
H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

D5.1

First version of SIFIS-Home testbed

WP5 – Integration, Testing and Demonstration

SIFIS-Home

Secure Interoperable Full-Stack Internet of Things for Smart Home

Due date of deliverable: 31/05/2022

Actual submission date: 31/05/2022

Responsible partner: SEN

Editor: SEN

 E-mail address:

hakan.lundstrom@sensative.com

31/05/2022

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-Home Project is supported by funding under the Horizon 2020 Framework Program

of the European Commission SU-ICT-02-2020 GA 952652

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Authors: Håkan Lundström (SEN), Marco Tiloca (RISE), Luca Barbato (LUM), Andrea

Saracino (CNR), Otto Waltari (F-Sec)

Approved by: Andrea Saracino (CNR), Joni Jämsä (CEN), Tom Tuunainen (CEN)

Revision History

Version Date Name Partner Section Affected

Comments
0.1 13/02/2022 Initial version SEN All

0.2 12/04/2022 Restructured version SEN All

0.3 27/04/2022 Group OSCORE, ACE, Edhoc RISE Implementation

0.4 04/05/2022 Several new chapters added. UX;

FIWARE, etc.

SEN All

0.5 12/05/2022 Several chapters completed SEN, F-Sec Validation, Intro, Conclusion,

Executive summary

0.9 24/05/22 Ready for review SEN, CNR, LUM All

1.0 31/05/2022 Reviewer's comments addressed SEN All

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Executive Summary

This deliverable describes the design and the deployment of the first version of the SIFIS-Home physical and

simulated testbed that has been deployed to allow the partners to develop, deploy and test their applications for

the different use cases. The test bed includes live IoT devices as well as simulated ones to perform large scale

experiments for stress-testing resilience improving mechanisms.

The test bed was designed and implemented based on the requirements and architectural design from WP1. A

key finding is that the API gateway parts of the original architecture had to be revised to make it feasible to

implement. The revised architectural proposal that includes a separation of some components between the web

parts residing on the API gateway and the device parts residing on the SIFIS-Home smart devices. This change

was expected since the original architecture was done early in the project before actual implementation was

started by the partners.

Further challenges were overcome in relation to the Cyber-Perimeter and how to manage the communication

flow between the smart devices behind the firewall in the home and the API gateway connected to the Internet.

We concluded that the only feasible way was to let devices inside the home set up the sessions to the API

gateway and subscribe to possible events. By doing so, the traffic will pass through firewalls with standard

configurations without problems and the API gateway is able, when required, to communicate with the devices

inside the Cyber-Perimeter in a secure way.

With this first version of the test bed, we do not have complete integration between all the SIFIS-Home

components, as some are still under development. The focus has been on designing the test bed so that it can be

used in a collaborative way by the partners to implement, verify and validate the SIFIS-Home technologies

according to the requirements. The test bed is up and running, the UI is working, code is being delivered to

GitHub and the SIFIS-Home components are continuously being integrated on the test server.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 4 of 31

Table of contents

Executive Summary ... 3

1 Introduction ... 6

2 Actors, devices and the Cyber-Perimeter ... 6

2.1 Analysis of Components and Actors of the SIFIS-Home related to the test bed 6

2.2 Analysis of The Smart Home Cyber-Perimeter ... 7

3 Test bed design ... 8

3.1 Main requirements on the test bed ... 8

3.2 Allocation of components .. 9

3.3 Designing the test bed .. 9

3.4 Panarea server .. 10

4 Implementing the test bed ... 11

4.1 Original architecture .. 11

4.2 Implementation .. 12

4.3 Authorization and Access management integration ... 16

4.4 Revised proposed architecture ... 16

5 Interfaces of the test bed ... 17

5.1 Ratatosk, the FIWARE Context Broker ... 17

5.2 WebOfThings Smart Devices .. 19

5.3 User Interface ... 20

5.4 GitHub .. 23

6 Validation of implementation and the test bed ... 24

7 Conclusion .. 30

8 References ... 31

Glossary ... 32

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 6 of 31

1 Introduction

In this deliverable we report on the design and implementation of the preliminary version of the

SIFIS-Home test bed based on the requirements, architecture and design from WP1. The report goes

through the different key steps that were performed with focus on the test bed design aspect and the

implementation implications of the requirements.

It starts with an identification of the user roles and the different device types that the test bed needs to

support, and discusses if we will have access to live devices or must use simulated devices. Then it

moves on to cover the Cyber-Perimeter concept and how the expected firewall at every home put

some constraints on the communication flow between the home side of the SIFIS-Home network and

the external side.

The actual test bed design considers the requirements defined in WP1 as well as the consortium

partners competence and access to assets that can be used in setting up the test bed. Once that is done,

implementation aspects of the different main components are analysed one by one, also looking for

any specific design considerations that were overlooked during the original architecture design phase.

Next steps walk through the interfaces to key components like the FIWARE Context Broker that holds

the state of the system for the web UI and WebThings that is the base for the SIFIS-Home smart

devices. There is also a description with screen shots from some of the components in the web UX

while the concluding section contains the validation strategy for each of the requirements from D1.2.

2 Actors, devices and the Cyber-Perimeter

2.1 Analysis of Components and Actors of the SIFIS-Home architecture related to the test

bed

The main components of the SIFIS-Home test bed architecture are the following:

• Smart Devices: These are devices that implement a SIFIS Home distributed hash table (DHT)

that enables a client to set up a Peer-to-Peer (P2P) logical model. General examples of Smart

Devices are Smart TVs, Smart Refrigerators, Laptops/Desktops, Family Hubs. From a test bed

point of view, we are planning to both simulate them and use physical devices based on

Raspberry PIs.

o Internet Connected Smart Devices: This is a subset of the Smart Devices without a

SIFIS-Home client APP, like smart phones and tablets, but located inside the smart

home Cyber-Perimeter and equipped with a network interface which enables

connectivity outside of the smart home. From a test bed point of view, in SIFIS-Home

we have analytics capabilities to analyse the traffic from those devices via a gateway

network interface layer with a SIFIS-Home client software.

