
H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

•

D4.3

Final Design and Development of

Privacy Aware Analytics for Secure

Services

WP4 – Privacy-Aware Analytics for Security and Services

SIFIS-Home

Secure Interoperable Full-Stack Internet of Things for Smart Home

Due date of deliverable: 30/06/2023

Actual submission date: 30/06/2023

Responsible partner: CNR

Editor: Paolo Mori

 E-mail address: paolo.mori@iit.cnr.it

30/06/2023

Version 1.3

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-Home Project is supported by funding under the Horizon 2020 Framework Program

of the European Commission SU-ICT-02-2020 GA 952652

mailto:paolo.mori@iit.cnr.it

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Authors: P. Mori, W. Alabbasi, M. Simoni, A. Saracino (CNR), O. Isohanni, J. Jämsä

(CEN), H. Lundtrom, S. Moriz (SEN)

Approved by: Luca Ardito (POL), Samuli Stenudd (RIOTS)

Revision History

Version Date Name Partner Section Affected

Comments
0.1 07/12/2022 P. Mori CNR Initial ToC

0.2 24/02/2023 H. Lundstrom, S. Moriz SEN Description of xAnomaly

Analytics

0.3 19/03/2023 W. Alabbasi CNR Description of Face Recognition,

Person Recognition Analytics

04 1/04/2023 W. Alabbasi CNR Description of new version of

Privacy Aware Speech

Recognition and Voice

Anonymization Analyics

0.5 14/04/2023 O. Isohanni, J. Jamsa CEN Description of new version of

Netspot Analytics

0.6 28/04/2023 M. Simoni CNR Description of Multi Level

Instrusion Detection Analytics

0.7 01/06/2023 W. Alabbasi, P. Mori. A.

Saracino

CNR Added Section: Preserving

Privacy of Data Exploited in

Analytics

0.8 04/06/2023 W. Alabbasi CNR Description of Anomaly

Detection in Audio Signals

Analytics

0.9 09/06/203 P. Mori CNR Added Introduction and

Conclusion Sections

1.0 14/06/2023 P. Mori CNR Version ready for internal

revision

1.1 26/06/2023 P. Mori, W. Allabasi, CNR Addressed Reviewers’

comments

1.2 27/06/2023 H. Lundstrom SENS Addressed Reviewers’

comments

1.2 29/06/2023 P. Mori CNR Final Version

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Executive Summary

Deliverable D4.3 is the final outcome of Work Package 4 "Privacy-Aware analytics for Security and

Services", and it provides the description of the analytics that have been designed and developed in the

second half of the SIFIS-Home project period, i.e., after M18, as well as the updated versions of a couple

of analytics that were designed before M18 but they have been significantly updated in the second half

of the project period.

Thanks to the analytics designed in the second half of the project, at the end of Work Package 4 we have

covered the analytics that have been described in deliverable D4.1. For each of these analytics, this

document gives a detailed description of the aim, of the requirements they address (among the one

defined in deliverable D1.2 "Final Architecture Requirements Report"), of the input data they need and

the results they return, of the analytic training and testing, along with some consideration about the

privacy of the input dataset and of the results. The analytics are grouped under four activity areas,

following the WP4 task's structure: i) anomalies and misbehavior detection; ii) network intrusion

detection; iii) policy enforcement; and iv) privacy aware speech recognition. All the analytics designed

and developed in the project period have been integrated in the SIFIS-Home framework, and this

document describes how this integration has been implemented. In this way, all the other components

of the SIFIS-Home framework can invoke such analytics and can benefit of their results.

When analytics are executed outside the smart home cyber-perimeter, for instance exploiting Cloud

services, data privacy problems could arise, and hence the data are anonymized before being sent to the

Cloud based analytics. In deliverable 4.2 we described a set of techniques for preserving privacy of

sensitive data. However, applying such techniques to the data could reduce the data utility in such a way

that the accuracy of the results provided by the analytics is significantly affected. Hence, in this

deliverable we also defined a methodology to fine tune the application of privacy preserving techniques

in order to preserve data privacy as much as possible but, at the same time, keep the result accuracy

level over a given threshold.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.3 Page 4 of 64

Table of contents

Executive Summary ... 3

1 Introduction .. 6

2 Role of Analytics in the SIFIS-Home Framework .. 7

3 Analytics Design .. 8

3.1 Anomaly and Misbehavior Detection .. 8

3.1.1 xAnomaly ... 9

3.1.2 Face Recognition – Person Recognition .. 11

3.1.3 Object Recognition/Detection .. 17

3.1.4 Multilevel Anomaly Detection .. 21

3.2 Network Intrusion Detection .. 24

3.2.1 Netspot Network Anomaly Detection .. 24

3.3 Privacy Aware Speech Recognition ... 28

3.3.1 Privacy Aware Speech Recognition and Voice Anonymization 28

3.3.2 Voice Recognition and Verification .. 33

3.3.3 Anomaly Detection in Audio Signal Analysis ... 36

4 Integration of Analytics within the Data Analysis Toolbox .. 39

5 Preserving Privacy of Data Exploited in Analytics ... 42

5.1 Privacy-preserving Techniques .. 43

5.1.1 (ε, δ)-differential privacy ... 43

5.1.2 Autoencoders ... 44

5.1.3 Explainable Artificial Intelligence ... 44

5.2 Saliency Maps .. 45

5.3 SmoothGrad ... 45

5.4 Reference Scenario and Problem Statement .. 46

5.5 Concepts and Model... 47
5.5.1 Anonymization and Privacy Gain .. 47

5.5.2 Classifier and Data Utility Loss ... 49

5.5.3 Explainer and Explainability Gain ... 51

5.6 Proposed Methodology .. 52
5.6.1 Data Format ... 53

5.6.2 Optimal Trade-Off computation through Compatibility Matrix 53

5.6.3 Compatibility Matrix ... 54

5.6.4 Applicative Example .. 55

6 Conclusion ... 58

7 References .. 59

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.3 Page 5 of 64

Glossary ... 64

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 6 of 64

1 Introduction

Deliverable D4.3 is the final output of Work Package 4, “Privacy Aware Analytics for Security and

Services” due at the end of the work package activities (M33) and it consists of two parts. The first part

of deliverable D4.3 consists of this document, which describes the analytics that have been designed

and developed following the requirements we defined in deliverable D1.2 "Final Architecture

Requirements Report", in order to be applicable to the Smart Home environment taken into account in

the SIFIS-Home project. In particular, this deliverable focuses on the analytics that have been designed

and developed after M18, but also reports an updated description of a couple of analytics that have been

designed and developed before M18, but that undergone relevant modifications in the last period of the

project. Instead, the analytics that have been designed and developed before M18, and that did not

undergo relevant modifications in the last period of the project, are described in D4.2 and, for the sake

of simplicity, we didn’t report them in this deliverable.

The following is the complete list of analytics produced by WP4 of the SIFIS-Home project, grouped

according to the activity areas defined by WP4 task's structure. For each analytics we specify the

deliverable where it has been described:

Anomaly and Misbehaviour Detection and Prevention Analytics:

• Device Fault Detection – D4.2

• Device Activity Monitoring in Centralized Cloud – D4.2

• xAnomaly – D4.3

• Face Recognition and Person Recognition – D4.3

• Parental Control – D4.2

• Object Detection – D4.3

• Multilevel Anomaly Detection – D4.3

Network Intrusion Detection Analytics:

• Netspot Network Anomaly Detection – D4.3

• Anomaly Detection for IoT Devices in a Consumer Home Network – D4.2

Policy Enforcement

• Policy Enforcement – D4.2

Privacy Aware Speech Recognition and Smart Services Analytics

• Privacy Aware Speech Recognition – D4.3

• Voice Recognition and Verification – D4.3

• Anomaly Detection in Audio Signal Analysis – D4.3

In deliverable D4.1 we provided a list and a high-level description of the analytics that will be designed

and developed within WP4, and the previous list covers them.

Besides designing and developing a number of new analytics, in the second period of the project we

also integrated all the analytics within the Data Analysis Toolbox, which is a component of the SIFIS-

Home framework (see the next Section). This integration allows the other components of the SIFIS-

Home framework, such as the System Protection Manager, to invoke the execution of the

aforementioned analytics, and to get their results through the DHT in order to react to intrusions by

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 7 of 64

taking proper countermeasures.

Finally, this document studies the privacy issues concerning data collected in the smart home

environment when they are sent outside the smart home cyber-perimeter to be elaborated by external

analytics. In deliverable D4.2 we provided a number of privacy preserving techniques that can be

adopted to preserve the privacy of data collected in the smart home. However, applying privacy

preserving techniques to such data could affect the accuracy of the results of the analytics where these

data are exploited. Moreover, another factor that should also be taken into account according to the last

directives, such as the EU proposal for the Artificial Intelligence Act1, is the decision explainability. As

a matter of fact, understanding the decision-making criteria applied by artificial intelligence based

analytics is very important for both technical and ethical reasons. For this reason, in Section 5 of this

document we studied a methodology that take into account privacy requirements concerning the data

exploited in the analytics, but also the desired accuracy of the result in order to define the optimal trade-

off between data utility, privacy, and explainability. We applied this methodology to face analysis. In

particular, we exploited two common techniques for preserving data privacy, Differential Privacy and

Autoencoders (already introduced in D4.2) and one technique for ensuring model explainability

(Saliency Mas enhanced with Smoothgrad), and we performed a set of experiments to demonstrate and

validate the proposed methodology.

The second part of deliverable D6.3 consists of the source code of the previously mentioned analytics,

which is available in the project repository at the following link: https://github.com/sifis-home/.

2 Role of Analytics in the SIFIS-Home Framework

To ensure security and privacy in the SIFIS-Home framework, machine learning, deep learning statistics

and rule-based techniques are adopted to analyze the behaviour of users and devices in the smart home,

to detect intrusions at cyber-physical level (e.g., face-sound recognition), at network level (Network

Intrusion Detection Analytics), and at system level (Multi-Level Intrusion Detection). Such analysis

mechanisms exploit features extracted through continuous monitoring of the full smart-home stack, e.g.,

of device system calls of the smart home devices, network events, sensor data, DHT operations,

collected sounds, pictures and videos. The results of such analysis are used by the SIFIS-Home

framework to detect dangerous or not desirable situations in the smart home, in order to timely react

and take proper countermeasures to prevent, avoid or mitigate the impact of the malfunctioning/attack.

The SIFIS-Home architecture includes a specific component, namely Data Analytics Toolbox, which

hosts all the software component implementing the aforementioned analytics. This component provides

the tools to analyze textual, tabular, and multimedia data in order to perform predictions, analyze voice

and gesture commands, detect intrusions and misbehaviors, as well as for providing advanced smart

services to the smart home users. The Data Analytics Toolbox is part of the Application Toolboxes

module, shown in Figure 1. Please refer to Deliverable D1.3 for a detailed description of the Application

Toolboxes module and of the rest of the SIFIS-Home framework.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 8 of 64

Figure 1: Application Toolboxes module

As shown in Figure 1, the Application Toolboxes module also includes the Anonymization Toolbox

engine, which contains software tools that are used to preserve privacy of data during analysis.

Depending on the data type and the desired level of privacy, the most appropriate anonymization tool

can be chosen from the toolbox, in order to generalize or suppress data information, as well as for

supporting differential privacy for privacy preserving data analysis. These anonymization techniques

have been described already in D4.2. In this deliverable we focused on two of these techniques,

Differential Privacy and Autoencoders, and we studied a methodology to guide the choice of the privacy

degree to use for the data exploited for a given analytics in order to guarantee a good privacy level and,

at the same time, a good accuracy of the analytics results. This methodology also take into account the

explainability aspect of analytics, since understanding why a decision has been taken by an artificial

intelligence based analytics is very important for both technical and ethical reasons. As a matter of fact,

since the analytics are based on Artificial Intelligence, they could inadvertently inherit biases from the

data they are trained on, and hence they could produce discriminatory (and even wrong) results.

Introducing explainability, it is possible to identify such discriminatory patterns and correct them, thus

ensuring that the system treats all individuals fairly and without discrimination.

3 Analytics Design

This section gives a detailed description of the analytics that have been designed and developed in Work

Package 4 after M18. We recall that these analytics are grouped into four areas, consistently with the

tasks of Work Package 4: i) Anomaly and Misbehavior Detection, ii) Network Intrusion Detection, iii)

Policy Enforcement, and iv) Privacy Aware Speech Recognition. The description is structured in the

same way for all the analytics. First, we describe the main aim of the analytics in the context of the

SIFIS-Home scenario and, with reference to deliverable D1.2 "Final Architecture Requirements

Report", we list the requirements that the analytics contributes to satisfy, as well as the requirements

that the analytics introduces. Then, we describe the data that are given as input to the analytics, how

such data are collected from the sensors in the SIFIS-Home framework, how the analytic is trained and

tested with such data and the results provided, as well as some privacy consideration on the input data

and results. Moreover, we describe the hardware requirements of the analytics, in order to understand

what classes of devices it can be executed. Finally, we present some implementation details of the

analytics, along with some preliminary results that have been obtained by executing the analytics on the

dataset previously described.

3.1 Anomaly and Misbehavior Detection

The analytics of the Anomaly and Misbehavior Detection area have been defined to preserve data

correctness and integrity, in addition to preventing anomalous actions and behaviors in smart

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 9 of 64

environments. Data collected from connected devices and network data are processed to provide

security as a service, by ensuring multi-level anomaly and misbehavior detection and prevention.

3.1.1 xAnomaly

3.1.1.1 Aim of the Analytics

Our goal is to detect intrusion attempts by creating an anomaly detection system for IoT data. Anomaly

detection is the process of identifying unusual patterns in data that deviate from normal behavior.

Supervised anomaly detection is a type of anomaly detection that learns from labelled data and can be

used to identify previously seen anomalies. On the other hand, unsupervised anomaly detection learns

from unlabelled data and can be used to identify previously unseen anomalies. As new intrusion attempts

are likely to differ from previous ones, an anomaly detection system for IoT data needs to be able to

handle previously unseen anomalies. Therefore, we have chosen to work with unsupervised models. We

have chosen to base our system on autoencoders (AEs), a standard choice in the industry (Pang et al.

2021, Ruff et al. 2021).

3.1.1.2 Requirements related to the analytics

The xAnomaly analytics is relevant for satisfying the following requirements defined in [D1.2]:

• Functional Requirements:

• F-15: The SIFIS-Home system shall provide means of identifying anomalous situations

and behaviours inside the smart home

• Non-Functional Requirements:

• PE-10: An abnormal (suspicious) behavior caused by a malware shall be identified and

notified within 60 seconds

• Security Requirements:

• SE-17: Anonomalous device behaviours should be identified and signalled in less than

60 seconds.

3.1.1.3 Input Data

The input data, X, is equivalent to the output data, X. In our proof-of-concept (PoC), the input data is

time series windows of length t, xi =x0 ... xt−1, that we create by subdividing the original series into

one-step windows.

3.1.1.4 Analytic Design

An autoencoder is a neural network model where the input data is encoded to a bottleneck layer and

decoded to reconstruct the input data. You can picture encoding as finding a compression function and

decoding as finding a decompression function. The compression function is enforced by the bottleneck

layer being small, which forces the data to be represented in a smaller space.

Encoder : z = ϕe (x; Θe)

Decoder : x̂ = ϕd (z; Θd)

The encoder network, ϕe (), with parameters Θe , outputs the bottleneck layer nodes, z. The bottleneck

layer, z, is used as input in the decoder network, ϕd (), with parameters Θd , to create the reconstruction,

x̂, of the original series. Training proceeds in a normal fashion by minimizing the loss, which is often

referred to as the reconstruction error in the autoencoder context. In our PoC, the encoder and decoder

networks are fully-connected layers. We chose this as a starting point because it allows us to take into

account time dependencies while circumventing the vanishing gradient problem and, at the same time,

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 10 of 64

it does not add complexity to the model (as noted in Xu, 2018).

