with

such CoAP server device(s) is protected and established by using the advanced security

protocols and solutions that have been designed and developed in the context of WP3.

This enables a more convenient, remote provisioning of commands to devices acting as CoAP

client, which becomes especially relevant when: i) a CoAP client does not provide a direct or

convenient input interface; or ii) the user prefers to remotely instruct the CoAP client or simply

has to, e.g., as currently not present in the Smart Home and relying on a remote access over the

Internet.

To this end, a CoAP client can act as pub-sub client in the pub-sub system enforced in the Smart

Home (e.g., by interacting with a DHT-based pub-sub broker) in order to receive published

commands, then take an appropriate course of action and accordingly communicate with the

target CoAP server(s), and finally publish corresponding results to be eventually displayed to a

user.

Further details about the implementation strategy for this component are provided in Section

4.3.

• WoT Manager

WoT enables direct control of smart home devices over the web by giving them URLs, making

them discoverable and linkable, also defining a standard data model and APIs to make the

devices interoperable and to exchange data between devices and systems. The flow is visualized

in Figure 18.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 29 of 41

Figure 18: The WoT manager interaction flow

The WoT manager will interact with SIFIS-Home DHT using the sifis-client and the sifis-

runtime components that act as translation layer between the SIFIS-Home concepts and the

broader WoT ones.

The implementation keeps a separation between the WoT general components listed in Table 2,

that can be reused by a larger public, and the SIFIS-Home-specific ones augmented using the

Hazard Ontology.

Crates Description Status

wot-td Produce and consume Thing Description Release 0.2

wot-serve Serve Things using HTTP and mDNS-SD Release 0.2

wot-discovery Discover Things in the network Work in Progress

libsifis Initial Proof of Concept
Being replaced by sifis-ext and

sifis crates

sifis-ext Thing Description extension Work in Progress

sifis-rust SIFIS-Home rust data structures and Servient Work in Progress
Table 2 WoT components

3.3.7 DHT Manager

The DHT Manager (Figure 19) is composed of two different software components, the DHT and the

Fiware API component. The DHT component manages the DHT and allows access to it from other

applications and services. Instead, the Fiware API component interacts with Yggio in order to offer a

FIWARE compatible API to a SIFIS-Home enabled smart home.

https://github.com/wot-rust/wot-td
https://github.com/wot-rust/wot-serve
https://github.com/wot-rust/wot-discovery
https://github.com/sifis-home/libsifis-rs
https://github.com/sifis-home/sifis-ext
https://github.com/sifis-home/sifis

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 30 of 41

Figure 19: The DHT manager components

• FIWARE API

This component forwards the persistent and volatile messages published through the DHT to the

Yggio instance residing on the SIFIS-Home cloud. Also, it takes care to forward configurations

and messages sent to Yggio to the DHT. The Fiware API component uses the HTTP interface

offered by the DHT to store and retrieve messages inside/from the DHT. Also, it uses the MQTT

protocol to connect to the MQTT broker used by Yggio and, hence, receive/publish messages

from/to Yggio.

• DHT

The DHT allows applications installed on different SDs to communicate by using a completely

distributed publish/subscribe mechanism (i.e., without a central broker). Also, through the DHT,

it is possible to store a certain set of messages in a persistent way to make them available in case

of node failures/reboots (e.g., settings and policies should be stored in a persistent way). The

DHT has been developed using Rust. The DHT can be embedded into native Rust applications

as a library. Non-native Rust applications can interact with the DHT using its HTTP interface.

In particular, the DHT offers both an HTTP REST and a WebSocket-based API to access the

messages stored inside it. The current version of the SIFIS-Home DHT code can be found at

https://github.com/sifis-home/libp2p-rust-dht.