• Not So Smart Devices (NSSD): These are constrained devices that cannot be customized by

installing third party software or applications. In the SIFIS-Home test bed, we are using

several of these, such as smart sensors, smart cameras, smart lights, smart speakers and smart

locks. NSSDs are either using standard protocols like Z-wave, LoRaWAN or are TCP/IP based

with Internet connectivity options and are set to connect through their responsible Smart

Devices.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 7 of 31

Figure 1: Communication and interaction between components

The actors we have defined for the SIFIS-Home architecture are the following:

• SIFIS-Home Administrator: The administrator is a human user who is the owner of an instance

of the SIFIS-Home architecture.

• SIFIS-Home Tenant: The SIFIS-Home tenant is the standard user of the smart home system.

• SIFIS-Home Maintainer: The maintainer is an entity external to the smart home and trusted by

the administrator to correctly configure the smart home security, privacy and safety policies.

• SIFIS-Home Tenant with restrictions: This user is a smart home tenant with restrictions on the

functionalities they can access.

• Guest: A guest is a smart home user who is not resident in the smart home but is allowed to

access and use the premises and some functionalities for a limited amount of time, upon

authorization from the administrator or another tenant.

• External Operator: The external operator could be a technician, a plumber, gardener, or house

cleaner, allowed to access the smart home premises for a limited amount of time, with the

authorization from a tenant.

In the test bed design, all these roles need to be represented and have their distinct usage.

2.2 Analysis of The Smart Home Cyber-Perimeter

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 8 of 31

In order to protect the Smart Home and its users from unintended disclosure of sensitive information,

in WP1 we defined a logical distinction between the outside and inside of the Smart Home, based on

what we called Smart Home Cyber-Perimeter.

Figure 2: Concept of Smart Home Cyber-Perimeter

From a test bed point of view, the Smart Home Cyber-Perimeter is a requirement that must be fulfilled

in the architectural design while also be implemented and verified in the SIFIS- Home test bed. For

the time being, we just conclude that the smart home will be protected by a firewall (access point in

figure above) that will block all incoming IP traffic, but the devices on the inside are free to set up

sessions to outside servers as they like, considering that the relevant ports on the firewall are opened

for outgoing traffic.

3 Test bed design

3.1 Main requirements on the test bed

When designing the test bed, we considered how to be able to setup, verify and validate that the test

bed itself and that the fundamental part of the SIFIS-Home system would work as intended. The

conclusion is that it is both the Functional requirements as well the NFR – Non-functional

requirements as defined in D1.2 and D2.1 that should be possible to verify and validate when using

the test bed. The principal areas that must be covered are as follows.

• Integration feasibility, as a fundamental requirement on the test bed. It must be feasible to

integrate all SIFIS-Home software components and analytics into the test bed both live and

simulated.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 9 of 31

• Communication flow and interfaces between all integrated components like the API Gateway

to SIFIS-Home Smart Devices and Not So Smart Devices.

o This holds both for live smart devices implemented by Raspberry PIs as well as for

simulated devices as microservices running in the test bed.

• It is also important to check that every interface is behaving as expected as well as that data

structures stored in the DHT – Distributed Hash Tables – and in the data bases in the API

gateway are as expected.

• General UI interaction, verification and validation. If things are working well when performing

different UI interactions, it is a good indication that the system as such is fundamentally

working correctly and as expected.

• Notification and event management verification and validation. These are events that could

arise from any device or analytics executing in the network. It must be possible to display

these events and present their outcomes to the user, thus enabling decision-making on how to

handle the events.

• Performance related verification and validations. The system as such must be reliable and

display good performance when different types of user interactions occur.

• Stability related verification and validations. The system must be able to be stable in the long

term, and to run for consecutive months without any execution problems.

• Security related verification and validations including intrusion detections and the other

analytics defined in WP3 and WP4.

• Privacy related verification and validations, to ensure that no data that could violate the GDPR

regulations is collected.

• The Cyber-Perimeter is one of the most difficult requirements to fulfil, since the SIFIS- Home

network and its devices must be reachable for the end users not only from inside the home but

also from the outside.

As a summary, when all the items above are successfully verified and validated in a SIFIS-Home

system run in the test bed, it should also be possible to assess the key metrics like code coverage,

unhandled exceptions, security metrics and privacy metrics defined in deliverable D1.2.

3.2 Allocation of components

The SIFIS-Home architecture is the representation of the devices and actors interacting with the

SIFIS-Home Framework (see deliverable D1.3). In order to design and later implement the test bed,

we first found out all partners capabilities, experience, commercial interest and availability of legacy

code, tools and devices. Then, the combinations of the partners’ expertise and the architecture and

requirements of the SIFIS-Home framework led us to identify the optimal allocation of all

components to different partners to be able to realize both the live and the simulated test beds. It was

early decided that the live and simulated test bed should look alike, with the only difference about

connecting either live devices or simulated devices to the SIFIS- Home network.

3.3 Designing the test bed

The test bed is built around a server, called “Panarea”, which is located at the CNR facilities and can

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 10 of 31

be reached by the partners via SSH - Secure Shell access – in order to upload and configure code. In

the Panarea server, the SIFIS-Home API gateway will run, as well as other SIFIS-Home technologies

such as simulated SIFIS-Home smart devices, analytics and network security solutions. In order to

validate the generic functionality of the test bed, we also added a few Not So Smart Devices running

on standard IoT protocols.

Figure 3: The SIFIS-Home test bed setup

Physical NSSD - Not So Smart Devices as well as SIFIS-Home Smart devices built upon Raspberry

PI based upon WebThings technologies will then connect to, authenticate with and register with the

API gateway, and thus create the SIFIS-Home network. End users will primarily use the network via

the API gateway, which must be also reachable from the Internet, thus enabling end users to check the

system status of the smart home from anywhere.

3.4 Panarea server

The SIFIS-Home testbed is built around the Panarea server, hosted at the CNR premises, in a

dedicated virtual machine. The VM exploits Docker for deploying a lightweight testbed. In particular,

through each Docker container we instantiate both the API gateway as well as emulated SIFIS-Home

smart devices. Thus, each Docker can be viewed as a Linux-based device, able to install the software

of the SIFIS-Home framework. To complete the test bed, both live Smart Devices and Not So Smart

Devices will get connected to the API gateway and the emulated Smart Devices on the Panarea server.

In Figure 4 we depict the logical structure of the emulated testbed. As shown in the figure, the testbed

exploits Docker as a virtualization environment, on top of an ESXi-based VM. Each Docker container

represents a Smart Device, thus being able to run the SIFIS-Home framework as a service on top of it.