Anomaly scores are approximated by using the empirical distribution of the reconstruction error. In our

PoC, we train using the mean absolute error to limit the influence of anomalies in our training data. We

calculate an anomaly threshold by letting the user set how many anomalies they want to be flagged per

year, which implicitly sets specific type 1 and type 2 error rates. We calculate the corresponding

anomaly threshold by estimating it from the empirical distribution function of the reconstruction error

on the input data.

It is straightforward to construct anomaly scores for autoencoders, whereas the literature has not yielded

a conclusive answer on how to construct them for variational autoencoders (Xu et al. 2018, An and Cho

2015). Therefore, we have refrained from using variational autoencoders so far. The benefit of

variational autoencoders in our context would be to allow different types of anomalies to cluster in the

bottleneck space, which would not be a beneficial feature until a user-feedback mechanism exists.

3.1.1.5 Training and Testing

Available Dataset

We have used a non-public dataset consisting of approximately half a year worth of time series data of

infrared light readings sampled at irregular intervals (it sends more data if it previously noted a change).

Training strategy

We have trained the model on the above-mentioned data.

3.1.1.6 Output data

The analytics outputs a zero if an anomalous event is detected, otherwise nothing. This is to minimize

data transfer.

3.1.1.7 Hardware Requirements

The training and verification of xAnomaly has been performed on a standard Sensative Strips Presence

sensor connected to the SIFIS Home network but could have used any device or measurement that

delivers time series measurements.

3.1.1.8 Privacy Considerations

We have based our autoencoder on a single time series to allow us to deploy the models in a privacy-

preserving manner at a fog node.

3.1.1.9 Execution of the Analytics by the Data Analysis Toolbox

Since the Analytics interact with SIFIS Home Cloud Interface (Yggio), the integration with the Data

Analysis Toolbox is done through Yggio. A service which forwards a selected set of messages from

Yggio to the DHT and vice versa has been developed to this aim.

3.1.1.10 Implementation Details

Our PoC is an autoencoder model that takes infrared light readings from a sensor under my office desk

as the input time series (e.g. it notices that I am in front of my computer writing this). The choice is

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 11 of 64

motivated by the ease of testing deployment, both software engineering- and model-related, from an

easily accessible sensor.

Figure 2: Yggio SIFIS Home Cloud Interface

The figure above displays the architectural overview. SIFIS Home Cloud Interface (Yggio) handles

most of the functionality. The input time series is streamed in real-time via an MQTT channel to a

Python-based Docker container. The container uses the Paho MQTT client library to receive input data

points and the Tensorflow Keras library to query a trained VA-model. If an anomaly is detected, an

MQTT message is sent back to Yggio and stored in an output time series. Yggio is then configured to

send a SMS to my mobile phone.

3.1.1.11 Preliminary Results

We did not specify the exact model, as there are many possible specifications and currently, we do

not have a cost-effective way of evaluating anomalies. The challenge is further complicated by the

fact that IoT data is difficult for humans to interpret, meaning that it is hard to create labelled data.

Furthermore, for effective labelling, we need to be careful in explaining why certain data points

constitute anomalies and why others do not. For example, a temperature reading of -10 at 12:00 may

be considered an anomaly, but at 5:00 it would not be. There are many papers that try to prove that

their model specification is superior by showing that it works well in a specific case, but we want a

more general type of anomaly detection system. Therefore, we aim to find commonalities among

model types that work well. To lower the cost of evaluating anomalies, we plan to have users

evaluate the model output. As interpretability is crucial for success, we have named our project

"Explainable Anomaly" (xAnomaly). User input will allow us to redefine our model specifications.

3.1.2 Face Recognition – Person Recognition

3.1.2.1 Aim of the Analytics

Accurate person recognition is essential for various purposes, including identifying home residents,

guests, and potential intruders. It enables the provision of personalized smart services based on

individual identities. Typically, face recognition models are trained using images of the home's resident

users. When a person enters the home or a specific room, their face image is detected and compared

against the trained model, allowing for classification based on extracted facial features. This process

ensures reliable and efficient person recognition in a home environment.

3.1.2.2 Requirements related to the analytics

The Face Recognition analytic is relevant for satisfying the following requirements defined in [D1.2]:

• Functional Requirements:

• F-1: this analytic satisfies the functional requirement F-1 by identifying the resident users

and administrators inside the smart home through biometrics.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 12 of 64

• F-3: this analytic satisfies the functional requirement F-3 by matching read biometrics

against a database of stored ones.

• Non-Functional Requirements:

• PE-2: The user recognition shall happen in less than 5s.

• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this

requirement depends on the device computational power and on the time required for

data collection.

• US-26: The presence of a GPU is needed to perform DL-based analysis.

• DE-06: the identification through biometrics should be performed correctly in more than

95% of cases.

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single

point of failure.

• Security Requirements:

• SE-21: Gaussian Blurring parameters are configurable for data analysis and can be

changed.

• SE-22: this analytic is able to work with anonymized data, but the accuracy of the results

might be decreased.

3.1.2.3 Input Data

The face recognition algorithm utilizes video frames captured by surveillance cameras within a

controlled environment. This includes both the camera of the controlled device itself and other

surveillance cameras deployed in the surroundings. In addition, recorded videos and captured images

can also be used as input data. The algorithm requires a database directory that contains the identities

of authorized users. By processing this input data, the face recognition system can accurately identify

and verify individuals within the controlled environment.

3.1.2.4 Analytic Design

The used face recognition model is DeepFace [Facebook, SER20]. It is an open-source model which

uses a deep learning mechanism for face recognition. The core of the architecture is a Convolutional

Neural Network (CNN) model that takes image data as input and produces the relative representation

as output and verifies it with the representations of authorized identities. The model has been trained on

a large dataset for face recognition based on a distance metric between face representations. This model

has been validated with a set of experiments on a well-known dataset, the Labelled Faces in the Wild

(LFW) dataset. Figure 3 shows the entire workflow in a sample scenario, it starts with image capture

and anonymization using Gaussian blurring on the user side. The resulting anonymized images are

forwarded to the server to be processed for face recognition starting with a face detector OpenCV to

detect all faces within an image. Detected faces are aligned and then converted to vectors. Finally, the

faces are verified by comparing their representations with the representations of face images stored in

the database. We use VGG-Face deep-learning model for face recognition. The pipeline of the analytic

is composed of four different components as shown in Figure 3.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 13 of 64

Figure 3: Privacy-Preserving Face Recognition

The SIFIS-Home face recognition analytic is composed of a pipeline of the following four components:

Face Detection: using the Haar Cascade classifier. Haar-like features are used to detect facial regions

like eyes and nose, and they are determined using the integral image representation mechanism, and the

AdaBoost classifier is used to select only relevant Haar-like features that are known to improve the

binary face classification algorithm results.

Face Alignment: face images might have several poses and expressions, which may affect the accuracy

of the face detection and face verification models. Thus, to decouple these poses and expressions from

the face identity and to reduce their effect on the face detection and classification algorithms, face

alignment is used. For face alignment, we use a simple trigonometric method. This method detects eyes

and eye coordinates as a first step and draws a triangle between eyes based on their centre locations.

The angle of the lower eye needs to be computed, and this is done based on the horizontal line drawn

between eye centres, computing the length of the three edges of the triangle between eyes using the

Euclidean distance. Then, the angle is calculated with the cosine rule. Finally, the image is rotated based

on this angle.

Face Representation: converts face images into vector embeddings, so that vectors of similar images

for the same person are closer in distance among them. Trained Convolutional Neural Networks (NN)

for face recognition tasks do represent face images in the layer before the output layer. Therefore, these

trained models on huge datasets can sufficiently represent new face images into high dimensional

representations, and to extract and represent facial features of complex concepts.

Face Verification: compares face representations produced by the layer before the output layer of the

CNN used to perform face recognition. The output layer returns the classification of a face image

compared to another one, whether they belong to the same person or not, based on semantic closeness.

To measure semantic similarity, we use the cosine similarity metric, which finds the cosine of the angle

between two representations.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 14 of 64

3.1.2.5 Training and Testing

Available Dataset

The used dataset for testing is the Labeled Faces in the Wild (LFW) dataset, which is a database of face

photographs designed for studying the problem of unconstrained face recognition [HRB08]. The data

set contains more than 13,000 images of faces collected from the web. 1,680 of the pictured persons

have two or more distinct photos in the dataset.

Training strategy

The DeepFace framework was trained on a large-scale dataset called the Social Face Classification

(SFC) dataset. The SFC dataset consists of millions of labeled images of individuals sourced from the

internet, including various social media platforms. Then, we tested the framework face recognition

models on the anonymized Labeled Faces in the Wild (LFW) dataset with different privacy degrees.

We reported the results in our paper [AMS22].

3.1.2.6 Output data

The output of the face recognition analytic is the identity of a person's face, including the identity label,

since the analytic has access to a database of known individuals, it provides the identity of the person

in the detected face by matching it with the stored identities. Also, matching similarity is provided.

3.1.2.7 Hardware Requirements

The recommended Hardware Requirements for running this analytic are as follows:

• GPU: for better cost and performance, TX 2070 or an RTX 2080 Ti is recommended, with 16-

bit models and memory >=11 GB. A blower-style fan for cooling is also recommended.

• RAM: 16 GB RAM or above is recommended, as appropriate in the presence of high-

performance GPUs.

• CPU: CPU PCIe lanes and motherboard PCIe lanes must support the desired number of GPUs.

A minimum of 2 threads per GPU must be supported, i.e., usually one core per GPU.

3.1.2.8 Privacy Considerations

• Input data

In order to preserve the privacy of data, Gaussian blurring is used for image/frame

anonymization [PUL19]. Gaussian blurring convolves an image with a Gaussian filter of

different sizes for anonymization. The privacy degree is controlled using the radius of blur

metric. Gaussian blurring uses a low-pass filter which performs the smoothing function of an

image.

• Results

To further protect the data, individual identities can be hashed in the database, so that the

returned identity would be protected.

3.1.2.9 Execution of the Analytics by the Analytics Toolbox

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze image/video

data. The data are passed to be pre-processed for format adaption, then the privacy-preserving technique

is applied to the dataset to be forwarded to the analytics engine, which performs data processing using

machine learning and deep learning toolboxes. Afterwards, the analysis results are interpreted,

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 15 of 64

aggregated, and presented to the user.

3.1.2.10 Implementation Details

This analytic is implemented using the DeepFace, Keras, TensorFlow, PyTorch, and Numpy libraries.

Face Detection: The framework utilizes the Haar cascade classifier, a pre-trained model available in

OpenCV, to detect faces in images.

Face Alignment: face alignment is performed after face detection to ensure that the detected faces are

properly aligned. The facial landmarks, such as the positions of the eyes, nose, and mouth, are detected

using the dlib library. These landmarks are then used to estimate the pose and alignment of the face.

Face Representation: the VGG-Face model is used to extract high-level facial features from the aligned

face images. These features capture the unique characteristics of each face and can be used for various

face recognition tasks. The VGG-Face model has been trained to recognize a wide range of identities,

making it suitable for face representation.

Face Verification: To perform face verification, the analytic calculates the cosine similarity between

the face representations extracted from the two input face images. A threshold value is then applied to

the distance or similarity score to determine whether the faces are considered a match or not.

3.1.2.11 Preliminary Results

The Privacy-Aware-Face-Recognition experiments and results have been reported in the two published

papers [AMS22, MAS22]. The results include face detection rates, face verification accuracy, and trade-

off score. The trade-off score takes into account the face detection accuracy, face verification accuracy,

and the privacy gain resulting from the privacy mechanism (Gaussian Blurring at different levels). Face

Detection Rate Results for the OpenCV detector are presented in Figure 4, which shows the results

obtained by the Face Detection component on the LFW testing Set by also considering different degrees

of privacy and comparing blurred images to original images or blurred imagesB2B). The figure shows

that there is a negative relationship between the privacy degree and the face detection rate, since

increasing the privacy degree results in a lower face detection rate.

Figure 4: Face Detection Results

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 16 of 64

Face Verification Accuracy Results are reported in Figure 5, which shows the results obtained by the

Face Verification component on the LFW testing Set by also considering different degrees of privacy

and comparing blurred images to original images or blurred images and different similarity thresholds.

The figure shows that the accuracy is greatly affected by the value of the distance threshold and by the

used privacy degree.

Figure 5: Face Verification Results

The Trade-off Results are reported in Figure 6, which shows that the accuracy is greatly affected by

the value of the distance threshold and by the used privacy degree.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 17 of 64

Figure 6: Trade-Off Score Results

3.1.3 Object Recognition/Detection

3.1.3.1 Aim of the Analytics

A crucial aspect of a smart home system is its ability to detect and recognize potentially dangerous

objects that may not be easily identifiable by humans alone. This process involves object recognition,

where suspicious objects are identified within captured images or videos and their locations within the

frame are determined. These suspicious objects can range from intruders to fire incidents, elderly or

vulnerable individuals in risky situations, or misplaced hazardous items like sharp tools. To achieve

this, the system utilizes cameras to capture images or record videos, which are then transmitted for

analysis. During the analysis phase, the system performs object recognition by identifying and

classifying the objects present in the images, along with their precise locations. If any suspicious objects

are detected, the user is promptly alerted, ensuring timely response and appropriate action. By

integrating object recognition capabilities into the smart home system, it becomes capable of effectively

identifying potential threats and alerting users to take necessary measures. This enhances the safety and

security of the home environment by leveraging advanced image analysis techniques and automation.

3.1.3.2 Requirements related to the analytics

The Face Object Recognition analytic is relevant for satisfying the following requirements defined in

[D1.2]:

• Functional Requirements:

• F-17: the SIFIS-Home system shall provide means of recognition of prohibited objects

inside the smart home and signal resident users and administrators.

• F-18: the SIFIS-Home system shall provide means of recognition of allowed objects

inside the smart home in unusual positions, and signal resident users and administrators.

• Non-Functional Requirements:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 18 of 64

• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this

requirement depends on the device computational power and on the time required for

data collection.

• US-26: The presence of a GPU is needed to perform DL-based analysis.

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single

point of failure.

• Security Requirements:

• SE-21: Differential Privacy parameters are configurable for data analysis and can be

changed.

• SE-22: this analytic is able to work with anonymized data, but the accuracy of the results

might be decreased.

3.1.3.3 Input Data

The object recognition algorithm employed in the system leverages images or video frames obtained

from cameras positioned throughout the controlled environment. This encompasses both the camera

integrated within the controlled device and external surveillance cameras placed in the smart home

environment. Moreover, recorded videos and individual images can also be utilized as input data for

analysis. Through the processing of this input data, the object recognition system identifies and classifies

objects based on the patterns and features learned by the underlying model during training. By

comparing the detected objects to the known objects, the system can recognize and categorize the

objects present in the captured frames.

3.1.3.4 Analytic Design

The process of object recognition begins with acquiring images or video streams using a smart device

equipped with an embedded camera. The images or video streams undergo pre-processing operations

such as resizing and perturbation. The pre-processed images or video streams are then fed into our

YOLOv3 model [RF18]. YOLOv3 operates by dividing the input image into a grid and predicting

bounding boxes and class probabilities for each grid cell. It uses a single convolutional neural network

(CNN) to simultaneously perform object localization and classification of object class labels in a single

pass. YOLOv3 is known for its speed and efficiency, making it suitable for real-time applications. The

model has been trained on the COCO dataset. The pipeline of the analytic is composed of the

components shown in Figure 7. It initially detects and localizes objects within the images or video

frames and tracks them over time in the case of video streams. Finally, the detected objects are identified

based on the COCO dataset objects that the YOLOv3 model was trained to recognize.

Figure 7: Privacy-Preserving Object Recognition

3.1.3.5 Training and Testing

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 19 of 64

Available Dataset

The ImageNet dataset is a widely used large-scale dataset for object recognition in computer vision

research [DJS09]. It consists of millions of labeled images of thousands of object categories. The

ImageNet dataset contains over 14 million images collected from various sources on the internet.