3.4 NSSD Framework

The SIFIS-Home NSSD Framework (Figure 20) is the set of components that are expected to be present

on every NSSD device that should be part of a SIFIS-Home enabled smart home. In detail, the NSSD

Framework is composed of the Bootstrap Manager component and the Device API Manager.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 31 of 41

Figure 20: The NSSD Framework components

3.4.1 Bootstrap Manager

This component allows a NSSD device to receive all the information needed to allow it to join a SIFIS-

Home network. In detail, in order for a NSSD to join a SIFIS-Home network, it should be provided with

i) the Wi-Fi credentials (i.e., SSID and Password) of the network to which the device should connect to

and ii) the shared key/authorization token that should be provided by any SD wanting to interact with

the NSSD during its lifetime. In detail, the Bootstrap Manager is going to provide a number of HTTP

API endpoints through which it is possible to set the Wi-Fi credentials and the key/authorization token

that the NDDS should use. When the NSSD receives the Wi-Fi credentials and the token, it performs a

reboot operation and connects to the configured Wi-Fi network. Also, it will not be able to control the

NSSD if not provided with the correct token.

3.4.2 Device API Manager

This component offers the API through which a NSSD can be operated. In the case of a WebThings

enabled NSSD, all the functionalities of the NSSD are offered by means of a set of properties, actions,

events. WebThings makes it possible to execute an action, receive an event and set a property using the

HTTP protocol. The WebThings functionalities on microcontroller-based devices will be implemented

using the WebThings Arduino Library (https://github.com/WebThingsIO/webthing-arduino).

4 Integration

4.1 Integration strategy

The design of the SIFIS-Home framework in WP1 is based on Docker containers with microservices

design pattern. Each microservice defines an API, usually a Rest API, for interfacing with it. To add

new modules to the system one just needs to add new Docker containers that hold the new modules.

The new modules can then directly start interacting with the existing modules in the system based on

their provided API’s. This makes it fast and easy to add new functionality.

4.2 Analytics integration (WP4)

The integration of the code implementing the analytics designed and implemented in WP4 within the

Data Analysis Toolbox is performed through a common procedure:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 32 of 41

1. The analytics designed for SIFIS-Home require different (and sometimes even conflicting)

execution environments, depending on the software libraries they use (sometimes even on the

version of them). For this reason, we decided to use virtualization technology and to deploy each

analytics in its customized container, leveraging on the docker technology. Hence, each analytics

environment is structured and created within a specific docker image.

2. Docker images are used to create docker containers on the SIFIS-Home devices for analytics

deployment. A repository of analytics docker container images will be created to easily store

and retrieve available images.

3. The analytics running within the docker containers resulting from the previous step are being

invoked by the Analytics APIs. Each analytics provided by the Data Analysis toolbox is paired

to a topic. Moreover, each analytics has a separate topic for the results obtained by running it on

some data.

4. The interactions between the Data Analysis Toolbox and the other components of the SIFIS-

Home Framework (which need to ask for analytics executions) occur through the DHT, which

provides a publish/subscribe mechanism.

5. Interactions start from analytics consumer side requesting the execution of an analytics. This

request is represented by a message in JSON format published on the topic related to analytics.

The JSON message contains invocation details in addition to a set of data to be used and privacy

parameters to be used if any.

6. On message publish action, the Analytics APIs subsystem invokes the analytics of the related

topic. As previously mentioned, each analytics is deployed in its own container. The invocation

of an analytics by the Analytics APIs subsystem occurs exploiting the HTTP REST or the

WebSocket protocol, depending on the analytics deployment on the related container. As a

matter of fact, each analytics has its own protocol, and needs different parameters to be passed.

7. Once the analytics has been executed and the result is available, the Data Analysis Toolbox

returns the result to the component which has requested the analysis through the DHT using the

HTTP REST or the WebSocket-based API in a JSON format.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 33 of 41

Figure 21: Analytics components

• Pre-Processing Layer/Post Processing

This component takes care to pre-process data (adjust format and remove unused information)

coming from different sensors and devices before sending it to the different SIFIS-Home

analytics. Also, it takes care to collect the information produced by the different analytics and

prepare it for use by part of the frontend applications.

On the one hand, data Pre-processing for privacy protection purposes is performed locally on

the device requesting analytics before data publishing, such as using autoencoders or Gaussian

Blurring on graphical datasets. However, data pre-processing for data cleaning and preparation

is implemented before the analytics module implementation on the device performing data

analysis. On the other hand, data post-processing is implemented directly after the

implementation of the analytics method on the same device analysing the data for aggregation

and categorization purposes of the results as an example.