A further container, in the current testbed, runs Ratatosk as an external component, whose

functionalities can be queried via API.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 11 of 31

Figure 4: Architecture of the SIFIS-Home emulated testbed

4 Implementing the test bed

4.1 Original architecture

The design of the SIFIS-Home framework in WP1 is based on Docker containers with microservices

design pattern. Each microservice defines a Rest API for interfacing with it. This design pattern

applies to the test bed design as well, but in the test bed some partners legacy code has been added to

be able to quickly manage integration of components and to enable us to verify and validate the

system.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 12 of 31

Figure 5: Original high-level architecture of the SIFIS-Home framework as defined in D1.3

The high-level architecture of the SIFIS-Home framework defined in deliverable D1.3 is the basis for

the test bed design and is visualized in Figure 5. The architecture comprises six main building blocks

that together constitute a SIFIS-Home application. When we started the in-depth technical design and

actual implementation of the system and the test bed, we realized that the API gateway and the use of

Web-Of-Things as defined in the architecture from deliverable D1.3 were not feasible to implement.

This is not an unexpected finding, since that was a theoretical design made early in the project before

all technical aspects had been considered.

4.2 Implementation

The following provides implementation considerations for each main building block.

• SIFIS-Home API Gateway: this component includes a set of high-level APIs and is used to

access SIFIS-Home networks and their UI both internally from inside the smart home network

and externally. The core part of the API gateway is the FIWARE Context Broker Ratatosk on

top of which its UI is built. The Ratatosk Context broker will contain the full description of the

SIFIS-Home devices that are connected to the gateway.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 13 of 31

Figure 6: Ratatosk FIWARE Context Broker as the core of the API gateway

We decided to base the API gateway on the partner Sensative’s horizontal IoT integration

platform Yggio, which also implements the FIWARE Ratatosk Context broker. This also

means that, from an architecture design point of view, the API Gateway does not belong to the

SIFIS-Home application and is instead an external component.

• User Interface: this component provides the Graphical User Interfaces to all the different

kinds of users that use the SIFIS-Home Framework.

The web part of the user interface resides on the API Gateway, since it needs to be accessible

from both inside the SIFIS-Home network as well as externally from the Internet when the

home users are outside of the smart home. The web UI on the API Gateway is running on top

of the Ratatosk Context broker, but FIWARE does not implement all the APIs required by the

UI. Thus, Sensative Yggio’s legacy proprietary API’s and security APIs are used as well, in

order to make it all work well in the test bed.

The device part of the UI that executes on the SIFIS-Home Smart Devices residing inside the

smart home will comprise, as intended to the device, the relevant subset of the web interface.

This UI is still under design phase.

• Secure Lifecycle Manager: this module handles the standard workflow of the SIFIS-Home

framework. This module acts as orchestrator of the framework lifecycle, regulating presence

and behaviour of both Smart Devices and applications. In particular, the Secure Lifecycle

Manager enables and handles new device registration and deregistration, as well as

management/provisioning of device-to-device keying material and management/enforcement

of access rights for device-to-device resource access. Moreover, it manages installation and

removal of third-party applications, according to the received instructions from the user or

from the policy engine and the intrusion detection system.

The following security solutions developed in WP3 pertain to the “Security Lifecycle

Manager” module and a link to their implementation from RISE is also provided. These

implementations build on the open-source Eclipse Californium CoAP framework available at

[CALIFORNIUM], which provides the CoAP protocol and the OSCORE security protocol. A

single codebase collecting these implementations is accessible at [WP3-CODEBASE], as

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 14 of 31

available for use, integration and testing within the SIFIS-Home project and especially in the

interest of the WP5 testbed.

[CALIFORNIUM] https://github.com/eclipse/californium

[WP3-CODEBASE] https://github.com/sifis-home/wp3-solutions

- OSCORE profile of the ACE framework, as documented in Section 5.1 of deliverable

D3.2. Together with the main ACE framework, the implementation is available at

https://bitbucket.org/marco-tiloca-sics/ace-java

- Key provisioning for Group OSCORE communication using the ACE framework, as

documented in Section 6.1 of deliverable D3.2. Together with the main ACE framework,

the implementation is available at https://bitbucket.org/marco-tiloca-sics/ace-java

- EDHOC key establishment, as documented in Section 6.3 of deliverable D3.2, including

specific profiling for CoAP and OSCORE. The implementation is available at

https://github.com/rikard-sics/californium/tree/edhoc

• Secure Communication Layer: this module is responsible for the secure communication

between the devices of the SIFIS-Home architecture. The testbed that is to be created should

be able to cover multiple scenarios of the Secure Communication Layer. The testbed serves as

an environment for testing the efficiency of the solution to be created and it must be a

controlled environment where actions are carried out in a secure and isolated manner, without

influencing the process being controlled. The secure communication layer includes

mechanisms to ensure standard encryption features on the communication associations to be

used among the devices. In particular, the component handles security of communication

between Smart Devices and among Smart Devices and NSSDs. In the implemented testbed,

we will consider different communication models, implementing different possible topologies:

in particular, we are going to consider a first emulated testbed where all devices are supposed

to be connected through a Wi-Fi access point and another configuration where devices will be

connected via Ad-Hoc Wi-Fi or an alternative point-to-point physical protocol. This last

configuration will be particularly needed to test the DHT-based routing of SIFIS-Home

messages among Smart Devices and to model possible issues of network partitioning.

The following security solutions developed in WP3 pertain to the “Secure Communication

Layer” module and a link to their implementation from RISE is also provided. These

implementations build on the open-source Eclipse Californium CoAP framework available at

[CALIFORNIUM], which provides the CoAP protocol and the OSCORE security protocol. A

single codebase collecting these implementations is accessible at [WP3-CODEBASE], as

available for use, integration and testing within the SIFIS-Home project and especially in the

interest of the WP5 testbed.