There are approximately 1,000 high-level categories in the dataset, and each category contains a

varying number of images. Examples of categories include animals, vehicles, household items, and

natural scenes. Due to the large size and complexity of the dataset, researchers often use subsets or

subsets of subsets for training and evaluation, depending on their specific needs and computational

resources such as the ImageNette dataset [ImageNette].

Training strategy

The YOLOv3 model was trained on the COCO (Common Objects in Context) dataset [LMBH14]. The

COCO dataset is a widely used benchmark dataset for object detection, segmentation, and captioning

tasks. It contains over 200,000 images from various contexts and 80 common object categories. It covers

a wide range of objects, including people, animals, vehicles, and everyday items.

3.1.3.6 Output data

The output of the object recognition analytic is the class of the detected object, including the object

label. The analytic also provides information about the locations or bounding boxes of the identified

objects within the image or video.

3.1.3.7 Hardware Requirements

The recommended Hardware Requirements for running this analytic are as follows:

• GPU: for better cost and performance, TX 2070 or an RTX 2080 Ti is recommended, with 16-

bit models and memory >=11 GB. A blower-style fan for cooling is also recommended.

• RAM: 16 GB RAM or above is recommended, as appropriate in the presence of high-

performance GPUs.

• CPU: CPU PCIe lanes and motherboard PCIe lanes must support the desired number of GPUs.

A minimum of 2 threads per GPU must be supported, i.e., usually one core per GPU.

3.1.3.8 Privacy Considerations

• Input data

In order to preserve the privacy of data, Differential privacy mechanism is used [Dwo08].

Differential Privacy is a powerful privacy-preserving technique widely used to add noise to data,

including images. We use it to add random Laplacian noise to the pixel values of images and

ensure that privacy is protected while still allowing valuable insights to be extracted from the

data. The amount of noise added is determined by the sensitivity and privacy budget parameters,

where sensitivity measures the impact of input data changes on algorithm output, and the privacy

budget controls the level of noise added to protect privacy.

• Results

The results are composed of object labels in the images or video frames. Therefore, no additional

privacy mechanisms are required to be applied to the results.

3.1.3.9 Execution of the Analytics by the Analytics Toolbox

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze image/video

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 20 of 64

data. The data are passed to be pre-processed for format adaption, then the privacy-preserving technique

is applied to the dataset to be forwarded to the analytics engine, which performs data processing using

machine learning and deep learning toolboxes. Afterwards, the analysis results are interpreted,

aggregated, and presented to the user.

3.1.3.10 Implementation Details

This analytic needs the OpenCV, Keras, TensorFlow, Darknet, and Numpy libraries to work.

Object Detection: YOLOv3 employs anchor boxes of different sizes and aspect ratios to enhance the

detection of objects at various scales. Also, the input image is divided into a grid of cells, and each cell

is responsible for detecting objects that fall within its boundaries.

Localization: YOLOv3 performs bounding box regression to accurately localize objects.

Object Recognition: YOLOv3 predicts class probabilities for each detected bounding box. These

probabilities indicate the likelihood of the object belonging to different predefined classes. The model

assigns the class label with the highest probability to each detected object.

3.1.3.11 Preliminary Results

The Privacy-Aware-Object-Recognition analytic has been implemented to take images and video

streams as inputs to analyze. YOLOv3 model has been trained using the COCO dataset to learn and

recognize objects across various categories such as people, animals, vehicles, and everyday objects. The

training process involves optimizing the model's parameters using the COCO dataset's labeled images

and annotations. YOLOv3 is fast and accurate in terms of mean average precision (mAP) and

intersection over union (IOU) values as well, it achieves an (AP) of around 28-33% at an (IoU) threshold

of 0.5 and above. Therefore, on average, YOLOv3 correctly detects and localizes objects in the COCO

dataset with an overlap of 50% or more between the predicted bounding box and the ground truth

bounding box. Figure 8 shows the results obtained by the Object Detection, Localization, and

Recognition components on a sample original image with the probability of the recognized object class

using the YOLOv3 classifier. While Figure 9 and Figure 10 show the results obtained by applying

different degrees of privacy using the epsilon and sensitivity parameters.

Figure 8: Privacy-Preserving Object Recognition of original image

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 21 of 64

Figure 9: Privacy-Preserving Object Recognition of an anonymized image with low privacy

Figure 10: Privacy-Preserving Object Recognition of an anonymized image with medium privacy

3.1.4 Multilevel Anomaly Detection

3.1.4.1 Aim of the Analytics

The primary objective of the system is to identify and detect anomalies at multiple levels within an IoT

infrastructure, including the kernel level, network level, application level, and DHT (Distributed Hash

Table) level. By doing so, the system aims to enhance the security, reliability, and performance of IoT

networks, ensuring their efficient and uninterrupted operation. By actively monitoring anomalies at

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 22 of 64

multiple levels, the system aims to strengthen the security of the networks. It detects and alerts for

suspicious activities, unauthorized access attempts, and abnormal behaviors that may indicate potential

security breaches or cyber-attacks. Timely detection enables the system to initiate appropriate security

measures, such as isolating affected devices or blocking malicious traffic, thereby safeguarding the IoT

ecosystem against threats. Overall, the multi-level anomaly detection analytics system strives to

enhance the security, reliability, and performance of IoT networks. By actively identifying and detecting

anomalies at the kernel, network, application, and DHT levels, the system ensures efficient and

uninterrupted operation, safeguarding the integrity and functionality of the IoT infrastructure.

3.1.4.2 Requirements related to the analytics

The analytics is relevant for satisfying the following requirements defined in [D1.2]:

• Functional Requirements:

• F-19: The SIFIS-Home system shall detect, identify and disconnect infected devices.

This analytics allows the identification of infected devices

• Non-Functional Requirements:

• PE-10: An abnormal (suspicious) behavior caused by a malware shall be identified and

notified within 60 seconds.

• US-20: The Multi-Level Anomaly Detection system (MLADS) must monitor network

traffic provided by several input sources and several locations.

• US-21: The workload of the devices should be available to the MLADS

• US-22: The list of applications running on each device should be available to MLADS

• US-23: Raw sensor data must be available to be analysed by MLADS

• Security Requirements:

• SE-17: Anomalous device behaviours should be identified and signalled in less than 60 seconds.

• SE-26: The SIFIS-Home architecture shall be resilient to device compromising attacks.

3.1.4.3 Input Data

The input data for the analytic at each level of the multi-level anomaly detection system can be described

as follows:

• Kernel Level: the input data for the analytic typically includes system calls. It includes the total

number of times in a defined interval of seconds, a specific syscall has been called.

• Network Level: the input data consists of network traffic data captured from IoT devices,

gateways, or network monitoring tools. This data includes packet-level information such as

source and destination IP addresses, protocols used (e.g., TCP, UDP), port numbers, packet

sizes, and timestamps.

• DHT Level: the input data includes information related to the distributed storage and lookup

mechanisms used in IoT networks. It includes the total number of times in a defined interval of

seconds, a PUSH, PUT, or DELETE has been requested on a specific topic.

• Application Level: At the application level, the input data includes logs, events, and metrics

generated by IoT applications or services running on the devices or within the IoT network.

3.1.4.4 Analytic Design

Monitors are responsible for collecting and monitoring data at each level of the IoT infrastructure,

including the kernel level, network level, application level, and DHT level. They gather relevant

information such as system events, network traffic, application logs, and DHT-related data. Each

monitor operates independently and continuously collects data from its respective level.

System Protection Manager: serves as a centralized component that acts as an intermediary between the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 23 of 64

monitors and the analytics. Its primary role is to receive the data collected by the monitors and manage

the communication between the components. The System Protection Manager is responsible for

forwarding the collected data from each monitor to the analytics for further analysis.

Analytics: component performs the core anomaly detection and analysis tasks. It receives the data

forwarded by the System Protection Manager and applies anomaly detection algorithms and techniques

to identify abnormal patterns, behaviors, or events. The analytics component processes the data from

different levels, detects anomalies, and generates alerts or notifications regarding potential security

breaches or abnormal activities.

Once the analytics component detects anomalies and generates alerts or notifications, the System

Protection Manager collects these results from the analytics through the DHT. It analyzes the severity

and impact of the detected anomalies and decides on appropriate actions to be taken. These actions may

include isolating affected devices, blocking suspicious traffic, triggering incident response protocols, or

notifying system administrators for further investigation and remediation.

3.1.4.5 Training and Testing

Data Collection: The training process begins with the collection of labeled training data. For each level,

data is gathered over a defined interval of seconds, capturing the total number of specific events or

activities. At the kernel level, the system calls and their frequencies are recorded. At the DHT level, the

requests for PUSH, PUT, or DELETE operations on specific topics are logged.

Feature Extraction: From the collected data, relevant features are extracted to represent the input for the

machine learning algorithm. These features include the frequencies of specific system calls or DHT

operations within the defined interval.

Labeling: The training data is labeled to indicate whether each data instance represents normal or

anomalous behavior. This labeling is done manually.

Model Training: The machine learning algorithm is trained using the labeled training data and the

extracted features. The algorithm learns to recognize patterns and relationships between the input

features and the corresponding labels.

Model Evaluation: The trained model is evaluated using evaluation metrics such as accuracy, precision,

recall, or F1-score to assess its performance. Cross-validation techniques can be applied to validate the

model's generalization capabilities.

By utilizing a simple machine learning algorithm such as linear regression, the analytics can effectively

recognize patterns and deviations, enhancing the anomaly detection capabilities within the IoT

infrastructure.

3.1.4.6 Output data

The output of the analytic consists of the interested device or application, the type of analytic conducted,

and a clear indication of whether an anomaly has been detected or not. This concise information assists

in understanding the results of the analytic process and determining any necessary actions to address

anomalies or ensure the normal functioning of the infrastructure.

3.1.4.7 Hardware Requirements

Devices running these analytics are required to have network connectivity and the capability of running

minimal Linux distributions. Such devices can be based on either the x86 or ARM architecture.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 24 of 64

3.1.4.8 Privacy Considerations

Only statistical values are collected and analyzed on the edge, hence no relevant privacy issues are

identified.

3.1.4.9 Execution of the Analytics by the Data Analysis Toolbox

This analytics run in Docker and its integration has been executed following the approach described in

Section 4. The analytics continuously run while the device is operating, hence it does not need to be

invoked by the Data Analytics Toolbox.

3.1.4.10 Implementation Details

Each level presents a layer that catch the required data from the DHT and send these to the specific

server which presents the data to the classifier. The response is given back to the system protection

manager.

3.2 Network Intrusion Detection

The Network Intrusion Detection analytics exploit network flows and sensor data to detect intrusions in

the smart-home network. We defined two distinct Network Intrusion Detection analytics, one performed

on the edge and the other one in the cloud.

3.2.1 Netspot Network Anomaly Detection

The netspot solution is used to detect network anomalies. In the SIFIS-Home project, a new service

application was created to control netspot applications and to forward data and alarm messages to

appropriate applications.

3.2.1.1 Aim of the Analytics

The aim of the analytics is to detect anomalous activities in the network. For example, an exceptionally

high ratio of packets conveying a certain flag (state of connection indicator), a sudden increase in the

overall traffic within a time window.

3.2.1.2 Requirements related to the analytics

The analytics is relevant for satisfying the following requirements defined in [D1.2]:

• Functional Requirements:

• F-20: This system's purpose is to alert users if suspicious network traffic is detected,

such as traffic generated by malware.

• Non-Functional Requirements:

• PE-10: Suspicious network traffic is detected and notified within 60 seconds.

• PE-11: Alerts are created within 5 seconds after suspicious traffic is detected.

• Security Requirements:

• SE-22: Anonymized data can be used in this analytics.

• SE-39: This system identifies denial-of-service attacks based on the activity within the

network.

3.2.1.3 Input Data

The input data consists of a network packet exchanged between the connected devices. The packets are

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 25 of 64

captured, and relevant information parsed from them (port numbers, protocol identifiers, timestamps

and IP address counts.

3.2.1.4 Analytic Design

Figure 11: Netspot Docker Container

Control service and netspot instances are run in a docker container. The host system can use an argument

when running the docker image to allow the container to use host system network interfaces. Using host

system network interfaces is a critical part of allowing the netspot services to monitor network traffic.

Docker container has a control service that provides HTTP API for configuration, controlling, and

reading results.

3.2.1.5 Training and Testing

SPOT algorithm needs the initial batch of observations to form thresholds for the monitored statistics.

The thresholds are dynamic, and they adapt to a subtle change in the network by updating them based

on chosen number of new observations. However, if the initial thresholds are triggered, the values over

or under the threshold are not used to update the thresholds.

For this test, SPOT was initialised by using 2000 observation from the normal traffic. After the

thresholds were formed based on the observations, a denial-of-service attack was launched from the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 26 of 64

Linux workstation. As a results, the statistics that monitor the overall traffic over a certain time window

and the ratio of tcp packets with a set synchronize flag were triggered and alarms were raised.

3.2.1.6 Output data

Netspot outputs: raw statistics, thresholds (SPOT will compute one threshold for each monitored

statistic) and the alarms (in case of triggered threshold). Netspot can also send these to an influx database

3.2.1.7 Hardware Requirements

Devices running these analytics are required to have network connectivity and the capability of running

minimal Linux distributions. Such devices can be based on either the x86 or ARM architecture. Netspot

and control services are lightweight and take less than 200 MiB of memory.

3.2.1.8 Privacy Considerations

Only statistical values are collected and analyzed on the edge. IP packet size and IP address, protocol

and port counts are collected.

3.2.1.9 Execution of the Analytics by the Analytics Toolbox

Netspot anomaly detection solution is run in Docker and exposes the interface described in the following

section. Hence, and its integration has been executed following the approach described in Section 4. To

this aim, when the container is started, it is crucial to tell Docker to allow the container to use host

system network interfaces with the parameter: --network=host

Setting this parameter is critical for the analytics to be effective in the SIFIS-Home framework, because

otherwise, the solution will only monitor the container's virtual interface without proper network traffic.

3.2.1.10 Implementation Details

The control service was written in Rust language, and the netspot service is an open-source project

written in Go language. Netspot version 2.1.2 was used in the docker image. In addition, Dockerfile was

added to the project, which automatically compiles both required binaries. The binaries are compiled in

development containers, and compiled binaries are then copied to the slim Debian docker image.

The control service provides the following endpoints:

3.2.1.10.1 Status

HTTP

Method

Endpoint Parameters Description

GET https://<ADDRESS>:<PORT>/

v1/netspot/{id}/restart

Netspot configuration ID Restart netspot

configuration by ID

GET https://<ADDRESS>:<PORT>/

v1/netspot/{id}/start

Netspot configuration ID Start netspot configuration

by ID

GET https://<ADDRESS>:<PORT>/

v1/netspot/{id}/status

Netspot configuration ID Status for the netspot

configuration by ID

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 27 of 64

GET https://<ADDRESS>:<PORT>/

v1/netspot/{id}/stop

Netspot configuration ID Stop netspot configuration

by ID

GET https://<ADDRESS>:<PORT>/

v1/netspots/

- Status of all netspot

services

GET https://<ADDRESS>:<PORT>/

v1/netspots/restart

- Restart all netspot services

GET https://<ADDRESS>:<PORT>/

v1/netspots/start

- Start all netspot services

GET https://<ADDRESS>:<PORT>/

v1/netspots/stop

- Stop all netspot services

3.2.1.10.2 Statistics

HTTP

Method

Endpoint Parameters Description

GET https://<ADDRESS>:<PORT>/

v1/netspots/alarms

Optional time and

number of last result

parameters

Returns recorded alarms

from nestpot statistics.

GET https://<ADDRESS>:<PORT>/

v1/netspots/data

Optional time and

number of last result

parameters

Returns recorded

measurements from nestpot

statistics.