• Analytics API

As previously explained, the Analytics API subsystem is in charge to interact with the DHT to

subscribe the topics representing all the analytics provided by the Data Analysis Toolbox and to

retrieve the requests sent by the other components of the SIFIS-Home framework by publishing

on these topics. Depending on the topic published by the component requesting the execution of

an analytics, the right component of the Analytics API subsystem is invoked. Such component

knows how to interact with the requested analytics which is running in its docker container, and

if a pre-processing operation is required, the right function of the pre-processing layer subsystem

is also invoked. At the time of writing, we have the following component of the Analytics API

subsystem:

• Behavioural Analysis

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 34 of 41

This API uses WebSocket to invoke analytics toolboxes responsible for the analysis of

behavioural and environmental data collected from IoT devices like sensors, smart

watches, smart thermostats, smart cameras to derive insights, track user behaviour,

predict user behaviour, identify anomalous actions, or for activity classification.

Behavioural and environmental data are captured by SIFIS-Home sensors and devices

and published with the device ID to the required analytics topic. The analytics topic is

used to invoke the WebSocket-based API that the analytics expose, in order to execute

the responsible docker container with the shared data and parameters. The results are

then published by the Analytics Engine to the related topic.

• Network Analysis

Network analysis is concerned with performing network traffic analysis to identify

hidden and complex patterns and anomalous behaviours or security threats using stream

data and packet data. Common functions carried out by this WebSocket-based API

include continuous monitoring of network traffic, malware detection, and network

abnormal behaviour detection and troubleshooting. Stream data and packet data are

captured and published with the device ID to the required analytics topic. The analytics

topic is used to invoke the related WebSocket-based API for docker container execution

with the shared data and parameters. The results are then published by the Analytics

Engine to the desired topic. Centria’s analytics will provide REST API that provides

service status(start/stop/restart/is_running), available interfaces, configuration, data and

alarms. Optionally webhooks for data and alarms are also available.

The network anomaly detection analytic called Aggregated Usage Description (AUD),

developed by FSEC is an analytic that is implemented as a background service. The

analytic is executed in a container labelled “aud_manager”, and it is intended to

continuously analyze network traffic. AUD manager operates directly with network and

transport layer (L3 & L4) information, which reside below session and application layers

through which vulnerabilities such as session hijacking and man-in-the-middle attacks

are often exploited. The analytic developed in WP4 strives to spot the anomalous

network events before the data packets reach their destinations, i.e., target devices. AUD

manager provides a REST API for starting and stopping the analytic. The REST API

also provides methods to report current state of the analytic, as well as runtime

diagnostics, such as network statistics and information about recent anomalies. Upon

detecting an anomaly, the analytic calls the Evaluator/Notifier in the Proactive Security

Management Layer.

• Multimedia Analysis

This WebSocket-based API is invoked after messages with recorded and captured

multimedia data are published on the DHT to topics concerned with such data analytics.

The docker container related to the topic is triggered to execute the analysis on the

captured data and parameters and the results obtained are published by the Analytics

Engine to the required topics.

• Application Analysis

Application data are captured by SIFIS-Home components and published with the

component ID to the wanted analytics topic. The analytics topic is used to invoke the

WebSocket-based API which the analytics expose, in order to execute the responsible

docker container with the shared data and parameters. The results are then published by

the Analytics Engine to the related topic.

• Physical Analysis

Physical data are collected by SIFIS-Home components and published with the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 35 of 41

component ID to the wanted analytics topic. The analytics topic is used to invoke the

WebSocket-based API the analytics expose, in order to execute the responsible docker

container with the shared data and parameters. The results are then published by the

Analytics Engine to the related topic.

• Analysis Engine

This component handles the execution of SIFIS-Home analytics, providing statistical-based,

machine learning, and deep learning tools for the analysis of data collected by sensors. The

analysis engine processes collected data and makes logical predictions based on the provided

data input and instructions it has been configured on. Finally, it outputs the data and shares it

back with the analytics consumer.

The Data Analysis Engine is implemented as a collection of docker containers, integrated via a

nested if statement for the received message topic from components publishing data to be

processed. Depending on the topic specified in the published message, the right docker container

is selected to be executed with the data and parameters included in the message. After the docker

execution is finished, the results obtained are also published back by the Data Analysis Engine

to the analytics result topic. The details concerning the implementation of each single analytics

have been given in D4.2.