[CALIFORNIUM] https://github.com/eclipse/californium

[WP3-CODEBASE] https://github.com/sifis-home/wp3-solutions

- Group OSCORE, as documented in Section 4.1 of deliverable D3.2. The implementation

is available at https://github.com/rikard-sics/californium/tree/group_oscore

- OSCORE profile of the ACE framework, as documented in Section 5.1 of deliverable

D3.2. Together with the main ACE framework, the implementation is available at

https://github.com/eclipse/californium
https://github.com/sifis-home/wp3-solutions
https://bitbucket.org/marco-tiloca-sics/ace-java
https://bitbucket.org/marco-tiloca-sics/ace-java
https://github.com/rikard-sics/californium/tree/edhoc
https://github.com/eclipse/californium
https://github.com/sifis-home/wp3-solutions
https://github.com/rikard-sics/californium/tree/group_oscore

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 15 of 31

https://bitbucket.org/marco-tiloca-sics/ace-java

- Key provisioning for Group OSCORE communication using the ACE framework, as

documented in Section 6.1 of deliverable D3.2. Together with the main ACE framework,

the implementation is available at https://bitbucket.org/marco-tiloca-sics/ace-java

- EDHOC key establishment, as documented in Section 6.3 of deliverable D3.2, including

specific profiling for CoAP and OSCORE. The implementation is available at

https://github.com/rikard-sics/californium/tree/edhoc

• Application toolboxes: this component collects related and interconnected sub-components

that are all services inside the SIFIS-Home infrastructure.

- Alarm / Log: The log storage component was decided to be based on the well proven

standard UNIX SYSLOG format (https://datatracker.ietf.org/doc/html/rfc5424) and

then adapt it to work with modern REST API with a JSON payload containing the

actual log event. The log storage component cannot be physically located in the SIFIS-

Home Application and must instead reside on the API Gateway. This will enable all

SIFIS-Home devices and analytics from any SIFIS-Home network to create log events

that can then be viewed and acknowledged in the UI by authorized users in the smart

home where the log events were generated.

- Analytics toolbox: the component of the analytics toolboxes will be used by the testbed

to support intrusion detection tests. As this testbed is, in fact, focused on verifying the

fulfillment of non-functional requirements, the analytic toolbox does not play a key

role. Still, the testbed will verify the possibility of correctly invoking the analytics, by

using synthetic data for functionality verification.

- Anonymization Toolbox: this component will be included in the testbed and its

functionality verified on top of synthetic data.

• Proactive security management layer: This component is responsible for proactively

preserving the security properties of the SIFIS-Home infrastructure. Proactivity implies taking

preemptive measures before an incident occurs.

The following proactive security measures have been developed as part of SIFIS-Home project

and will be deployed on the WP5 testbed:

- AUD Manager is a proactive security measure for IoT anomaly detection in a

consumer environment. The AUD manager operates on information from the network

and transport layers (L3 & L4), as underlying the session and application layers where

vulnerabilities are often exploited, e.g., through session hijacking and man-in-the-

middle attacks. The analytic developed in WP4 strives to spot the anomalous network

events before data packets reach their destinations, i.e., the target devices.

- Manufacturer Usage Description (MUD, RFC 8520) mimicking support for devices

without MUD support from the vendor. MUD is a proposed standard for describing the

expected network behavior of an IoT device. The usage description itself is an access

control list defined by the vendor. It explicitly defines protocols, ports and endpoints

with which a particular IoT device is allowed to communicate with. However, as of

today, vendors that provide MUD support are quite uncommon. By leveraging the

usage description models created by the AUD manager described above, we can create

an access control list for any local IoT device. By enforcing such an access control

measure for a home IoT-device, one would proactively block any incoming harmful

https://bitbucket.org/marco-tiloca-sics/ace-java
https://bitbucket.org/marco-tiloca-sics/ace-java
https://github.com/rikard-sics/californium/tree/edhoc
https://datatracker.ietf.org/doc/html/rfc5424

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 16 of 31

network intrusion attempts.

4.3 Authorization and Access management integration

When looking at the challenges of the authorization and access management integration related to the

API Gateway that is powered by Sensative Yggio horizontal IoT integration platform, there are some

aspects that we need to take into consideration when designing the test bed.

Yggio is using the well-known open-source component KeyCloak for access and authorization

management, which is a well proven industry standard component that meets the requirements of the

API Gateway. Within the SIFIS-Home network, we use DHT – Distributed Hash Table – for both

device and user management. Hence, the key integration activity to make the SIFIS-Home network

work with the API gateway was to identify how to connect them through the firewall that every smart

home will be supposed to have. We decided to adopt the following solution.

• Users, access and authorization: Let the DHT inside the SIFIS-Home network “Create the

smart home”, by activation of the home admin user, and then create the default smart home

users in the API Gateways KeyCloak component via its API. This is possible since the API

gateway is IP addressable from inside the SIFIS-Home network. This is effectively a DHT to

KeyCloak integration.

• Devices: In order to achieve secure communication across the Cyber-Perimeter, we decided to

start with using MQ Telemetry Transport (MQTT) with TLS 1.3 and utilize the

publish/subscribe mechanism to synchronize the devices between Ratatosk and the DHT

within the smart home. MQTT communication can pass through the firewall and makes it

feasible to use the UI on the API gateway to control both Smart Devices and Not So Smart

Devices inside the SIFIS-Home network. This is effectively a DHT to MQTT integration.

The WP3 security services based on Group OSCORE, ACE framework and EDHOC (see Section 4.2)

will be integrated into the Panarea server. The technical feasibility of how to integrate them with the

API Gateway is being studied.

4.4 Revised proposed architecture

The implementation of the test bed has revealed some weaknesses in the original architecture that had

to be analyzed and revised. The architecture in the image below is what is proposed to be used as

input for further studies in WP1. The target is to finalize it in deliverable D1.4.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 17 of 31

Figure 7: Revised SIFIS Home architecture with some components moved to the API Gateway

As a summary of the test bed design considerations, the overall architecture from deliverable D1.3 is

mostly unchanged. A few components have been moved to the API Gateway as described in the

revised architecture above. Sensative Yggio also provides legacy code, API’s and components like

KeyCloak that enables the test bed to be implemented with a nice and functional UI in an efficient

way. Via the test bed special integration of the DHT with the API Gateway over MQTT and with the

KeyCloak API, the full system is expected to work in line with the vision of SIFIS- Home.