3.2.1.10.3 Configuration

HTTP

Method

Endpoint Parameters Description

POST https://<ADDRESS>:<PORT>

/v1/netspot

Configuration in JSON

format

Create a new netspot

configuration

GET https://<ADDRESS>:<PORT>

/v1/netspot/{id}

Netspot configuration ID Get netspot configuration

by ID

PUT https://<ADDRESS>:<PORT>

/v1/netspot/{id}

Netspot configuration ID

and configuration in

JSON format

Update an existing netspot

configuration

DELETE https://<ADDRESS>:<PORT>

/v1/netspot/{id}

Netspot configuration ID Delete netspot

configuration by ID

3.2.1.10.4 Network

HTTP

Method

Endpoint Parameters Description

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 28 of 64

GET https://<ADDRESS>:<PORT>

/v1/network/interfaces

- Returns all available

network interfaces on the

host system in JSON format

3.2.1.10.5 Webhooks

HTTP

Method

Endpoint Parameters Description

GET https://<ADDRESS>:<PORT>

/v1/netspot/ webhooks

- List installed webhooks

POST https://<ADDRESS>:<PORT>

/v1//netspots/webhook

Webhook configuration

in JSON format

Create a new webhook

GET https://<ADDRESS>:<PORT>

/v1/netspot/webhook/{id}

Webhook configuration

ID

Get webhook configuration

by ID

PUT https://<ADDRESS>:<PORT>

/v1/netspot/webhook/{id}

Webhook configuration

ID and webhook

configuration in JSON

format

Update webhook

configuration

DELETE https://<ADDRESS>:<PORT>

/v1/netspot/webhook/{id}

Webhook configuration

ID

Delete webhook

configuration by ID

3.2.1.10.6 Testing

HTTP

Method

Endpoint Parameters Description

GET https://<ADDRESS>:<PORT>

/v1/netspots/test/alarm

Test alarm message in

JSON format

This endpoint allows

developers to send test

alarm messages.

3.2.1.11 Preliminary Results

Preliminary tests indicate that changes in the monitored statistic ratios, e.g., high ratio of Address

Resolution Protocol (ARP) packets due to Mirai and excessive traffic (DoS) in the network results in

statistics that trigger alerts, according to what was monitored during the tests. The netspot control

service API was tested successfully to configure and run netspot instances.

3.3 Privacy Aware Speech Recognition

3.3.1 Privacy Aware Speech Recognition and Voice Anonymization

3.3.1.1 Aim of the Analytics

The Privacy-Aware Speech Recognition (PSR) model is designed to accurately convert spoken

language into written text while prioritizing privacy. This analytic utilizes computational linguistics to

analyze audio signals and generate a verbatim and editable transcription of the spoken content.

Importantly, any sensitive information within the audio is anonymized to protect privacy. Additionally,

the PSR system allows for the generation of privacy-preserving versions of the original audio. By

converting the anonymized text back into speech through text-to-speech translation, an audio output is

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 29 of 64

created that maintains privacy while still conveying the intended message. These privacy-preserving

transcriptions and audio can then be securely shared with external services, as they do not disclose any

sensitive information.

3.3.1.2 Requirements related to the analytics

The Privacy-Aware Speech Recognition analytics is relevant for satisfying the following requirements

defined in [D1.2]:

• Functional Requirements:

• F-06: The SIFIS-Home system shall provide Automatic Speech Recognition (ASR) to

provide resident users and administrators the facility to control their home appliances

through their speech.

• F-07: The analytic provides an Automatic Speech Recognition that can be used to control

the home appliances in the smart home;

•

• Non-Functional Requirements:

• PE-06: The analytic performs an audio transcription in less than 2 seconds.

• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this

requirement depends on the device computational power and on the time required for

data collection.

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single

point of failure.

• Security Requirements:

• SE-50: The analytic applies an anonymization of the voice timbre in order to make the

identity of the speaker not identifiable;

• SE-52: The analytic provides the possibility to anonymize the sensitive information from

the audio and textual audio translation.

3.3.1.3 Input Data

The Privacy-Aware Speech Recognition system requires an audio sample containing voice as its input

data for translation. The analytic is designed to process WAV audio samples with specific requirements,

including a sampling rate of 16000Hz, a single channel (mono) representation, and a 16-bit format. If

the audio sample is in a different format, a preprocessing step may be necessary to adjust it to meet the

input requirements of the analytic.

In addition to the audio sample, the analytic also defines a list of textual entities to be anonymized from

the audio. These textual entities are predefined and managed by the analytic, and you can refer to Table

1 for a comprehensive list of these entities.

Table 1: Textual Entities managed by the analytic

Entity Description

PERSON People, including fictional

NORP Nationalities or religious or political groups

FAC Buildings, airports, highways, bridges, etc

ORG Companies, agencies, institutions, etc

GPE Countries, cities, states

LOC
Non-GPE locations, mountain ranges, bodies

of water

PRODUCT Objects, vehicles, foods, etc. (Not services.)

EVENT
Named hurricanes, battles, wars, sports events,

etc

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 30 of 64

WORK OF ART Titles of books, songs, etc

LAW Named documents made into laws

LANGUAGE Any named language

DATE Absolute or relative dates or periods

TIME Times smaller than a day

PERCENT Percentage, including “%”

MONEY Monetary values, including unit

QUANTITY Measurements, as of weight or distance

ORDINAL "first", "second", etc

CARDINAL Numerals that do not fall under another type

3.3.1.4 Analytic Design

The pipeline of the analytic is composed of three different components, as shown in Figure 12.

Figure 12: Pipeline of the privacy aware speech recognition analytics

Speech to Text: We employ the advanced Whisper automatic speech recognition (ASR) model

[RKX22], developed and maintained by OpenAI, to convert spoken language into written text. Whisper

stands out as a highly precise and efficient model that harnesses cutting-edge deep learning techniques,

specifically the transformer architecture presented in Figure 13. This state-of-the-art approach has

transformed numerous natural language processing (NLP) tasks, including speech recognition. By

leveraging the transformer architecture, the Whisper model excels in handling the complexities of

speech recognition tasks. It can capture contextual information, recognize patterns, and generate

accurate transcriptions by effectively modeling the relationships between different elements of the audio

sequence.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 31 of 64

Figure 13: OpenAI Whisper Architecture: A Transformer sequence-to-sequence model [RKX22]

Named Entity Recognition: is concerned with locating key phrases and nouns in texts as entities, and

these entities fall under several categories, i.e., names, locations, and addresses. The sensitivity of these

entities depends on the context where the data analysis is applied. For example, names of people and

locations are highly sensitive when performing data analysis and processing. However, to protect the

privacy of the user, these entities can be removed from the text. Thus, still providing data valid for

analysis, but without violating privacy. We used SpaCy deep learning model to perform entity

recognition on the text recognized from the previous step [MHH21]. The process for Named Entity

Recognition is composed of the below steps:

Sentence Segmentation: to split the text into sentences.

Tokenization: to split each sentence resulting from the previous step into tokens which are usually

numbers, words, and punctuation marks.

Tokens Classification: each token is classified according to its part-of-speech (POS) as in Table 2.

Entity Detection: classifies the word entities according to their type as an address, a time, a location, a

name, etc.

Table 2: Parts of Speech Description

POS Description

NN singular or plural noun

DT determiner

VB verb, base form

VBD past tense verb

IN preposition or subordinating conjunction

VBZ verb, third-person singular present

NNP singular proper noun

“TO” Word “TO”

JJ adjective

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 32 of 64

Text to Speech: To convert anonymized text resulting from the speech recognition and sensitive entities

elimination into anonymized audio files, we use Google Text-to-Speech (gTTS) which is an interface

with Google Translate's text-to-speech API. It takes a text with various and unlimited lengths as inputs

and converts them into voice outputs with human-like reading and intonation, in addition to precise

pronunciation corrections. gTTS uses a wide range of voices, so that the voice of the original speaker

can be replaced with any of these voices to keep the identity of the speaker anonymous.

3.3.1.5 Training and Testing

Dataset

The Whisper model was trained using a large dataset consisting of 680,000 hours of multilingual and

multitask supervised data sourced from the web. Among these hours of audio, 117,000 hours were

dedicated to covering 96 different languages. Additionally, the dataset included 125,000 hours of

translation data from various languages to English.

3.3.1.6 Output data

The Privacy Aware Speech Recognition can provide two different outputs described as following:

• Anonymized textual translation: It represents the audio input translation in textual format after

the anonymization of the sensitive information specified in the user preferences. In the output

translation, all the sensitive textual entities detected by the analytic are replaced by default

keywords which preserve the essence of the word without revealing the exact word.

• Anonymized voice information: It represents the audio reconstruction of the anonymized

textual translation.

3.3.1.7 Hardware Requirements

The recommended Hardware Requirements for running this analytic are as follows:

• GPU: Models such as NVIDIA Tesla V100 or NVIDIA GeForce RTX series GPUs are

commonly used for deep learning tasks.

• CPU: Processors with multiple cores, such as Intel Core i7 or AMD Ryzen series CPUs, are

typically suitable.

• RAM: A minimum of 16GB of RAM is recommended.

• Storage: Solid State Drives (SSDs) are preferred over Hard Disk Drives (HDDs) due to their

faster read/write speeds, which can significantly improve overall performance.

3.3.1.8 Privacy Considerations

The Privacy-Preserving Speech analytic focuses on processing voice samples as input data, particularly

in the context of the SIFIS-home scenario where the samples are captured by sensors deployed in a

Smart home. It is crucial to handle such data with care as it may contain sensitive and personal

information that can potentially identify the speaker. Adhering to the GDPR regulations, it is essential

to ensure compliance and prevent the unauthorized transfer of transcriptions to third-party applications.

Therefore, an important objective of this analytic is to protect personal data and restrict its dissemination

beyond the SIFIS-Home context. To achieve this, the analytic employs techniques such as replacing

sensitive information with default keywords. For example, names like "John" are replaced with the

keyword "Private Data". This anonymization process safeguards the privacy of individuals by

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 33 of 64

preventing direct identification from the transcriptions. Additionally, to further enhance privacy

protection, the analytic replaces the original speaker's voice with an alternative voice when generating

the audio file of the anonymized text. This step ensures an additional layer of privacy for the speaker.

3.3.1.9 Execution of the Analytics by the Analytics Toolbox

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze audio data.

The data are passed to the Speech-to-Text component, then the privacy-preserving technique is applied

to the text using the Named Entity Recognition Component, and the Google Text-to-Speech is used to

generate an anonymized audio file. Finally, the analysis results are interpreted, aggregated, and

presented to the user.

3.3.1.10 Implementation Details

The Python implementation of the Speech-to-Text functionality utilizes the OpenAI Whisper model

[Whisper] and relies on various libraries, including NumPy, PyTorch, TorchAudio, SoundFile, Librosa,

and FFmpeg. These libraries provide essential tools for audio processing, deep learning, and handling

multimedia data. For Entity Recognition, the implementation leverages the SpaCy library [SpaCy],

specifically using the "en_core_web_sm" pipeline. This pipeline is trained on written web text from

sources such as blogs, news articles, and comments, enabling it to recognize vocabulary, syntax, and

entities in English text. To enable Text-to-Speech functionality, the gTTS (Google Text-to-Speech)

Python library and CLI tool is employed [gTTS]. This library serves as an interface to the Google

Translate text-to-speech API, allowing the generation of synthesized speech from textual input.

3.3.1.11 Preliminary Results

The performance of the Privacy-Aware-Speech recognition analytic using is measured by the Word

Error Rate (WER) for Whisper model. The WER uses the Levenshtein distance metric to measure the

speech recognition accuracy by comparing the original and predicted transcriptions. For Whisper, the

WER is 4.2% for English language, indicating a high level of accuracy. In general, spaCy's English

NER models perform well in identifying and classifying common named entities, such as person names,

organizations, locations, dates, and monetary values. They also handle other entity types, such as

product names or geopolitical entities, with reasonable accuracy. It achieves more than 85% average

accuracy. The preliminary results of the analytic are represented in the implementation of an API that

interacts with the user recording an audio file and returning the textual translation with pre-defined

sensitive information anonymized. It is composed of a preliminary activity in which the entities to be

removed are defined and the second is the transcription of the audio, then SpaCy library is used to detect

the entities defined in the first step and remove them form the text. As a result, the anonymized text and

the anonymized audio that is created using the Google Text-to-Speech (gTTS) model are shared back

with the user. A sample final result is shown in Table 3.

Table 3: Recognition and anonymization sample

Speech Data ruth sat quite still for a time with face intent and flushed it was out now

Recognized Text ruth sat quite still for a time with face intent and flushed it was out now

Anonymized Text Private Data sat quite still for a time with face intent and flushed it was out now

3.3.2 Voice Recognition and Verification

3.3.2.1 Aim of the Analytics

Speaker verification is a process that involves authenticating individuals based on the unique biometric

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 34 of 64

aspect of their voice. This approach offers a non-intrusive and secure method for identity verification.

Within the SIFIS-home environment, accurately identifying individuals is crucial for granting

appropriate privileges based on predefined policies. To achieve this, a speaker verification system

analyzes the voices of shared audio files and communicates the identified individuals to the smart-home

components to grant or revoke access.

3.3.2.2 Requirements related to the analytics

The Voice Recognition and Verification is relevant for satisfying the following requirements defined

in [D1.2]:

• Functional Requirements:

• F-1: this analytic satisfies the functional requirement F-1 by identifying the resident users

and administrators inside the smart home through biometrics.

• F-3: this analytic satisfies the functional requirement F-3 by matching read biometrics

against a database of stored ones.

• Non-Functional Requirements:

• PE-2: The user verification shall happen in less than 5s.

• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this

requirement depends on the device computational power and on the time required for

data collection.

• DE-06: the identification through biometrics should be performed correctly in more than

95% of cases.

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single

point of failure.

• Security Requirements:

• SE-03: Personal data stored must be encrypted.

3.3.2.3 Input Data

The Privacy-Aware Speaker Recognition and Verification system requires two audio files containing

voice as input data for verification. The analytic is designed to process WAV or FLAC audio samples

with specific requirements, including a sampling rate of 16 kHz or 8 kHz, a single channel (mono)

audio, and the duration of the audio segment should be within a certain range, typically a few seconds.

If the audio sample is in a different format, a preprocessing step may be necessary to adjust it to meet

the input requirements of the analytic.

3.3.2.4 Analytic Design

For speaker verification, we use ECAPA-TDN model with the architecture shown in Figure 14. This

model was proposed in [DTD20] and developed as part of the SpeechBrain AI toolkit [RPP21]. ECAPA-

TDNN model employs ECAPA Time Delay Neural Networks (TDNNs) derived embeddings, and it

consists of an input layer, followed by a convolutional block with ReLU activation and batch

normalization. Then, a sequence of three Squeeze-and-Excitation and residual blocks. Next, a

convolutional block with ReLU activation. Followed by a layer that applies statistics pooling to project

variable-length utterances into fixed-length speaker characterizing embeddings with batch

normalization. Then a fully connected dense layer with batch normalization, and an Additive Angular

Margin (AAM) Softmax layer. Finally, an output layer to classify the inputs as yes or no for verification

results.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 35 of 64

Figure 14: ECAPA-TDNN Model for Speaker verification

3.3.2.5 Training and Testing

Dataset

The ECAPA-TDN model was trained on the VoxCeleb2 dataset, which is a comprehensive and

extensive dataset specifically curated for speaker recognition and diarization tasks. VoxCeleb2 serves

as an expansion of the original VoxCeleb dataset, offering a significantly larger and more diverse

collection of speaker data with over 1 million utterances from more than 6,000 speakers. These

recordings are sourced from a wide array of contexts, including interviews, speeches, YouTube videos,

and public appearances. This diverse collection ensures that the dataset captures a wide range of speaker

variations and real-world scenarios, making it an ideal resource for training and evaluating speaker

recognition models.