4.3 Network and security solution integrations (WP3)

The security solutions developed in WP3 build on the CoAP web-transfer protocol and the OSCORE

security protocol for CoAP, and provide related security services to enforce secure end-to-end (group)

communication, management of keying material, and fine-grained enforcement of access and usage

control. These security solutions are presented in D3.2, which will be updated and obsoleted by D3.3.

Regardless the specifically considered, possibly combined, security solutions, interacting parties are

devices acting as CoAP client and/or CoAP server. In stand-alone proof-of-concept implementations

used for focused demonstrations, the user could interact with a CoAP client, in order to provide a

command available from a basic set, and thus make the CoAP client take a corresponding course of

action in communicating with the intended CoAP server(s).

Such a user interaction was simply based on a command line interface. That is, the user could provide

a command via keyboard to the CoAP client, which in turn provided any relevant output (e.g., responses

obtained from the CoAP servers) on a display.

While this approach made it possible to effectively run stand-alone demonstrations, it is inconvenient

in a broader, more realistic setup where the user wants to remotely provide the CoAP client with a

command to process, e.g., by using an application running the SIFIS-Home framework. In addition to

that, the user might not even be presently at home, hence requiring to reach out the CoAP client through

the Internet. In either case, rather than relying on a physical interaction with a keyboard to feed a

command line interface, the user would better remotely provide CoAP clients with commands to

process.

To this end, the following strategy has been devised, and it will be refined and followed in the coming

months during the WP5 activities.

From a logical point of view, the CoAP clients expecting commands from a user additionally rely on

the availability of a publish-subscribe system in order to: i) obtain user commands as content published

on a related, device-specific topic, rather than input provided on a terminal; and ii) relay back any

relevant output following the course of action triggered by the command, as content published on a

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 36 of 41

related, device-specific topic rather than as output on a display.

Practically, this can be enforced by means of two different approaches, both relying on the publish-

subscribe communication model.

- An MQTT publish-subscribe system, with the MQTT broker locally deployed in the Smart Home

network. Practically, a device acting as CoAP client would also act as MQTT client, by subscribing to

a topic on which it receives user commands, and by publishing on a related topic where it provides the

output from the actions performed following those commands. The user application takes the reversed

pub-sub roles, in order to publish commands and subscribe to outputs from the CoAP client. The two

topics are specific for the CoAP client in question.

- A distributed publish-subscribe system, based on a Distributed Hash Table (DHT) deployed within the

Smart Home network. Practically, the DHT enforces a distributed pub-sub broker, exposing an interface

based on WebSockets for publishing on and subscribing to its topics. Then, a device acting as a CoAP

client would also act as a pub-sub client, by bi-directionally interacting with the DHT-based pub-sub

broker through WebSockets. Similarly, to the first approach discussed above, the CoAP client would

subscribe to a topic on which it receives user commands and would publish on a related topic in order

to provide the output from the actions performed following those commands. The user application takes

the reversed pub-sub roles, in order to publish commands and subscribe to outputs from the CoAP client.

In either case, an "outer" user can also interact with the CoAP clients through the Internet, when not

presently in the Smart Home. This requires an additional step, also based on a pub-sub model and relying

on the Sensative MQTT broker deployed in the cloud. The outer user would leverage the same model

discussed above, although having a direct interaction specifically MQTT-based and specifically with

the Sensative MQTT broker. Then, the Sensative MQTT broker will interact with the publish-subscribe

system deployed in the Smart Home, just like the user would do for the case discussed above where the

user is presently at home.

When setting up such a pub-sub route, care must be taken when setting the "outer" pub-sub topics at the

Sensative MQTT broker to be consistent with the "inner" pub-sub topics of the pub-sub system deployed

in the Smart Home. For example, given an inner topic "COMMAND_DEV1" used to publish commands

intended to "Device_1" acting as a CoAP client, the corresponding outer topic can be

"HOME_42_COMMAND_DEV_1", where "HOME_42_" is a prefix used to uniquely identify the

specific Smart Home and thus enforce per-smart-home topic namespaces.