5 Interfaces of the test bed

5.1 Ratatosk, the FIWARE Context Broker

FIWARE NGSI v2 [FIWARE, 2021] Ratatosk is a publish/subscribe Context Broker that holds a state

of a system via FIWARE entities. At the moment, the Context Broker implements FIWARE NGSI v2

APIs as defined here https://swagger.lab.fiware.org/ , and we are investigating the feasibility to

upgrade it to NGSI-LD API’s during the SIFIS Home project. However, it is not a priority

requirement.

Each FIWARE entities are described in JSON via a data model. FIWARE defines recommended data

models to simplify interoperability between systems at https://github.com/smart-data-models , but, if

none fits, it is also possible to define one’s own data models or use a subset of an existing data model

to represent the type of object one wants to describe. This is an example of an NGSI-LD Air Quality

entity in so called normalized format:

https://swagger.lab.fiware.org/
https://github.com/smart-data-models

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 18 of 31

{
 "id": "urn:ngsi-ld:AirQualityObserved:SE:Id235",
 "type": "AirQualityObserved",
 "dateObserved": {
 "type": "Property",
 "value": {
 "@type": "DateTime",
 "@value": "2022-04-28T11:40:00Z"
 }
 },
 "CO2": {
 "type": "Property",
 "value": 314,
 "unitCode": "PPM"
 },
 "refPointOfInterest": {
 "type": "Relationship",
 "object": "urn:ngsi-ld:PointOfInterest:SE:Parkingplace"
 },
 "@context": [
 "https://schema.lab.fiware.org/ld/context",
 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"
]
}

The data models can also be represented in simple KeyValue format in a flat structure. In the SIFIS-

Home project, we still have to define data models for the devices we will use in the test bed, and it is

currently not decided how to merge data models defined by devices in discoverable WebThings

format with the NGSI format used by the Context Broker.

An important distinction with Ratatosk is that it is a secure FIWARE Context Broker relying on the

KeyCloak open-source component as a security plug-in, and that it always requires a valid

authentication token to accept a command. This will be used to make sure that a user in the smart

home that attempts to perform some actions has the required authorization to do so. These are some

Rest API examples of how to interface the Context Broker that will be used in the project:

Command Modify Syntax

Update
description of
existing node

<id>
 <token> hex
string
 <user id> Yggio
user id

curl -sS -X POST https://yggio.sifis-home.eu/ngsi/v2/entities/<id>/attrs?type=Device -H
"Fiware-UserToken:<token>" -H "content-type: application/json" -H "fiware-service: yggio" -H
"fiware-servicepath: /" -H "fiware-userid: <user id>" -d @- <<EOF
 {
 "description": "My new description - FIWARE"
 }
 EOF

Create entity

<token> hex
string
 <id> 24 char hex
 <type> string

curl -sS -X POST https://yggio.sifis-home.eu/ngsi/v2/entities -H "Fiware-UserToken: <token>"
-H 'Content-Type: application/json' -d @- <<EOF
 {"id":"<id>","type":<type>,"name":{"value":"myNewRoom","type":"String"},
"temperature":{"value":23,"type":"Float"},"humidity":{"value":45,"type":"Float"}}
 EOF

https://schema.lab.fiware.org/ld/context
https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld
https://yggio.sifis-home.eu/ngsi/v2/entities/%3cid%3e/attrs?type=Device
https://yggio.sifis-home.eu/ngsi/v2/entities

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 19 of 31

Update
values of
existing
entity

<token> hex
string
 <id>

curl -sS -X POST https://yggio.sifis-home.eu/ngsi/v2/entities/<id>/attrs -H "Fiware-UserToken:
<token>" -H 'Content-Type: application/json' -d @- <<EOF

{"temperature":{"value":28,"type":"Float"},"humidity":{"value":48,"type":"Float"},"lux":{"valu
e":1245,"type":"Float"}}
 EOF

Get entities
of certain
type <token>

curl https://yggio.sifis-home.eu/ngsi/v2/entities?type=<type> -H "Fiware-UserToken:
<token>"

Get entities
that fulfill “q
query”

<token>
 <root key>
 <key>
 <value>

curl "https://yggio.sifis-home.eu/ngsi/v2/entities?type=Device&q=<root
key>.<key><condition>%27<value>%27" -H "Fiware-UserToken: <token>" -H "fiware-service:
yggio" -H "fiware-servicepath: /"

Create NGSI
subscription

<token>
 <id>
 <url>
 <type>

curl -sS -X POST https://yggio.sifis-home.eu/ngsi/v2/subscriptions -H "Fiware-UserToken:
<token>" -H 'Content-Type: application/json' -d @- <<EOF
 {
 "description": "Initiate NSGI subscription",
 "subject": {
 "entities": [
 {
 "id": <id>,
 "type": <type>
 }]},
 "notification": {
 "http": {
 "url": <url>
 }}}
 EOF

List NGSI
subscriptions <token> curl https://yggio.sifis-home.eu/ngsi/v2/subscriptions -H "Fiware-UserToken: <token>"

Delete NGSI
subscription

<id>
 <token>

curl -sS -X DELETE https://yggio.sifis-home.eu/ngsi/v2/subscriptions/<id> -H "Fiware-
UserToken: <token>"

A design aspect of SIFIS-Home is that the API Gateway that implements RATATOSK must be able

to send a command through a firewall to the DHT based network inside a house and then execute

some command, like turning on a lamp. The natural solution to use NGSI subscriptions will

unfortunately not work, since subscription requests are required to be IP addressable and will get

blocked by the smart home firewall. The solution we identified was to develop a MQTT to DHT

bridge, i.e., the devices and analytics in the smart home will both publish events and subscribe to

RATATOSK events not via the API and NGSI subscriptions, but rather via an MQTT broker that

integrates with Ratatosk. The Ratatosk events will then be triggered either by the user via the UI or by

other SIFIS-Home devices.

5.2 WebOfThings Smart Devices

The WebOfThings standards focus on the key concept of enabling the devices to self-describe. The

Thing Description is the cornerstone of it.

Within SIFIS-Home, we augment the Thing Description with a custom ontology to deliver

information regarding the risks involved in interacting with the device.