3.3.2.6 Output data

The output of this analytic is a binary decision indicating whether the two input audio samples belong

to the same speaker or not. It evaluates the similarity or dissimilarity between the input sample and the

enrolled speaker's reference data in the other sample. The output is represented as a similarity metric

using cosine similarity.

3.3.2.7 Hardware Requirements

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 36 of 64

The hardware requirements are as below:

• CPU: A multi-core processor, such as an Intel Core i5 or i7, or an equivalent AMD processor,

is sufficient for running the analytic.

• GPU: For faster training and inference, a dedicated GPU is recommended. Models like ECAPA-

TDNN can leverage the parallel processing capabilities of GPUs. NVIDIA GPUs, such as the

GeForce RTX series or the NVIDIA Titan series, are commonly used for deep learning tasks.

• RAM: At least 8 GB of RAM is recommended, but larger models or datasets may require more

RAM.

3.3.2.8 Privacy Considerations

Since applying privacy mechanisms would alter the speaker’s voice in the audio files, the protection

mechanisms that can be applied with this analytic include file encryption and employing secure

protocols for transmitting voice data.

3.3.2.9 Execution of the Analytics by the Analytics Toolbox

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze audio data.

The data are passed to the analytics engine, which performs data processing using machine learning and

deep learning toolboxes. Afterward, the analysis results are interpreted, aggregated, and presented to

the user.

3.3.2.10 Implementation Details

The Python implementation of the Speaker Verification functionality utilizes the SpeechBrain ECAPA-

TDNN model [ECAPA-TDNN] and relies on various libraries, including SpeechBrain, Torch, NumPy,

SciPy, Matplotlib, and Pandas.

3.3.2.11 Preliminary Results

For this analytic, the weights of the pre-trained ECAPA-TDNN model, that has been trained on the

VoxCeleb2 standard dataset and evaluated on the VoxCeleb1 test sets. The performance of the model

is measured by the Equal Error Rate (EER), which corresponds to the error rate value when the False

Acceptance Error Rate is equal to the False Rejection Error Rate. The False Acceptance Error Rate is

the rate of incorrectly accepted speaker speech segments to the total number of speech segments, while

the False Rejection Error Rate. is the rate of incorrectly rejected speaker speech segments to the total

number of speech segments. For ECAPA-TDNN model, the EER value is equal to 0.80% which

represents a higher accuracy, since the error rate is very low. The model has been validated with the use

of privacy mechanisms on 10,000 audio files of 5,000 pairs for matched speakers, and 10,000 audio

files of 5,000 pairs for mismatched speakers. The results of matched speaker verification show that the

model has predicted 99.3% of the pairs correctly with a total number of 4,964 pairs. For mismatched

speakers verification, the model has predicted 96.4% of the pairs correctly as different speakers with a

total number of 4,820 pairs.

3.3.3 Anomaly Detection in Audio Signal Analysis

3.3.3.1 Aim of the Analytics

One valuable source of information for detecting anomalies is the audio signals captured within the

smart home. Audio anomaly detection in smart homes adds an extra layer of protection, enabling early

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 37 of 64

detection and response to potential threats, improving safety, and enhancing the overall quality of life

for the occupants. Performing audio anomaly detection in smart homes enhances the overall safety and

security of the occupants by identifying unusual or potentially dangerous events that may occur within

the home environment. This includes detecting anomalies such as breaking glass, loud and sudden

noises, unusual patterns of speech or conversation, or other signs of potential threats or emergencies.

By continuously monitoring audio signals in the smart home, the system can quickly identify and raise

an alert for any abnormal activities.

3.3.3.2 Requirements related to the analytics

The Anomaly Detection in Audio Signal Analytic is relevant for satisfying the following requirements

defined in [D1.2]:

• Functional Requirements:

• F-1: this analytic satisfies the functional requirement F-1 by identifying the resident users

and administrators inside the smart home through biometrics.

• F-3: this analytic satisfies the functional requirement F-3 by matching read biometrics

against a database of stored ones.

• F-15: this analytic satisfies the functional requirement F-15 by identifying anomalous

behaviours inside the smart home, as it detects anomalous temperature or humidity

readings of home devices.

• Non-Functional Requirements:

• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this

requirement depends on the device computational power and on the time required for

data collection.

• US-26: The presence of a GPU is needed to perform DL-based analysis.

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single

point of failure.

• Security Requirements:

• SE-21: Differential Privacy and Audio Scrambling parameters are configurable for data

analysis and can be changed.

• SE-22: this analytic is able to work with anonymized data, but the accuracy of the results

might be decreased.

3.3.3.3 Input Data

The input data for audio anomaly detection in smart homes is the audio signals captured within the smart

home environment. These audio signals can be obtained from various sources such as microphones or

audio sensors deployed throughout the home. This analytic is designed to process WAV or FLAC audio

samples with specific requirements, including a sampling rate of 16 kHz, a single channel (mono) audio

represented in 16 bit. There is no specific duration requirement for the input audio files, but longer audio

files may take more time to process, and extremely short audio snippets might not provide sufficient

information for accurate classification. If the audio sample is in a different format, a preprocessing step

may be necessary to adjust it to meet the input requirements of the analytic.

3.3.3.4 Analytic Design

We employ the IBM MAX audio classification model developed and maintained by IBM [IBM-MAX].

This model is a multi-attention classifier designed to analyze and categorize audio data into various

predefined classes or labels. The classifier leverages the power of deep neural networks to learn patterns

and features from large-labeled audio datasets, allowing it to make predictions on new, unseen audio

inputs. The core component of the IBM Audio Classifier is a deep neural network model. The

architecture consists of multiple layers, such as convolutional layers, pooling, and fully connected

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 38 of 64

layers. These layers are designed to learn hierarchical representations and capture relevant audio

features for classification. The model output includes the top 5 class predictions along with their

corresponding probabilities. The model is designed to support 527 classes, defined within the Audioset

Ontology.

3.3.3.5 Training and Testing

Dataset

The IBM MAX Audio Classifier model was trained on the "AudioSet" dataset. AudioSet is a large-scale

dataset created by Google Research that consists of a collection of labelled audio clips from a wide

variety of sources, including YouTube videos. The dataset covers a diverse range of audio categories,

such as musical instruments, human sounds, animal sounds, and environmental sounds. AudioSet

contains over 2 million 10-second audio clips that are labelled with one or more of 632 audio event

classes. These event classes cover a broad range of sounds and provide a rich source of training data for

audio classification models.

3.3.3.6 Output data

The analytic generates the top 5 predictions or classifications, providing insights into the most probable

classes or categories present in the input audio. For the purpose of audio anomaly detection, we have

curated a specific set of classes that are indicative of abnormal behavior, including events like glass

breaking, screaming, and fire. By leveraging these classifications, we can identify potential anomalies

and ass ess whether the audio exhibits any concerning patterns or events.

3.3.3.7 Hardware Requirements

The hardware requirements are as below:

• CPU: A multi-core processor, such as an Intel Core i5 or i7, or an equivalent AMD processor,

is sufficient for running the analytic.

• GPU: For faster training and inference, a dedicated GPU is recommended. Models like ECAPA-

TDNN can leverage the parallel processing capabilities of GPUs. NVIDIA GPUs, such as the

GeForce RTX series or the NVIDIA Titan series, are commonly used for deep learning tasks.

• RAM: At least 8 GB of RAM is recommended, but larger models or datasets may require more

RAM.

3.3.3.8 Privacy Considerations

Input data

In order to preserve the privacy of data, two data privacy mechanisms are applied. The first mechanism

is Differential privacy [Dwo08], a powerful privacy-preserving technique widely used to add noise to

data, including audio. We use it to add random Laplacian noise to the audio and ensure that privacy is

protected while still allowing valuable insights to be extracted from the data. The amount of noise added

is determined by the sensitivity and privacy budget parameters, where sensitivity measures the impact

of input data changes on algorithm output, and the privacy budget controls the level of noise added to

protect privacy. The second method is Audio Scrambling, in which the audio file is segmented into

smaller segments of a fixed duration, shuffles their order, and then concatenates them back together to

create the scrambled audio. This scrambling technique alters the original audio's temporal arrangement,

making it difficult to understand the content

Results

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 39 of 64

The output of this analytic is the five top labels of sound classifications included in the audio files. These

labels do not infer identifying information about the tenants.

3.3.3.9 Execution of the Analytics by the Analytics Toolbox

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze audio data.

The data are passed to the analytics engine, which performs data processing using machine learning and

deep learning toolboxes. Afterward, the analysis results are interpreted, aggregated, and presented to

the user.

3.3.3.10 Implementation Details

The Python implementation of the audio anomaly detection functionality utilizes the IBM MAX Audio

Classifier model [IBM-MAX] and relies on various libraries, including soundfile, pydub, NumPy,

Matplotlib, and Pandas.

3.3.3.11 Preliminary Results

The preliminary outcomes of the Privacy-Aware Anomaly Detection in Audio Signal Analytic are

demonstrated through a Python application. This application takes an audio file as input and

incorporates privacy mechanisms to introduce noise or scramble the audio. It then identifies the top five

sound classes along with their corresponding probabilities. The IBM MAX Audio classifier is capable

of recognizing 527 classes, including anomalous classes such as fire and glass breaking sounds. While

the model exhibits higher accuracy in speech and music sound due to the training set bias, it also

performs well across other classes. The classifier is trained on data from Audioset, which originates

from YouTube videos. However, the model's utility is not limited to music and speech domains, as it

can be effectively applied to a wide range of audio files. The accompanying test assets encompass

diverse audio samples, ensuring the model's adaptability and effectiveness across various contexts.

4 Integration of Analytics within the Data Analysis Toolbox

An important activity that has been carried out in the second period of the project is the integration of

all the analytics designed and developed in WP4 within the Data Analysis Toolbox component of the

SIFIS-Home framework. Please refer to Deliverable D1.3 for a detailed description of the components

building up the SIFIS-Home framework. This integration allows the other components of the SIFIS-

Home framework to invoke the available analytics, and the get the results they produced through the

DHT. For instance, The System Protection Manager component (part of the Secure LifeCycle Module)

needs to receive the results computed by the analytics to take proper countermeasures to protect the

Smart Home from intrusions.

Figure 15: Analytics Integration within Data Analysis Toolbox

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 40 of 64

In particular, as shown in Figure 15: Analytics Integration within Data Analysis ToolboxFigure 15, the

Data Analysis Toolbox is the component that directly interacts with the DHT, which is the main

communication mean of the SIFIS-Home framework. This interaction occurs by exploiting the SIFIS-

Home DHT library, which defines (among the other functionalities) the functionality to get messages

from the DHT and publish messages on the DHT. The Figure 15: Analytics Integration within Data

Analysis ToolboxData Analysis Toolbox component is activated by the other components of the

framework, which request the execution of analytic functions on given sets of data. Figure 17 shows the

transaction used to publish the image in Figure 16 to invoke the Privacy-Aware Object Recognition

Analytic through the DHT, and Figure 18 shows the message published to the DHT as an object

recognition analytic request including all the required parameters.

Figure 1616: Image published for Privacy-Aware Object Recognition Analysis

Figure 1717: Transaction to publish image to the DHT

Figure 1818: Message published to the DHT as an object recognition analytic request

For each analytics that has been defined in the project (see the list in Section 1), two DHT topics has

been defined: one used by the other components of the SIFIS-Home framework for invoking the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 41 of 64

analytics, and the other for publishing the results returned by the analytics. Each analytics runs in a

dedicated docker container, and it is implemented as an HTTPS REST service. Hence, the Data Analysis

Toolbox invokes the analytics service exploiting the interfaces it exposes.

The Data Analysis Toolbox receives the requests from the DHT, having subscribed to the related topics,

and the parameters are included in the messages paired to the requests. Once a published message has

been received by the DHT, the data analysis module related to the specified topic is called and executed

on the data. For instance, For the Privacy-Aware Object Recognition Analytic, the first DHT topic is

“SIFIS:Privacy_Aware_Object_Recognition” for invoking the analytic as depicted in Figure 10 and the

second DHT topic is “SIFIS:Object_Recognition_Results” as depicted in Figure 13. The process starts

by publishing the analytic request to the DHT on the first topic, the analytic toolbox continuously checks

all published messages to the DHT as shown in Figure 19, and once there is a new message on the first

topic “SIFIS:Privacy_Aware_Object_Recognition”, it invokes the running analytic responsible for this

topic through an HTTPS REST, which is the Privacy-Aware Object Recognition as shown in Figure 20,

and finally the analysis results “bicycle, dog, truck” are published to the DHT as depicted in Figure 21.

Figure 1919: Data Analysis Toolbox DHT messages check

Figure 2020: Privacy-Aware Object Recognition Component running

Figure 21: Message published to the DHT with the object recognition analysis results

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 42 of 64

5 Preserving Privacy of Data Exploited in Analytics

 AI-based data analysis entail some concerns related to data privacy and also to transparency of the

analysis process [Xu19,Stro19], and such concerns are relevant in particular when data analysis is

performed by a third party with respect to the devices deployed in the smart home. In particular, data

collected in smart homes could bring personal and privacy sensitive information, and their exposure to

a third party might tamper the reputation of the residents in the smart home. To address this issue,

Privacy-Preserving Machine Learning (PPML) [AC19] techniques are used to protect such data from

being disclosed, while still allowing the execution of meaningful data analysis.

Recently, there has been also a new growing need for AI-based analytics: decision explainability. In

fact, by following also recent directives, such as the EU proposal for the Artificial Intelligence Act1,

understanding decision-making criteria is important for both technical and ethical reasons.

As privacy requirements and their enforcement normally affects the effectiveness accuracy of a decision

system, considering explainability adds another dimension, which might be in contrast with both

accuracy of the decision and ensured privacy. Still, all these elements are of crucial importance as they

pose the basis for the Trustworthy AI paradigm [Hag19].

Moreover, when analytics are executed by third parties, data produced by distinct smart homes could

be elaborated together, in order to get better or earlier results. We call the analytics that consider data

coming from several source collaborative analytics.

In light of the previous considerations, we defined a methodology for collaborative data analysis, to

define the optimal trade-off between data utility, privacy, and explainability, applied it to face analysis.

In particular, we exploited two common techniques for preserving data privacy, Differential Privacy

and Atuoencoders (already described in D4.2) and one technique for ensuring model explainability

(Saliency Mas enhanced with Smoothgrad) which can be tuned through input parameters, and we apply

them to a face analysis problem. In this context, the proposed approach defines a measure for evaluating

the trade-off among the data Privacy Gain, Data Utility Loss, and model Explainability Gain

obtained by applying such techniques. This measure is meant to allow the tuning of the techniques and

parameters for preserving data privacy and ensuring model explainability for a specific data analysis

problem, in order to define the configuration which maximizes the Privacy Gain and the model

explainability while minimizing the Data Utility Loss.

The methodology defines thus a general trade-off measure and exploits novelly designed tri-

dimensional compatibility matrices to find the configuration yielding the best trade-off value.

Furthermore, given a set of requirements on minimum Privacy Degree and explainability level, which

are provided by the participants to collaborative analysis, the proposed framework will calculate the

optimal solution satisfying these requirements.

We apply or methodology to facial expression recognition model. The model classifies individual faces

into different emotion categories, such as happy, sad, or angry, based on the expression detected in an

image or a video frame. To preserve privacy, for example, a face can be anonymized so that the identity

of this person is kept private but the facial expression can still be predicted, so the image attributes that

are responsible to reveal the identity are hidden.