5 Verification status and results

Since implementations and integration for many of the SIFIS-Home modules are still ongoing, project

partners have made their own unit test to secure the code quality of the modules and functionality they

provide. Once the system is more completely integrated, the official system test of the full SIFIS-Home

framework will start and will be reported in next deliverable.

Some of the mentioned unit tests executed by partners are described below.

5.1 wot-rust crates

All the crates use the continuous integration setup for GitHub-Actions provided by the sifis-generate

(Figure 22).

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 37 of 41

Figure 22: Continuous integration setup

The crates try to stay above the 90% coverage every commit (Figure 23).

Figure 23: Automated tests of every commit

The built-in cargo test ensures that both the code and the examples in the documentation are tested.

5.2 sifis-generate

The sifis-generate crate is also using its own continuous integration template as visualised in Figure

24.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 38 of 41

Figure 24: Continuous integration template for sifis-generate

Being an executable, it also peruses the deploy component to provide prebuilt binaries (Figure 25) for

Linux, Windows and macOS (every release).

Figure 25: Prebuilt binaries

5.3 DHT

The current implementation of the SIFIS-Home DHT has been tested using standard unit tests. The

following Figure 26 reports the current test results.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 39 of 41

Figure 26: The DHT verification results

5.4 Security solutions (WP3)

The security solutions developed in WP3 and indicated in Sections 3.4.1 and 3.4.2 have been

successfully tested through focused demonstrators, by relying on the corresponding implementations

and real hardware platforms. In particular:

• The first demonstrator considered a CoAP group communication scenario, where: i) devices rely

on the ACE Framework and its OSCORE profile, in order to securely interact with an OSCORE

Group Manager and obtain keying material for Group OSCORE; ii) as members of the security

group, such devices securely communicate with other group members using CoAP and Group

OSCORE, protecting group messages with its group mode or pairwise mode.

• The second demonstrator considered a CoAP client and a CoAP server that first establish an

OSCORE Security Context through the EDHOC key establishment protocol, and then securely

communicate with one another using the established OSCORE Security Context. The EDHOC

key establishment considered: i) peer authentication based on either signatures through private

signing keys, or MACs through static-static Diffie-Hellman keys; and ii) the original EDHOC

workflow or an optimized, shortened EDHOC workflow which requires one round-trip less by

combining the last EDHOC message with the first OSCORE-protected message.

5.5 Cloud UI components

The cloud UI components that reside on top of the FIWARE Ratatosk Context Broker are major

implementations that include thousands of lines of code written in REACT and Node.JS. These UI

components have been up and running on the SIFIS-Home Panarea server with live NSSD data since

January 2022 and are also commercially released since May 2022 in Sensative Yggio horizontal IoT

integration platform. The UI components are extensively verified from all aspects for commercial

distribution in every release of a new set of functionalities.

5.6 Network Anomaly Detection / AUD Manager

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 40 of 41

The basic functionalities of AUD manager have been tested with virtual mock devices. Further testing

and validation of AUD manager is still in progress.

6 Conclusion

In this deliverable we have presented the status of the current implementation of the SIFIS-Home

security framework and the latest test results. It is a very extensive implementation of state-of-the-art

technologies done by many different partners across Europe with access to different type of competence,

tools, legacy code and commercial interest to consider. A key step to make it happen was when the

implementation allocation of the SIFIS-Home framework components were done in 2021 and it was

vitally important to have the right partners for every component. We do believe we made the best

possible allocation of all components and partners have been working very hard together to get the

implementations done and sort out every problem once they were discovered. We now are on the 3rd

iteration of the security architecture defined in D1.4 that has been refined step by step from the original

architecture described in D1.3 and we have also added some missing integration modules to provide the

glue layers to make all work together.

Going forward we will define, allocate and complete the missing implementation while also aim to get

the system verification up and running as soon as possible, so to be able to verify all the defined use

cases.