We contributed to the Webthings.io implementations with several changes to validate our model, and

we are working on a full refactor our initial proof of concept to provide a virtualized and Raspberry-

Pi-simulated implementation of a Lamp device, an Oven device, a Cooker device and a Fridge device

to simulate a kitchen.

https://yggio.sifis-home.eu/ngsi/v2/entities/%3cid%3e/attrs
https://yggio.sifis-home.eu/ngsi/v2/entities?type=%3ctype
https://yggio.sifis-home.eu/ngsi/v2/entities?type=Device&q=%3croot
https://yggio.sifis-home.eu/ngsi/v2/subscriptions
https://yggio.sifis-home.eu/ngsi/v2/subscriptions
https://yggio.sifis-home.eu/ngsi/v2/subscriptions/%3cid

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 20 of 31

A minimalistic WoT-Discovery will bridge the WoT-Things with the FIWARE broker.

5.3 User Interface

The user interface is the main interaction element between the SIFIS-Home framework and the tenants

and other users (e.g., administrator, maintainer…). The user interface is used to configure user

preferences, interact with GUI capable applications, install and remove applications, as well as set-up

usage, safety and security policies.

Since the UI should be reachable both from inside the SIFIS-Home network and externally, the web

parts of the UI will be placed on the API Gateway and thus run on top the RATATOSK FIWARE

Context Broker complemented with additional APIs to support all the functionality required in SIFIS-

Home. From a test bed point of view, we have leveraged existing functionality in Sensative Yggio to

be able to implement and get the web UI working well within the scope of the project.

The actual UI for SIFIS-Home Smart Devices is still under design phase and will be specific for the

device type in question.

Figure 8: Components of the User Interface module as defined in deliverable D1.3

The diagram in Figure 8 shows the structure of the User Interface component. The User Interface

module includes the following components that are further elaborated in six components.

• Create Home: This component makes it possible to perform a sequence of events triggered by

the end user towards activating a first SIFIS-Home smart device in their smart home. The main

account for the smart home will be created on the API gateway together with the standard

users and their access rights, while the first device user used to initiate the registration will also

be onboarded. From a test bed point of view, we will manually initiate the ”Create Home”

activity and user registration from the UI.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 21 of 31

Figure 9: The home main account together with standard users were created.

• Home: This is the main component of the User Interface and is used to launch other

applications installed in the system for a smart home. Our plan is also to add a simple

dashboard that shows some key metric of the system like number of devices and installed third

party applications.

Figure 10: Home screen with a simple dashboard

• Device management: This component enables the configuration of the devices in the SIFIS-

Home network. This is a core component in the system that is managing onboarding,

configuration, displaying of device status and other functionalities related to the devices added

to the smart home system. Depending on what role the logged in user has, different activities

like read or write data will be allowed.

Figure 11: Device Manager with a list of devices

• Settings: This component provides user interfaces for the configuration of the SIFIS-Home

infrastructure and most items in the API Gateway, like devices, analytics, etc, in the SIFIS

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 22 of 31

Home network will from a SW architectural point of view be represented by FIWARE entities

in the Ratatosk Context broker. . Then this component provides a viewer and editor of

applicable values related to FIWARE entities.

Figure 12: View status and edit settings for a SIFIS Home Smart Device

Figure 13: Compare time series data of 3 devices used for validation

• Alarms/Log: This component provides features to show alarms to the user and to gather logs

of the functioning of the SIFIS-Home infrastructure. At the time of writing, this component is

still under architectural definition and will be further defined in deliverable D1.4. Its

implementation is not started yet.

• Marketplace: This component provides graphical user interfaces through which the user can

visualize available applications to be installed on the SIFIS-Home system, and then download,

install and update them if new versions are available. This component is still under

development and a first version based on only a front end is already available.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 23 of 31

Figure 14: UI how an application is visualized to the user.

5.4 GitHub

The code used in WP5 is slowly being uploaded to GitHub and reviewed by the partners as part of the

WP2 activities. The SIFIS-generate tool is made available to streamline the process of adding GitHub

Actions to the projects to have a working Continuous Integration.

A checklist had been provided to the parners to make them aware of the status of their code and self-

assess what is missing.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 24 of 31

The FIWARE Context Broker RATATOSK is available as open source and is getting continuously

updated. It is the core of the SIFIS-Home API Gateway and handles device management as well as

identity and access management with help of other modules.

Figure 15: The Ratatosk FIWARE Context Broker is available as open source

Partners are in the process of uploading their code to the SIFIS-Home GitHub. We expect that, in the

next few months, a lot of new code will get published and later maintained/updated.

6 Validation of implementation and of the test bed

This section reports the set of use cases of the SIFIS-Home framework that we used in order to design

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 25 of 31

and verify the test bed. In the previous section, it was stated that it should be possible to verify and

validate the NFRs – Non-Functional Requirements – as defined in deliverables D1.2 and D2.1 by

using the test bed.

Independent of the programming language used to develop the different components, their integration

and execution should be feasible, as well as the continuous integration and continuous deployment of

related new code uploaded to the SIFIS-Home GitHub. Once the system is up and running, it is

required that the communication flow between all devices (e.g., from Smart Device to Smart Device,

from Smart Device to API gateway, from API gateway to all devices, etc.) work reliably. Also,

accesses to services and resources have to be secured and verified in the light of access policies to

enforce.

Req. ID Req. description FR Priority Validation strategy

PE-01 The user authentication shall happen in less than 2s.
F-02

Critical UI performance test
F-03

PE-02
The user recognition (identification/ biometric-

based) shall happen in less than 5s.
F-06 Critical UI performance test

PE-03
Biometric-based authentication should be performed

in less than 5 seconds.
F-03 Standard Under consideration

PE-04

Activation of features based on user identity

(biometric recognition) should be performed in less

than 5 seconds.

F-04

Standard UI performance test
F-05

PE-05

Recognition of the start of an interaction through

voice command should be performed in less than 2

seconds.

F-06 Standard Under consideration

PE-06

The interpretation of the voice commands provided

by the user should be performed in less than 2

seconds.

F-07 Standard Under consideration

PE-07
A command should be invoked within 5 seconds

from the event that triggered its execution
F-08 Standard UI performance test

PE-08
The maintainer must be able to access and watch a

recording in less than one minute.
F-13 Standard Under consideration

PE-09

If requested to, the SIFIS-Home system shall contact

law enforcement or private surveillance services to

receive assistance in less than 30 seconds.

F-14 Optional

Event performance test.

Use test mobile as

receiver.