Both privacy and explainability are extremely relevant in this problem, as privacy of classified faces

might be a requirement, and it is interesting to understand which physical features are actually relevant

for the classification decision. For our experiments, we will refer in the following to the Facial

Expression Recognition (FER) dataset2

1 Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial
Intelligence: https://bit.ly/3y5wf6e
2 https://www.kaggle.com/msambare/fer2013

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 43 of 64

≤

5.1 Privacy-preserving Techniques

Data privacy-preserving techniques are aimed at protecting dataset attributes that are considered

sensitive or may lead to the re-identification of the person the data refers to. There are two main

approaches for data privacy protection: the first one is related to hiding sensitive attributes to prevent

person re-identification, and the second is about delivering models that perform responsible data

analysis by learning general patterns instead of memorizing specific sensitive attributes and data

instances. To protect data privacy when being shared or analyzed by third parties, anonymization-based

techniques are exploited. The most popular ones are k-anonymity [Swee02], l-diversity with all its

variants [MKG07], t-closeness [LT07,RTG00], (ϵ, δ)- differential privacy [Dwo08] and autoencoders

[PVG20]. In this work, we will mainly use the last two techniques, which are powerful and effective

especially when working with image datasets. We detail them in the following.

5.1.1 (ε, δ)-differential privacy

(ϵ, δ)-differential privacy (DP) is considered one of the most powerful privacy-preserving techniques.

DP technique differs from the traditional methods in the mechanism it uses to add noise to the data

either before or during analysis, which makes it invulnerable to re-identification or data reconstruction

attacks. As a matter of fact, traditional methods add noise to individual records, while the DP technique

adds Laplace or Gaussian distributions noise during the analysis phase and to the learning model used.

When the DP technique is applied to two neighboring datasets (i.e., datasets differing by one data

instance), the outputs of the same data analysis on the two datasets are indistinguishable, thus don’t

disclose whether the given data instance was included in the original dataset or not. The degree to which

these outcomes are indistinguishable depends on the values of the privacy budget parameter and the

sensitivity parameter, which measures the algorithm sensitivity to the insertion or removal of an

individual item from the dataset and is explained in detail in [Dwo08]. (ϵ, δ)-differential privacy

equation is presented in Equation 1 [Dwo08].

𝑃𝑟[𝑀(𝐷1) ∈ 𝑆] ≤ 𝑃𝑟[𝑀(𝐷2) ∈ 𝑆] × 𝑒𝑥𝑝(ϵ) + 𝛿
Equation 1

Where Pr is the probability of the event in square brackets, ϵ is the privacy budget that is used in our

approach (as will be explained in section 4.1), δ is the failure probability, M is the randomized algorithm

that is said to provide (ϵ, δ)- differential privacy, and D1 and D2 are two datasets that differ in at least

one data instance, and S ⊆ Range(M).

For privacy analysis, in this work, we use the moments accountant privacy budget tracking method

proposed by Abadi et al. [ACG16], which uses a Differential Private Stochastic Gradient Descent (DP-

SGD) algorithm with an additive Sampled Gaussian Mechanism (SGM). SGM is an additive Gaussian

noise [DKM06] and Sampling [RSL08,Smi09] mechanism used in differential privacy as defined in

Equation 2 for a real-valued function f mapping subsets of D to Rd:

𝑀(𝐷) ≜ 𝑓(𝐷) + 𝑁(0, 𝑆𝑓𝜎2)
Equation 2

where D is the dataset and a subset of its elements are sampled randomly and independently from each

other with sampling rate 0 < q ≤ 1 to be used by the algorithm f . N (0, σ2) is the Gaussian distribution

of the noise added with a mean equals to 0, and σ is the noise added with 𝑆𝑓𝜎2 standard deviation of

the noise bounded to ℓ2 sensitivity.

The moments accountant method exploits the Composability and Group privacy attributes of DP for

several applications of the Gaussian mechanism on random samples of the dataset, and accumulates the

overall privacy budget for these executions using the privacy accountant concept introduced in [Mcs09]

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 44 of 64

by implementing the accountant procedure at each execution of the Gaussian mechanism on a sample

data according to the sampling ratio and performs privacy budget accumulation at the end of all

procedure executions.

Using moments accountant, the accounting procedure allows proving that an algorithm is (ϵ, δ)-

differentially private for appropriately selected configurations of the parameters for any ε < c1q
2T and

for any δ > 0 if the noise multiplier σ was defined to be as in Equation 3 proposed in [ACG16]:

σ ≥ 𝑐2

𝑞√𝑇𝑙𝑜𝑔(1/δ)

ϵ

Equation 3

 where c1 and c2 are constants so that given the sampling probability q = L/n, L is the sampling ratio of

each Lot, n is the size of the dataset, and T is the number of training steps and T = E and E is the number

of Epochs.

The relationship between the noise multiplier and the privacy budget ϵ is negative, which implies better

privacy protection when increasing the value of the noise multiplier. TensorFlow Privacy provides an

implementation of the DP privacy accountant method for SGM5 and a documentation for the privacy

framework.

There are three ways to add noise to machine learning models to satisfy the differential privacy property,

the first one is to add the noise to the objective function, the second is to add noise to the gradients at

each iteration of the training phase, and the third is to add noise to the output of the training phase

[JE19].

5.1.2 Autoencoders

This technique is a type of neural network that is trained to compress data and represent their most

important features as a latent representation code. The technique involves two components: an encoder

and a decoder. The encoder takes an input dataset and encodes it in a latent representation (code), to get

its important features represented as a code. Then, the decoder takes the latent representation and

decodes it to get the reconstructed image. A typical application is the dimensionality reduction of the

feature space, but it is widely used for learning data generative models as well. The Utility Loss in

autoencoders is represented as the distance between the original image and the reconstructed one. The

anonymization degree is controlled by the code size (i.e., the latent representation: the lower the code

size, the higher anonymization we get). The underlying mechanism can be considered similar to the

compression one [HAK20,MCC19]. Autoencoders are used as a privacy-preserving technique

themselves [DJD18,LLL19], but they may be fine-tuned or combined with other privacy-preserving

methods [GAS22].

5.1.3 Explainable Artificial Intelligence

Explainable/Explicable Artificial Intelligence (XAI) is a recent term that has been proposed to enforce

safety, fairness, trust and transparency in AI models. AI algorithms and processes have their own

drawbacks of being complex to trace or understand in terms of the way they process data entries to

produce results. Sometimes they may be charged with causing discrimination or inaccurate results, or

not being transparent in the decision-making process, requiring the user to have blind faith in their

predictions. XAI provides insights into how the predictive model works and the correlations among data

sources and features, and is mainly used for extracting knowledge about the model and the data.

Hence, XAI can be exploited for discrimination avoidance, and for granting users the right to get an

explanation of why certain decisions have been made by AI models. On the other hand, XAI represents

a threat to data privacy and gives the opportunity for exploration and exploitation of the model by

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 45 of 64

possible malicious users. For instance, when the users understand how the model works, they can

introduce designed adversarial inputs to produce specific outputs for manipulation and deception. In our

work, we used Saliency Maps enhanced with the SmoothGrad technique for addressing explainability.

5.2 Saliency Maps

The Saliency Maps concept was first proposed in \cite{simonyan2013deep} as a gradient-based method

to explain deep neural networks. The generated maps using this technique make the pixels of the input

image that have the highest gradient, i.e., the most influence on the classification of the image, more

visible in the image. These gradients are computed using two alternative methods which differ in the

scope (local vs global):

Image-specific class saliency visualization method (local scope): an approximation class score

is being calculated in this technique using Equation 4 where Sl(d) is the class scoring function, d

represents the input image, l is the label class, wl is the weight vector, and bl is the model bias.

𝑆𝑙(𝑑) = 𝑤𝑙
𝑇𝑑 + 𝑏𝑙

Equation 4

In the case of a Convolutional Neural Network (CNN) model, the equation is updated to be as in

Equation 5, where w is the derivative of Sl with respect to the image d at the point d0 computed

using Equation 6:

𝑆𝑙(𝑑) ≈ 𝑤𝑇𝑑 + 𝑏
Equation 5

𝑤 =
∂𝑆𝑙

∂𝑑
|𝑑0

Equation 6

Class model visualizations (global scope): generate numerically computed images representing

the appearance of classes for a given CNN model and a learned classification by this model. It uses

a regularisation parameter Ω to generate an L2-regularised image for a specific class l with respect

to a specific ConvNet layer for an image d, given a high score value for the class scoring function

Sc by Equation 7:

𝑎𝑟𝑔 𝑚𝑎𝑥𝑑𝑆𝑙(𝑑) − Ω‖𝑑‖2
2

Equation 7

5.3 SmoothGrad

This technique smooths the saliency maps produced by gradient-based models through the elimination

of noise in these maps. Its main concept is about reducing the noise in generated explanations by adding

Gaussian noise, which is the standard deviation of the Gaussian perturbations responsible for saliency

maps sharpening in order to generate better and more accurate explanations of the model predictions.

The explanation quality can be controlled by regulating the introduced Gaussian noise, as illustrated in

Figure 22 [STK17], unlike other explainability mechanism. The higher the value of Gaussian noise, the

better the explanation, as it appears in the rightmost column of the image where a 75% noise value is

added and resulted in a better explanations than the first column, where 0% noise is added. According

to [STK17], the ideal noise level depends on the input.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 46 of 64

Figure 22 Effect of Gaussian noise [STK17]

5.4 Reference Scenario and Problem Statement

This section presents a sample reference scenario where we implemented the proposed methodology.

The reference scenario we are considering includes a number of stakeholders (i.e., the smart homes)

that produce image data, the faces taken from surveillance cameras, and they are looking to perform

collaborative analysis to increase the accuracy of a facial expression detector. To this aim, such

stakeholders share their data with a centralized honest-but-curious server that will perform the analysis

(as shown in Figure 23).

Figure 23: Scenario

However, sharing data with a third party (the central server) or among the stakeholders carries privacy

concerns [SSS17]. Hence a kind of anonymization process might be required before sharing, and the

techniques previously described can be used to this aim. Figure 23shows an example where the

stakeholders on the left adopt the Differential Privacy technique for model anonymization, and they

share the predictions obtained using these differential private models and/or locally trained model

weights with the central server, while the stakeholders on the top right adopt the Autoencoders technique

for data anonymization, and they share the anonymized datasets with the central server.

Explainability is another key requirement for the image recognition model since the stakeholders must

be able to explain the criteria on which decisions were made. For instance, a stakeholder should be able

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 47 of 64

to understand why a given image submitted by his smart device has been classified as a “happy face”

[Act21].

Moreover, the adoption of privacy and explainability techniques might impact the overall accuracy and

vice-versa. In fact, the adoption of a technique to fulfill one of the requirements could negatively affect

the satisfaction of the other two requirements. For example, if the technique used to preserve the privacy

of the people captured by the smart cameras introduces too much noise in the images, the explainability

of the decision process could be negatively affected, as well as the accuracy of the results. Our

methodology addresses this problem by proposing an approach for properly configuring the technique

to preserve data privacy and the technique to provide explainability in order to obtain the best trade-off

among Privacy Gain, Data Utility Loss, and Explainability Gain (which are formally defined in the

following) related to the process for the classification analysis of image datasets.

Moreover, the problem could also include constraints on the values of the parameter passed to the

privacy and explainability techniques, i.e., the Privacy Degree and the Explainability Degree, as

requirements imposed by the stakeholders for sharing their data. For instance, a stakeholder could

authorize the usage of their dataset in a given analytics only if the privacy of such dataset is preserved

by applying the autoencoders technique with a code size, i.e., a Privacy Degree, less than 55% of the

image size.

5.5 Concepts and Model

This section formally discusses the three key measures on which the proposed approach is based,

namely: the Privacy Gain, the Data Utility Loss, and the Explainability Gain.

5.5.1 Anonymization and Privacy Gain

Data privacy in image datasets can be preserved using the two techniques previously presented:

Autoencoders and Differential Privacy. Autoencoders technique is used to disturb the original images

before being fed to the model, i.e., before being sent to the server, while the differential privacy

technique in this proposal is used during the analysis phase, i.e., on the stakeholder side to restrict model

memorization of specific attributes and dataset entries and to let the model only learn general patterns

about the dataset. Referring to the facial expression recognition problem, applying the previous two

privacy-preserving mechanisms on the face images would alter either the original images to produce

anonymized faces that are unrecognizable, or the gradients computed during the data processing phase.

However, in both cases, this anonymization could affect the accuracy of the facial expression

recognition model causing some facial expressions to be not correctly recognized anymore. Moreover,

the explainability of the decisions in terms of saliency maps could be affected since the dataset images

are less visible.

The first privacy-preserving technique, autoencoder deep neural networks, first encodes the original

image into a latent representation and then decodes the latent representation to reconstruct the

anonymized image. This phase is executed on the smart device which captures the image. The

anonymized image is then fed to the classifier, which runs on the server. This technique enhances data

privacy because performing encoding and decoding procedures on the original image and the latent

space representation, respectively, alters the original image in a noisy manner. The integration of the

autoencoders technique within the image classification system is illustrated in Figure 24.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 48 of 64

Figure 24: Autoencoders for dataset anonymization with multi-class classifier architecture

The second privacy-preserving technique, differential privacy, instead of operating on the images of the

dataset, add noise to the gradients during the training process using a differential private optimizer.

Hence, the classification model memorization of data instances is limited, as the used model only learns

general patterns of the dataset. In fact, the trained differential private model can't distinguish whether

specific dataset instances were used for training, thus providing protection against reconstruction and

membership inference attacks [CWS20,PSM22]. The integration of a differential privacy mechanism

within our image classification system is depicted in Figure 25.

Figure 25: Differential Privacy with multi-class classifier architecture

Both the previous anonymization techniques accept an input parameter, the Privacy Degree. In

particular, when adopting the differential privacy technique, such a parameter is represented by the noise

introduced in the model, as explained in Section 5.1.1.

Instead, when adopting the autoencoders technique, such a parameter is represented by the size of the

code, as explained in Section 5.1.2 as well. Figure 26 illustrates an example of the application of the

autoencoders technique on FER dataset with different code sizes.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 49 of 64

Figure 26: Autoencoders technique applied to FER dataset with distinct code size

Applying such techniques in the image classification process results in a Privacy Gain, i.e., the

modifications made by these techniques introduce an uncertainty degree in the resulting model. This

uncertainty is due to the lack of knowledge of all dataset attributes caused by the application of the

anonymization techniques, and it reduces the confidence in the predictions performed using this model

[NSH19].

The Privacy Gain obtained by applying the differential privacy technique to the dataset D and the

classifier λ, denoted by PGDP(D, λ), is measured according to the returned privacy budget, i.e., the ε

value we got from Equation 1). Errore. L'origine riferimento non è stata trovata. The lower the ε

value, the higher the Privacy Gain returned, as shown in Equation 8.

When the autoencoders method is applied, the Privacy Gain is measured as the percentage of the code

size C compared to the original image size I, as expressed in Equation 9. Considering that the code size

C is always not greater than the size of the images in the dataset D (denoted by I(D)), we observe that

PGAuto(C,D) is normalized in the interval (0,1]. The smaller the code size defined, the higher the Privacy

Gain returned, since the code size represents the compression degree and the smaller the code size is,

the more compression degree is applied and the more privacy gained.

PGDP(D, λ) =
1

ϵ(D, λ)

Equation 8

PGAuto(C, D) = 1 −
C

I(D)

Equation 9

5.5.2 Classifier and Data Utility Loss

The enforcement of the privacy-preserving techniques discussed above may reduce data utility and

affect model performance. Data Utility Loss computation depends on the privacy technique used. In

particular, when adopting the autoencoders technique, the Utility Loss UAuto can be measured as shown

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 50 of 64

in Equation 10 based on the divergence concept, which represents the change between two distributions

(or two datasets in this case):

UAuto(D, D′) = GD(D, D′)
Equation 10

where GD is the divergence between the original dataset distribution D and the anonymized dataset

distribution D '.

Divergence computation is done using several methods such as: (i) Earth Mover’s distance (EMD,

Wasserstein distance) where a ground distance is defined between any pair of values [RTG00], (ii) Total

Variation Distance (TVD), (iii) Hellinger Distance (HD), (iv) Kullback-Leibler Divergence (KLD)

[KL51], (v) X2 divergence.