In summary, our self-assessment of the work done so far is that we are overall on-track and aligned with

the planned set of action in the project.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 41 of 41

7 References

[Maymounkov et al. 2002] P. Maymounkov, D. Mazières, "Kademlia: A Peer-to-Peer Information

System Based on the XOR Metric", Peer-to-Peer Systems. IPTPS 2002. Lecture Notes in Computer

Science, vol 2429. Springer, Berlin, Heidelberg

[Faiella et. al 2016] Mario Faiella, Fabio Martinelli, Paolo Mori, Andrea Saracino, Mina Sheikhalishahi:

Collaborative Attribute Retrieval in Environment with Faulty Attribute Managers. ARES 2016: 296-

303

[WoT, 2020] Web Of Things (WoT) Architecture, W3C recommendation 9 April 2020,

https://www.w3.org/TR/wot-architecture/

[FIWARE, 2021] What is FIWARE?, https://www.fiware.org/developers/

[YGGIO, 2021] Yggio DiMS, Digitalization infrastructure Management System,

https://sensative.com/yggio/

[La Marra et al, 2017] Antonio La Marra, Fabio Martinelli, Paolo Mori, Andrea Saracino:

Implementing Usage Control in Internet of Things: A Smart Home Use Case.

TrustCom/BigDataSE/ICESS 2017: 1056-1063

[Facchini et al, 2020] Simone Facchini, Giacomo Giorgi, Andrea Saracino, Gianluca Dini:

Multi-level Distributed Intrusion Detection System for an IoT based Smart Home Environment. ICISSP

2020: 705-712

[Saracino et al, 2021] M Sheikhalishahi, A Saracino, F Martinelli, A La Marra, Privacy preserving

data sharing and analysis for edge-based architectures, International Journal of Information Security,

1-23

[XACML, 2017] eXtensible Access Control Markup Language (XACML) version 3.0 plus errata 01

(2017). URL: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html

[Perkins, 1999] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, Proceedings

WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications

[Dwo08] C. Dwork. Differential privacy: A survey of results. In International conference on theory

and applications of models of computation, pages 1–19. Springer Berlin Heidelberg, 2008.

[ZP17] Zhou, C., & Paffenroth, R. C. (2017, August). Anomaly detection with robust deep

autoencoders. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge

discovery and data mining (pp. 665-674).

[Park et al., 2004] Park, J., & Sandhu, R. (2004). The UCONABC usage control model. ACM

transactions on information and system security (TISSEC), 7(1), 128-174.

[Di Cerbo et al., 2018] Di Cerbo, F., Lunardelli, A., Matteucci, I., Martinelli, F., & Mori, P. (2018,

September). A declarative data protection approach: from human-readable policies to automatic

enforcement. In International Conference on Web Information Systems and Technologies (pp. 78-98).

Springer, Cham.

https://www.w3.org/TR/wot-architecture/
https://www.fiware.org/developers/
https://sensative.com/yggio/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 42 of 41

[Balana, 2021] WSO2 Balana implementation. URL: https://github.com/wso2/balana

[RFC8520] Lear, E., Droms, R., and D. Romascanu, "Manufacturer Usage Description Specification",

RFC 8520, DOI 10.17487/RFC8520, March 2019. URL: https://www.rfc-editor.org/info/rfc8520

https://github.com/wso2/balana
https://www.rfc-editor.org/info/rfc8520

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.2

Version: 1.0 Page 43 of 41

Glossary

Acronym Definition

ACE Authentication and Authorization for Constrained Environments

AM Attribute Manager

AODV Ad-hoc On-demand Distance Vector

API Application Programming Interface

CoAP Constrained Application Protocol

CH Context Handler

DHT Distributed Hash Table

EDHOC Ephemeral Diffie-Hellman Over COSE

FR Functional Requirements

HTTP Hyper Text Transfer Protocol

JSON JavaScript Object Notation

MQTT MQ Telemetry Transport

MUD Manufacturer Usage Description

NFR Non-functional requirement

NSSD Not So Smart Device

OS Operative System

OSCORE Object Security for Constrained RESTful Environments

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PTP Policy Translation Point

P2P Peer to Peer

REST Representational State Transfer

SD Smart Device

SIFIS-Home Secure Interoperable Full Stack Internet of Things for Smart Home

SSH Secure Shell

SM Session Manager

TBD To Be Defined

UC Use case

UCON Usage Control

UCP Usage Control Policy

UCS Usage Control System

UI User Interface

US User story

WoT Web of Things

WP Work Package

XACML eXtensible Access Control Markup Language