PE-10

An abnormal (suspicious) behavior caused by

malware shall be identified and notified within 60

seconds

F-19 Optional Event performance test.

PE-11

The user should be informed of the presence of

malware no later than 5 seconds after the malware is

recognized.

F-20 Standard Event performance test.

PE-12
Self-healing algorithms should be started in less than

60 seconds if available when malware is recognized.
F-21 Critical Event performance test.

PE-13
The registration of a new device should be

completed in less than 30 seconds.
F-23 Standard Event performance test.

PE-14
The list of registered devices shall be shown by the

SIFIS-Home system in less than 30 seconds.
F-24 Standard UI performance test

PE-15
The de-registration of a device should be completed

in less than 30 seconds.
F-25 Standard UI performance test

PE-16 The correct configuration changes should be F-26 Critical

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 26 of 31

propagated successfully in less than 30 seconds.

UI performance test

PE-17
The current configuration of a device should be

retrieved in less than 10 seconds.
F-26 Standard UI performance test

PE-18
The marketplace should be accessible in less than 60

seconds.
F-28 Standard UI performance test

PE-19

The configuration of policies for groups of users

should be applied and enforced in less than 60

seconds.

F-32 Critical

UI performance test

PE-20

The configuration of policies for groups of devices

should be applied and enforced in less than 60

seconds.

F-33 Critical Event performance test

PE-21
The list of policies should be retrieved in less than

30 seconds.
F-30 Standard Event performance test

PE-22
The configuration of profiles should be applied and

enforced in less than 60 seconds.
F-37 Critical

Event performance test

PE-23
The change of current profile should be performed

in less than 60 seconds.
F-38 Critical Event performance test

PE-24

The statistics about usage and behavior of devices

should be presented to the administrator in less than

30 seconds.

F-41 Standard UI performance test

PE-25

The statistics about usage of profiles should be

presented to the administrator in less than 30

seconds.

F-42 Standard UI performance test

PE-26
Remote log-in should be performed in less than 60

seconds.
F-43 Critical Event performance test

PE-27

In case of an incomplete or unsuccessful command

execution, an error response should be sent within 5

seconds

F-08 Standard Event performance test

PE-28

The used solutions for communication and system

security shall be as much as possible lightweight to

enforce in terms of performance and especially

feasible also for resource-constrained devices.

All Critical By design

PE-29

The performance impact due to communication and

system security shall not result in unacceptable

impact on the user experience.

All Critical UI performance test

PE-30

The network infrastructure shall provide means also

for one-to-many message delivery, e.g., over IP

multicast.

F-47

Critical By design
F-48

F-49

F-50

PE-31
It must be possible to have multiple security groups

simultaneously active in the system.

F-47

Critical By design
F-48

F-49

F-50

PE-32

When relevant, support shall be ensured for

communication intermediaries performing, e.g.,

message forwarding and/or (transport-) protocol

translation. This applies also in secure scenarios and

in (secure) group communication scenarios.

All Critical By design

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 27 of 31

PE-33

When relevant, it shall be possible to enable one-to-

many response messages, sent at once to multiple

requesters. This applies also to secure

communication scenarios and in presence of

communication intermediaries.

All Critical By design

PE-34

When relevant and limited to read-only operations, it

shall be possible to enable cache ability of response

messages at communication intermediaries, also

when protected end-to-end.

All Critical By design

PE-35

Devices should, if available, utilize low-power

modes of operation to further mitigate the

performance impact of ongoing (D)DoS attacks.

All Standard By design

PE-36

There should be a means to enable an optimized,

combined establishment of a cryptographic secret

with a first message protected with key material

derived from that secret.

All Standard By design

PE-37

In case of an incomplete or unsuccessful

configuration change, an error message should be

returned within 5 seconds

F-26 Standard UI performance test

RE-01
The system shall not fail more than once a week (on

average).
All Critical Event performance test

RE-02
The system shall not take more than one day to

be repaired (on average).
All Critical Event performance test

AV-01
The SIFIS-Home system services and devices shall

be available 99% of the time
All Critical Event performance test

AV-02
The SIFIS-Home system shall ensure basic services

availability in case of system failures.
All Critical Event performance test

AV-03

Support should be ensured for devices to

dynamically react to (D)DoS attacks, by gradually

adapting their availability. This includes relying on

communication intermediaries for traffic offloading

during intense (D)DoS attacks.

All Standard By design

AV-04

Devices under (D)DoS attacks should be able to

continue providing a (best-effort) service to

legitimate requests, i.e., by displaying a graceful

degradation of quality of service.

All Standard Event performance test

US-01
The system shall be easy to use for users with no

technical background
All Critical UI performance test

US-02

The SIFIS-Home system shall be autonomous and

learn based on the users’ habits, still according to

defined privacy policies.

All Critical By design

US-03
The SIFIS-Home system shall consider special cases

in its design, such as color blindness.
All Optional By design

US-04

The SIFIS-Home system shall preserve consistency

among all devices, related databases and

constraints.

All Critical By design

US-05

The SIFIS-Home hardware components should be

easy to use for the elderly and users with no

engineering background.

All Optional Not Verifiable

US-06
The SIFIS-Home system shall have an explorable

interface.
All Standard By design

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 28 of 31

US-07
Proper and easy hardware installation should be

considered.
All Standard By design

US-08

The image-based identification through biometrics

in a room (interior) or in an open space (exterior),

without obstacles or face covering elements, it

should be performed by the system in a radius of at

least 10 meters from the device.

F-01 Standard Event performance test

US-09

An untrained user should be able to understand that

an attack is ongoing in less than a minute from

reading the SIFIS-Home alert or notification.

F-09

 Critical

F-13 UI performance test

US-10
An untrained user should be able to recognize a

software intrusion in less than one minute.

F-19
 Critical UI performance test

F-20

US-11
An untrained user should be able to perform the

device registration procedure in less than 5 minutes.
F-23 Standard UI performance test

US-12

An untrained user should be able to perform the

device de-registration procedure in less than 5

minutes.

F-26 Standard UI performance test

US-13
An untrained user should be able to perform the

configuration of devices in less than 5 minutes.
F-26 Standard UI performance test

US-14
An untrained user should be able to perform the

installation of an application in less than 5 minutes.
F-28 Standard UI performance test

US-15

An untrained user should be able to complete the

configuration of policies for groups of users in less

than 5 minutes.