In our approach, we adopt the Earth Mover’s distance (EMD, Wasserstein distance) as a divergence

computation method because it defines the ground distance between any pair of values [RTG00]. EMD

is simply the minimum cost or work in Equation 11 needed to match two distributions normalized by

the weight of one of these distributions (D, D'), as shown in Equation 12:

Work(D, D′, F) = ∑ ∑ dijfij

n

j=1

m

i=1

Equation 11

EMD(D, D′) =
∑ ∑ dijfij

n
j=1

m
i=1

∑ ∑ fij
n
j=1

m
i=1

Equation 12

where D is the first dataset distribution with m elements, D' is the second dataset distribution with n

elements, [dij] is the ground distance matrix where dij is the ground distance between clusters Di and D'j,

and F represents a flow matrix [fij] among the two dataset distributions D and D' with fij the flow

between Di and D'j, that minimizes the overall cost to get the optimal flow F. We recall that in our

scenario m=n because the dataset D' has been produced by anonymizing each element of the dataset D

applying the autoencoder privacy technique.

Other popular divergence computation methods used in literature are the Kullback-Leibler Divergence

(KLD) [KL51] and the Total Variation Distance (TVD). However, these methods do not reflect the

semantic distance among values of the clusters, since they compare the ratios of the probability density

function of the two distributions, and even if the values of the dataset attributes are diverse, some values

of one attribute are related to one category and semantically close. Therefore, these measurements fail

to reflect this semantic distance among values. Instead, the EMD method measures the ground distance

between the two distributions, taking into consideration all values even if they were semantically close.

To compute the Data Utility Loss when the differential privacy technique is exploited, instead, we

cannot adopt the same method and compute the divergence between the original and the anonymized

datasets. As a matter of fact, in our approach the differential privacy technique does not anonymize the

original dataset before the training process, but, instead, it adds the noise to the gradients during

gradients computation. Thus, the method we use in order to compute the Utility Loss compares the

accuracy of the classification results of the original data analysis model against the accuracy of the

classification results obtained from the differential private model and converts this percentage reference

into a decimal number, following the approach proposed in [JE19].

The resulting Utility Loss measure is shown in Equation 13 and it falls in the range 0-1:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 51 of 64

UDP(D, λ, λ′) = Acc(D, λ) − Acc(D, λ′)
Equation 13

where D is the original dataset, λ is the analysis model, λ’ is the differential private analysis model that

adds noise to the gradients during training, and Acc is the accuracy of the results of the analysis model

applied to the dataset.

5.5.3 Explainer and Explainability Gain

A relevant requirement of the reference scenario concerns the understanding of why the model has

produced a given prediction, e.g., the classification of a face image as a "happy" facial expression.

For instance, the prediction could have been made due to edges at certain positions of the image,

brightness in some areas, or some other aspects. XAI provides the possibility to understand this by

producing explanations. In other words, XAI provides an explanation of why a specific prediction has

been made.

In our approach, we produce these explanations in the form of Saliency Maps, using the SmoothGrad

explainability method described in Section 5.3. SmoothGrad method takes an input image, and

generates n sample images by adding Gaussian noise, computes a Saliency Map for each of these sample

images, and computes a single Saliency Map as an average of the previous ones. Despite adding the

same amount of Gaussian noise to the same image, the resulting n samples are different due to the

random nature of the noise addition process. This process is controlled acting on the number of samples

used during the averaging process and on the Gaussian noise level parameter used for map sharpening.

Summarizing, the computation of a saliency map for each data instance of any image dataset used by a

classification model λ is shown Equation 14:

α�̂�(𝑑) =
1

𝑛
∑ α𝑙(𝑑 + 𝑁(0, σ2))

𝑛

1

Equation 14

where d is a data instance representing an input image, l is the class predicted for an input image among

a set of classes L, n is the number of sample images used to produce the final saliency map, α(d + N (0

, σ2)) is a Saliency Map for a sample image generated by adding Gaussian noise (N (0, σ2)) to the

original one. The saliency map of a sample image is computed by differentiating αl with respect to the

input image d based on the analysis function λ, as shown in Equation 15:

α𝑙(𝑑) =
∂𝑆𝑙(𝑑)

∂𝑑

Equation 15

where Sl is the class scoring function. Smoothgrad method uses Equation 14 to enhance originally

generated saliency maps by basing a visualization on a smoothing of gradient ∂Sl(d) with a Gaussian

kernel instead of basing it directly on ∂Sl(d). Detailed equations explanation is presented in [STK17].

SmoothGrad mechanism improves the quality of the saliency maps generated by increasing the degree

of Gaussian noise used to smooth the map compared to the original non-smoothed map as indicated in

[STK17]. Thus, to compute the Explainability Gain EG(d) for the smoothed saliency map, we use

Equation 16:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 52 of 64

𝐸𝐺(𝑑) =
𝑛

max(𝑛)
× 𝑁(0, σ2)𝑑 × 100

Equation 16

where d is a data instance (an input image), n is the number of sample images used for averaging saliency

maps to produce one saliency map, max(n) is the maximum number of used samples, and N(0, σ2) is

the Gaussian noise.

However, this equation needs to be modified in case a privacy mechanism has been used, since the

privacy mechanisms applied in our methodology either modifies the analysis model in the way it

computes gradients when using differential privacy, or alters the input dataset in case of autoencoders.

Therefore, to quantify Explainability Gain EGDP when applying differential privacy mechanism, we

need to take into consideration the model performance change represented by model accuracy, because

explainability mechanisms do explain model decisions. Thus, when the model’s accuracy decreases due

to the use of a differential private model, the Explainability Gain needs to be bounded to this change

represented by UDP in Equation 13. Explainability Gain when using differential privacy mechanism is

reported in Equation 17, where d is a data instance (an input image), D is the Dataset, λ is the analysis

function, and λ′ is the differential private analysis function obtained from λ.

𝐸𝐺𝐷𝑃(𝑑, γ) = ((
𝑛 × 𝑁(0, σ2)𝑑

max(𝑛)
) − 𝑈𝐷𝑃(γ) (

𝑛 × 𝑁(0, σ2)𝑑

max(𝑛)
))

Equation 17

 For Autoencoders privacy-preserving mechanism, Equation 18, where θ = {D, D′} is used to compute

the Explainability Gain, where γ = {D, λ, λ′} , by taking into consideration the change percentage

between images of the original dataset and anonymized dataset, since saliency maps are generated based

on these input image and any change to the input image affects the output saliency map. This the EG(d)

is also bounded to the change of input images. This change percentage is measured by the geometric

divergence using the EMD method.

𝐸𝐺𝐴𝑢𝑡𝑜(𝑑, θ) = ((
𝑛 × 𝑁(0, σ2)𝑑

max(𝑛)
) − 𝐺𝐷(θ) (

𝑛 × 𝑁(0, σ2)𝑑

max(𝑛)
))

Equation 18

Providing decision explanations for classifications made on image datasets means highlighting the

pixels that have the most influence on the model prediction in the generated saliency maps.

For instance, in the facial expression recognition case, the pixels representing eyes and mouth are

highlighted, as shown in the maps of Errore. L'origine riferimento non è stata trovata. for FER

dataset.

As a matter of fact, controlling the noise parameter affects saliency map explanations. The higher value

we define for the Gaussian noise, the more explainable the analysis result is. Therefore, the

Explainability Gain is quantified using the noise value, and this noise value ranges between 0 and 1.

5.6 Proposed Methodology

This section describes the data format and the methodology we defined to properly set up the data

analysis process, i.e., to find the values for the Privacy Degree and for the Explainability Degree

parameters (see Section 4.1), in order to balance preserved data privacy, explainability of the model and

classification analysis accuracy. As discussed in Section 3, we are considering a scenario where several

stakeholders produce image datasets consisting of faces taken from surveillance cameras

and they want to exploit them to perform collaborative analysis, by training a common analysis model

which would give more accurate results than a model built from the dataset of a single user only.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 53 of 64

In particular, each stakeholder defines their own privacy and explainability requirements in terms of

constraints on the values of Privacy Degree and Explainability Degree parameters, which must be

respected for the stakeholder to consent to the use of their dataset.

In this scenario, the proposed methodology is aimed at finding a proper configuration of the data

analysis process which allows for obtaining an analysis model which respects the stakeholders'

requirements while balancing preserved data privacy, explainability level, and classification accuracy.

5.6.1 Data Format

We are focusing on image datasets, i.e., datasets where each element is a picture. Typical features of

the elements of such datasets are thus pixel-related, such as: color, brightness, edges. A further feature

is the image resolution, n, which is equal to x × y (where x and y are the dimensions of the image) in

the case of gray-scale images and to x × y ×3 in the case of colored images. In particular, we are

considering two labeled gray-scale image datasets, FER and MNIST, in addition to a labeled colored

image dataset, CIFAR-10. The FER dataset is relevant for the reference scenario because the images in

the dataset are people's faces, and the labels paired with the images represent the facial expression

category, they are classified into seven classes (e.g., angry, disgust, fear, happy). In the MNIST dataset,

instead, the images are handwritten digits and the label paired with each image corresponds to the digit

represented by the image. Hence MNIST images are classified into ten classes, with labels ranging from

0 to 9. This dataset has been chosen because it is a well-known dataset typically used as a benchmark

to validate proposed approaches. In the CIFAR-10 dataset, instead, the images are of various objects

and the label paired with each image corresponds to the object represented by the image. Hence, the

images are classified into ten classes. This dataset has been chosen because it is a more complex well-

known dataset and is used usually as a benchmark for validation. As usual, all datasets are divided into

a training set and a testing set. Each dataset is thus processed by the multi-class classifier λ, one image

at a time to be divided into pixels based on the image resolution as an input layer in the neural network.

5.6.2 Optimal Trade-Off computation through Compatibility Matrix

As discussed, two possible techniques can be used for performing the analysis in a privacy-preserving

way, namely autoencoders and differential privacy. When the autoencoders technique is used, our

methodology determines the optimal values of the Privacy Degree and Explainability Degree

parameters as follows. First of all, the stakeholders apply the autoencoder technique to their datasets. In

particular, each stakeholder computes a set of anonymized datasets varying the value of the Privacy

Degree parameter according to the requirements they defined, and computes locally both the Privacy

Gain and the Utility Loss for each of these datasets. Then, each stakeholder shares requirements, the set

of anonymized datasets, and the related Privacy Gains and Utility Losses with the server. The server

executes the data analysis process on each of the received datasets, applies the Smoothgrad technique

for a set of values of the Explainability Degree (chosen according to the requirements defined by the

stakeholder originating the dataset), and for each of them computes the related Explainability Gain.

Finally, using the values of the Privacy Gain, Utility Loss, and Explainability Gain computed varying

the values of the Privacy Degree and Explainability Degree parameters, the server computes the trade-

off scores to fill the compatibility matrix.

If the Differential Privacy technique is selected, then the analysis process is performed on the

stakeholder side and only analysis results will be shared with the server. The values of Privacy Gain,

Explainability Gain, Utility Loss, and trade-off score are computed on the stakeholder’s side for each

configuration of Privacy Degree and Explainability Degree satisfying the stakeholder’s requirements.

Afterward, all these values, along with the stakeholder’s requirements, are shared with the server to find

the optimal trade-off score.

Hence, as a first step of our methodology, we define the formula to calculate the trade-off among the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 54 of 64

aforementioned three measures, i.e., TDP (D, λ, λ′) (shown in Equation 19) when the differential privacy

technique is applied or TAuto(D, D′, λ) (shown in Equation 20) when the autoencoders technique is

applied. The trade-off formulas enable us to balance the conflicting objectives of privacy, explainability,

and utility loss by aggregating them into a single score. The numerator of the formula captures the

desirable goals of privacy and explainability, while the denominator represents the undesirable objective

of utility loss. Dividing the desirable objectives by the undesirable objective yields a trade-off score that

reflects the optimal balance between these objectives.

𝑇𝐷𝑃(𝐷, 𝜆, 𝜆′) =
𝑃𝐺𝐷𝑃(𝐷, λ) + 𝐸𝐺𝐷𝑃(𝑑, 𝐷, λ, λ′)

2 + 𝑈𝐷𝑃(𝐷, λ, λ′)

Equation 19

where D is the original dataset, λ is the analysis function, λ′ is the differential private analysis function,

PGDP (D, λ) is the Privacy Gain defined by Equation 8, EGDP (d, D, λ, λ′) is the Explainability Gain

defined by Equation 17, and UDP (D, λ, λ′) is the Utility Loss defined by Equation 13;

𝑇𝐴𝑢𝑡𝑜(𝐷, 𝐷′, λ) =
𝑃𝐺𝐴𝑢𝑡𝑜(𝐶, 𝐷) + 𝐸𝐺𝐴𝑢𝑡𝑜(𝑑, 𝐷, 𝐷′)

2 + 𝑈𝐴𝑢𝑡𝑜(𝐷, 𝐷′)

Equation 20

where D is the original dataset, D′ is the anonymized dataset, λ is the analysis function, C is the Code

size used for the autoencoders technique, PGAuto(C, D) is the Privacy Gain defined by Equation 9,

EGAuto(d, D, D′) is the Explainability Gain defined by Equation 18, and UAuto(D, D′) is the Utility Loss

defined by Equation 10.

By first performing discretization on the intervals of Privacy Degree and Explainability Degree, we

transform these continuous intervals into two sets of discrete values across the original interval range.

Thus, for any specific dataset, privacy parameter value, and explainability value in the discretized

ranges, the related trade-off is computed. Considering the available datasets, the computed trade-off

values can be represented in a schematic manner by means of a tri-dimensional compatibility matrix.

5.6.3 Compatibility Matrix

The compatibility matrix has been defined in [SSM21] as a mechanism to compute the best trade-off

between data utility and privacy in a multi-stakeholder collaborative analysis problem. Each element of

the compatibility matrix represents, in fact, the trade-off value computed on a specific dataset (row) for

a given privacy configuration (column). In our work, we are considering a further dimension, i.e.,

explainability. Hence, we define a tri-dimensional compatibility matrix which on the x dimension it

reports the values obtained from the discretization of the Privacy Degree (ϕk) interval, on the y

dimension it reports the available datasets (Di, generally one per stakeholder), and on the 𝑥 dimension

the values obtained from the discretization of the Explainability Degree (ωj) interval. Each element

CMi,k,j represents the trade-off value computed with the specified combination of the three parameters,

i.e., the trade-off computed on dataset Di, with Privacy Degree ϕk according to the selected privacy-

preserving mechanism, and with the Explainability Degree ωj.

In the image analysis problem that we are considering, we are using two different privacy mechanisms,

whose trade-off values are not comparable, since they are computed in different ways. To this end, two

compatibility matrices will be defined respectively for the Differential Privacy-based analysis, and for

the Autoencoders-based one. Thus, the compatibility matrix representing the differential privacy

mechanism uses Equation 19 to compute the trade-off, while the compatibility matrix representing the

autoencoders mechanism uses Equation 20. Figure 27 reports the structure of a compatibility matrix.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 55 of 64

Figure 27 Tri-dimensional compatibility matrix

If the values of either ϕk or ωj do not respect specific requirements expressed on the dataset Di by the

owning stakeholder, the corresponding element CMi,k,j is set to 0, representing thus the impossibility to

compute a trade-off for that specific configuration. Once the compatibility matrix has been computed,

it is reduced to bi-dimensional by aggregating the dataset dimension. In particular, the trade-offs

obtained for distinct datasets with the same Privacy Degree and Explainability Degree are averaged to

compute the optimal trade-off, according to Equation 21 for differential privacy mechanism and

Equation 22 for autoencoders mechanism:

𝑇𝐷𝑃
̅̅ ̅̅ ̅(�̅�, λ, λ′) = ∑ 𝑤𝑖𝑇(𝐷𝑖, λ, λ′)

𝑚

𝑖=1

Equation 21

𝑇𝐴𝑢𝑡𝑜
̅̅ ̅̅ ̅̅ ̅(�̅�, 𝐷′̅̅ ̅, λ) = ∑ 𝑤𝑖𝑇(𝐷𝑖, 𝐷𝑖

′, λ)

𝑚

𝑖=1

Equation 22

where wi is the inverse of the number of datasets for which the trade-off value is not 0.