F-32 Standard UI performance test

US-16

An untrained user should be able to complete the

configuration of policies for groups of devices in

less than 5 minutes.

F-33 Standard UI performance test

US-17
An untrained user should be able to complete the

configuration of profiles in less than 5 minutes.
F-37 Standard UI performance test

US-18
An untrained user should be able to perform a

profile change in less than 30 seconds.
F-38 Standard UI performance test

US-19

An untrained user should be able to access the

statistics for visualizing and interpreting them in less

than 5 minutes.

F-41 Standard UI performance test

US-20

The Multi-Level Anomaly Detection system

(MLADS) must monitor network traffic provided by

several input sources and several locations.

F-15

C By design
F-16

F-17

F-18

US-21
The workload of the devices should be available to

the MLADS.

F-15

C By design
F-16

F-17

F-18

US-22
The list of applications running on each device

should be available to MLADS.

F-15

C By design
F-16

F-17

F-18

US-23
Raw sensor data must be available to be analyzed by

MLADS.

F-15

C By design F-16

F-17

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 29 of 31

F-18

US-24

Features from different devices should be

aggregable directly or by means of pre-processing

through specific analysis tools.

F-15

C By design
F-16

F-17

F-18

US-25
When possible, a dataset should not be present as a

whole on a single device for analysis.
All S By design

US-26
The presence of a GPU is needed to perform DL-

based analysis.

F-15

S By design
F-16

F-17

F-18

DE-01
Identification through biometrics should be

performed correctly in more than 95% of cases.
F-01 Critical Test on public datasets

DE-02

The start of an interaction command should be

recognized properly and correctly in more than 99%

of cases.

F-06 Critical Event performance test

DE-03
The commands to execute should be recognized

properly and correctly in more than 95% of cases.

F-06
 Critical Event performance test

F-07

DE-04

Record of intrusions must be available for a

configurable time (default six months) after the

recording.

F-10 Standard
By design

DE-05

Identity of the successfully recognized intruders

must be available for a configurable time (default six

months) after the recording.

F-12 Standard By design

DE-06
Core functionalities should be replicated on multiple

devices to avoid single points of failure.
F-21 Critical By design

DE-07
The registration of a new device should be

successful in at least 99% of the cases.
F-23 Critical Event performance test

DE-08
The de-registration of a new device should be

successful in at least 99% of the cases
F-25 Critical Event performance test

DE-09

The configuration changes should be propagated

successfully to the devices more than 99% of the

time.

F-26 Critical Event performance test

DE-10

The SIFIS-Home system should be able to restore

the previous configurations if there are errors in

applying configuration changes.

F-26 Standard Event performance test

DE-11
The installation of the selected app should be

completed successfully in at least 95% of cases.
F-28 Critical Event performance test

DE-12
The application of policies should always be

completed successfully.

F-31

 Critical Event performance test F-34

F-33

DE-13
The configuration of profiles should be completed

successfully in at least 99% of cases.
F-37 Critical Event performance test

DE-14
The change of current profile should be completed

successfully in at least 99% of cases.
F-38 Critical Event performance test

DE-15
The statistics must be shown correctly in at least

99% of cases.
F-41 Critical Event performance test

DE-16
Remote log-in for the configure should be successful

in at least 99% cases.
F-43 Critical Event performance test

DE-17

The SIFIS-Home system should be able to distribute

the processing among multiple machines in separate

places if required.

All Critical Event performance test

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 30 of 31

DE-18

The SIFIS-Home system is required to be fault

tolerant, it should continue to operate, even if one or

more of the nodes fail.

All Critical Event performance test

DE-19

The SIFIS-Home system is required to be scalable

dynamically by adding or removing nodes according

to demand.

All Critical Event performance test

TE-01
The SIFIS-Home system needs Java version 8 or

higher to interact with the ontology.
 Critical By Design

TE-02

The process for getting and inserting information

into the ontology will be through APIs provided via

HTTP(S).

 Critical By Design

TE-03
The software for handling the ontology should be

hosted on a high-availability server.
 Critical By Design

TE-04 Internet connectivity should be present. Standard By Design

Table 1. Finalized list of Non-Functional requirements for the SIFIS-Home framework

7 Conclusion

In this deliverable, we have presented how we analysed the key SIFIS-Home requirements and the

consortium partners assets and expertise to design and setup the SIFIS-Home test bed built around the

Panarea server provided by CNR.

During the integration of software components, we also found out that the original architecture from

deliverable D1.3 was not feasible to instantiate and that there must be a clear separation between the

API gateway and the SIFIS- Home application designed to be installed and to run on the Smart

Devices in the smart home. A proposal of a revised architecture has been sent provided to WP1 for

further studies.

As visible from the UX snapshots, the preliminary version of test bed with the SIFIS-Home software

is up and running on the Panarea server. The partners are providing both code to the SIFIS-Home

GitHub as well as integrating code into the test bed. This is done mostly in accordance with processes

defined by WP2, even if some partners still have some way to go in order to be fully compliant. The

test bed is still in a preliminary phase and there is ongoing work, for example with implementing and

integrating network and security solutions as well as analytics.

From a validation point of view, deliverable D1.2 provided clear requirements and the validation

strategy for most of the requirements has been set.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 31 of 31

8 References

[WoT, 2020] Web Of Things (WoT) Architecture, W3C recommendation 9 April 2020,

https://www.w3.org/TR/wot-architecture/

[FIWARE, 2021] What is FIWARE?, https://www.fiware.org/developers/

[YGGIO, 2021] Yggio DiMS, Digitalization infrastructure Management System,

https://sensative.com/yggio/

https://www.w3.org/TR/wot-architecture/
https://www.fiware.org/developers/
https://sensative.com/yggio/

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D5.1

Version: 1.0 Page 32 of 31

Glossary

Acronym Definition

AODV Ad-hoc On-demand Distance Vector

CH Context Handler

DHT Distributed Hash Table

FR Functional Requirements

NFR Non-functional requirement

NSSD Not So Smart Device

OS Operative System

P2P Peer to Peer

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PTP Policy Translation Point

SD Smart Device

SIFIS-Home Secure Interoperable Full Stack Internet of Things for Smart Home

UC Use case

US User story

XACML eXtensible Access Control Markup Language