Finally, after obtaining the best trade-off score using the concept of linear objective optimization, which

chooses the maximum score among all trade-off scores, the corresponding privacy and Explainability

Degrees are used for performing the analysis process in a trustworthy manner satisfying all stakeholders’

requirements.

5.6.4 Applicative Example

Let us consider a case where three stakeholders, S1, S2, and S3 are willing to perform collaborative

analysis. The stakeholders request an analysis function on their own datasets, D1, D2, and D3,

respectively, from a central server using the architecture defined in Section 5.4, where D1 ∪ D2 ∪ D3

represent the whole dataset D.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 56 of 64

Figure 28 Tri-dimensional compatibility matrix for three stakeholders using DP mechanism example

Each stakeholder shares its privacy and explainability requirements R1, R2, and R3, where each

requirement defines the privacy mechanism, and constraints on the Privacy Degree to be used. The

Privacy Degree is defined by each stakeholder to be higher than a specific threshold or to obtain the

maximum achievable degree. Also, the Explainability Degree is defined by each stakeholder to be

higher than a specific threshold or to obtain the maximum achievable degree. Hence, the requirement

items provided by stakeholder Si are as the following:

• Pmi: Privacy mechanism selected, which is either autoencoders or differential privacy in this

work.

• ϕi: Minimum Privacy Degree, which is the code size for autoencoders mechanism and Privacy

Degree parameter for differential privacy.

• ωi: Minimum Explainability Degree.

To find the best trade-off score, all returned configurations trade-off scores are investigated for the

datasets using Equation 21 or Equation 22 which refer, respectively to the differential privacy and the

autoencoders privacy-preserving techniques. Then the trade-off score that has the maximum value

representing the optimal solution is returned. An optimal solution is a configuration that provides the

maximum achievable degrees of privacy and explainability with the least possible effect on data utility.

As an example, taking into account the reference scenario described in Section 5.4, in the following we

consider 3 stakeholders having an image dataset of 20, 000 images each. These stakeholders want to

analyze these datasets with the help of a central server. In order to do so, each stakeholder selects the

privacy mechanism of interest and defines his own privacy and explainability requirements with specific

degrees for each of them. For instance, we assume that all stakeholders have chosen the same privacy

technique, e.g., differential privacy, and that they defined their privacy and explainability requirements

as shown in Table 1. For instance, Stakeholder1 wants that the Privacy Degree, ϕ, is greater than 1.7,

and that the Explainability Degree, ω, is greater than 0.6. Instead, Stakeholder3 does not specify any

requirement, meaning that he is interested in getting the optimal value among all.

Table 1 Stakeholder's Requirements

Stakeholders ϕ ω

Stakeholder1 > 1.7 > 0.6

Stakeholder2 > 1.5 > 0.6

Stakeholder3 Empty Empty

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 57 of 64

From the above-mentioned details, the compatibility matrix shown in Figure 28 is created. The x

dimension of the matrix consists of 21 values for Privacy Degree in the interval [0.0 − 2.0] with step

0.1, the y dimension of the matrix consists of 3 rows representing the 3 stakeholders’ datasets, while the

z dimension consists of 11 possible degrees of explainability ω of the SmoothGrad mechanism in the

interval [0.0 − 1.0] with step 0.1. Hence, the size of the compatibility matrix is 21 × 3 × 11 and is

computed following the below steps:

Step 1: For Stakeholder1, Trade-off score is calculated for all possible combinations of Privacy Degrees

1.8 ≤ φ ≤ 2.0 and Explainability Degrees 0.7 ≤ ω ≤ 1.0 and reported in the related cells of the

compatibility matrix;

Step 2: For Stakeholder2, Trade-off score is calculated for all possible combinations of Privacy Degrees

1.6 ≤ φ ≤ 2.0 and Explainability Degrees 0.7 ≤ ω ≤ 1.0 and reported in the related cells of the

compatibility matrix;

Step 3: For Stakeholder3, Trade-off score is calculated for all possible combinations of Privacy Degrees

φ and Explainability Degrees ω and reported in the related cells of the compatibility matrix;

Step 4: The remaining empty cells of the compatibility matrix are filled with 0, because the

corresponding combination of Privacy Degrees and Explainability Degrees do not satisfy the

requirements defined by stakeholders. The resulting tri-dimensional matrix is represented in Figure 28;

Step 5: The averaged trade-off score is calculated on the y dimension by aggregating the trade-off values

obtained for the 3 datasets using Equation 21 with their respective weights. For instance, the trade-off

score cells for φ = 1.0 and ω = 0.5 would have the value 0 for Stakeholder1 and Stakeholder2, while it

would be greater than 0 for Stakeholder3. Therefore, the trade-offs aggregation equation will have the

following weights: w1 = 0, w2 = 0, w3 = 1. On the other hand, the trade-off score cells for φ = 1.8 and

ω = 0.7 would have values greater than 0 for Stakeholder1, Stakeholder2, and Stakeholder3 since they

have all defined requirements having these values for privacy and Explainability Degrees. Therefore,

the trade-off aggregation equation will have the following weights: the w1 = 1/3, w2 = 1/3, w3 = 1/3.

The averaged compatibility matrix is represented in Figure 29;

Step 6: Finally, the combination of privacy and Explainability Degrees yielding the best-averaged trade-

off score is considered the optimal solution, which is at φ = 2.0 and ω = 1.0 in our example as it returns

the maximum trade-off score highlighted in Figure 29.

Figure 29 Averaged Tri-dimensional compatibility matrix for three stakeholders using DP mechanism example

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 58 of 64

6 Conclusion

This document is a part of the final deliverable from Work Package 4 “Privacy Aware Analytics for

Security and Services”, and it described the outcome of the WP4 activities carried out during the second

half of the project. In particular, this deliverable provided a detailed description of the analytics designed

and developed in the second part of the SIFIS-Home project, namely: xAnomaly, Face Recognition and

Person Recognition, Object Detection, Multilevel Anomaly Detection, Voice Recognition and

Verification, and Anomaly Detection in Audio Signal Analysis. The Netspot Network Anomaly

Detection and the Privacy Aware Speech Recognition Analytics have been significantly modified with

respect to the version presented in D4.2, and hence an updated description has been provided in this

document.

Moreover, this deliverable describes how all the SIFIS-Home analytics have been integrated within the

Data Analytics Toolbox, which is a component of the SIFIS-Home framework embedded in the

Application Toolboxes module, as shown in Figure 1. Consequently, the other components of the SIFIS-

Home framework can benefit of the results of the SIFIS-Home analytics for carrying out the smart home

protection tasks. For instance, the System Protection Manager can exploit the results produced by the

Network Intrusion Detection analytics to decide that a device of the smart home must be removed from

the SIFIS-Home devices because it has been corrupted.

Finally, since some analytics could be executed on the Cloud, and the data collected in smart homes

could bring personal and privacy sensitive information, their exposure to a third party might tamper the

reputation of the residents in the smart home. Hence, smart home data must be anonymized before being

sent to the Cloud to be processed. We proposed a methodology to decide the anonymization level of

such data in order to obtain, at the same time, a good privacy protection as well as a good accuracy of

the analytics’ results.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 59 of 64

7 References

[Dwo08] C. Dwork. Differential privacy: A survey of results. In International conference on theory and

applications of models of computation, pages 1–19. Springer Berlin Heidelberg, 2008.

[HRB08] Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008, October). Labeled faces in

the wild: A database forstudying face recognition in unconstrained environments. In Workshop on faces

in 'Real-Life' Images: detection, alignment, and recognition.

[RTV08] Rothe, R., Timofte, R., & Van Gool, L. (2015). Dex: Deep expectation of apparent age from

a single image. In Proceedings of the IEEE international conference on computer vision workshops (pp.

10-15).

[EEH14] Eidinger, E., Enbar, R., & Hassner, T. (2014). Age and gender estimation of unfiltered faces.

IEEE Transactions on information forensics and security, 9(12), 2170-2179.

[HCC14] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., ... & Ng, A. Y. (2014).

Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567.

[ABD19] Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., ... & Weber, G.

(2019). Common voice: A massively-multilingual speech corpus. arXiv preprint arXiv:1912.06670.

[MHH21] Montani, I., Honnibal, M., Honnibal, M., Landeghem, S. V., Boyd, A., & Peters, H. (2021).

spaCy: Industrial-strength natural language processing in Python.

[Mozilla] Mozilla. Project deepspeech. https://github.com/mozilla/DeepSpeech,2017.

[OWLAPI] The OWL API, http://owlapi.sourceforge.net/

[HERMIT] HermiT OWL Reasoner, http://www.hermit-reasoner.com/

[JGRAPHT] JGraphT - a Java library of graph theory data structures and algorithms, https://jgrapht.org/

[FOAF] FOAF Vocabulary Specification, http://xmlns.com/foaf/spec/

[AC15] Jinwon An and Sungzoon Cho. “Variational autoencoder based anomaly detection using

reconstruction probability”. In: Special lecture on IE 2.1 (2015), pp. 1–18. url: http://dm.snu.ac.kr/

static/docs/TR/SNUDM-TR-2015-03.pdf.

[Xu+18] Haowen Xu et al. “Unsupervised Anomaly Detection via Variational Auto-Encoder for

Seasonal KPIs in Web Applications”. In: Proceedings of the 2018 World Wide Web Conference on

World Wide Web - WWW ’18. ACM Press, 2018. doi: 10.1145/3178876.3185996. url:

https://doi.org/10.1145%2F3178876.3185996.

[Pan+21] Guansong Pang et al. “Deep Learning for Anomaly Detection: A Review”. In: ACM

Computing Surveys 54.2 (Mar. 2021), pp. 1– 38. doi: 10.1145/3439950. url: https://doi.org/10.1145%

2F3439950.

https://github.com/mozilla/DeepSpeech,2017
http://owlapi.sourceforge.net/
http://www.hermit-reasoner.com/
https://jgrapht.org/
http://xmlns.com/foaf/spec/

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 60 of 64

[Ruf+21] Lukas Ruff et al. “A Unifying Review of Deep and Shallow Anomaly

Detection”. In: Proceedings of the IEEE 109.5 (2021), pp. 756–795. doi: 10 . 1109 / JPROC . 2021 .

3052449. url: https : / /ieeexplore . ieee . org / stamp / stamp . jsp ? tp = &arnumber =9347460.

[HRB08] Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008, October). Labeled faces in

the wild: A database forstudying face recognition in unconstrained environments. In Workshop on faces

in 'Real-Life' Images: detection, alignment, and recognition.

[SER20] Serengil, S. I., & Ozpinar, A. (2020, October). Lightface: A hybrid deep face recognition

framework. In 2020 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-5).

IEEE.

[Facebook] Facebook. Project deepface. https://github.com/serengil/deepface.

[AMS22] Abbasi, W., Mori, P., Saracino, A., & Frascolla, V. (2022, June). Privacy vs accuracy trade-

off in privacy aware face recognition in smart systems. In 2022 IEEE Symposium on Computers and

Communications (ISCC) (pp. 1-8). IEEE.

[MAS22] Müller, A., Abbasi, W., & Saracino, A. (2022, June). Usage Control using Controlled Privacy

Aware Face Recognition. In 2022 IEEE Symposium on Computers and Communications (ISCC) (pp.

1-3). IEEE.

[PUL19] Pulfer, E. M. (2019). Different approaches to blurring digital images and their effect on facial

detection.

[DJS09] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition

(pp. 248-255). I.

[LMBH14] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L.

(2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European

Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer

International Publishing.

[RF18] Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767.

[ImageNette] ImageNette Dataset, https://github.com/fastai/imagenette.

[RKX22] Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2022). Robust

speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356.

[MHH21] Montani, I., Honnibal, M., Honnibal, M., Landeghem, S. V., Boyd, A., & Peters, H. (2021).

spaCy: Industrial-strength natural language processing in Python.

[SpaCy] SpaCy, https://spacy.io/.

[gTTS] gTTS, https://github.com/pndurette/gTTS.

https://github.com/serengil/deepface
https://github.com/fastai/imagenette
https://spacy.io/
https://github.com/pndurette/gTTS

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 61 of 64

[Whisper] Whisper, https://github.com/openai/whisper.

[DTD20] Desplanques, B., Thienpondt, J., & Demuynck, K. (2020). Ecapa-tdnn: Emphasized channel

attention, propagation and aggregation in tdnn based speaker verification. arXiv preprint

arXiv:2005.07143.

[RPP21] Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., ... & Bengio,

Y. (2021). SpeechBrain: A general-purpose speech toolkit. arXiv preprint arXiv:2106.04624.

[ECAPA-TDNN] ECAPA-TDNN, https://github.com/speechbrain/speechbrain.

[IBM-MAX] IBM-MAX, https://github.com/IBM/MAX-Audio-Classifier.

[Xu19] Z. Xu, “An empirical study of patients’ privacy concerns for health informatics as a service,”

Technological Forecasting and Social Change, vol. 143, pp. 297–306, 2019.

[Stro19] M. Strobel, “Aspects of transparency in machine learning,” in Proceedings of the 18th

International Conference on Au- tonomous Agents and MultiAgent Systems, 2019, pp. 2449–2451.

[SSM21] M. Sheikhalishahi, A. Saracino, F. Martinelli, and A. L. Marra, “Privacy preserving data

sharing and analysis for edge-based architectures,” Int. Journal of Information Security, Mar. 2021.

[AC19] M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine learning: Threats and solutions,”

IEEE Security & Privacy, vol. 17, no. 2, pp. 49–58, 2019.

[Hag19] A. Hleg, “Ethics guidelines for trustworthy ai,” B-1049 Brussels, 2019.

[Swee02] L. Sweeney, “k-anonymity: A model for protecting privacy,” International Journal of

Uncertainty, Fuzziness and Knowledge- Based Systems, vol. 10, no. 05, pp. 557–570, 2002.

[MKG07] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-diversity: Privacy

beyond k-anonymity,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1,

pp. 3–es, 2007.

[LT07] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-anonymity and l-

diversity,” in 2007 IEEE 23rd Int. Conference on Data Engineering. IEEE, 2007, pp. 106–115.

[RTG00] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for image

retrieval,” International journal of computer vision, vol. 40, no. 2, pp. 99–121, 2000.

[PVG20] W. H. L. Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli, “Autoencoders,” in Machine

learning. Elsevier, 2020, pp. 193– 208.

[ACG16] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang,

“Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security, 2016, pp. 308–318.

[DKM06] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, ourselves:

Privacy via distributed noise generation,” in Annual int. conference on the theory and applications of

cryptographic techniques. Springer, 2006, pp. 486–503.

https://github.com/openai/whisper
https://github.com/speechbrain/speechbrain
https://github.com/IBM/MAX-Audio-Classifier

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 62 of 64

[RSL08] S. Raskhodnikova, A. Smith, H. K. Lee, K. Nissim, and S. P. Kasiviswanathan, “What can we

learn privately,” in Proceedings of the 54th Annual Symposium on Foundations of Computer Science,

2008, pp. 531–540.

[Smi09] A. Smith, “Differential privacy and the secrecy of the sample,” Blog: Oddly Shaped Pegs,

2009.

[Mcs09] F. D. McSherry, “Privacy integrated queries: an extensible plat- form for privacy-preserving

data analysis,” in Proceedings of the 2009 ACM SIGMOD International Conference on Management

of data, 2009, pp. 19–30.

[JE19] B. Jayaraman and D. Evans, “Evaluating differentially private machine learning in practice,” in

28th USENIX Security Symposium (USENIX Security 19), 2019, pp. 1895–1912.

[HAK20] O. Hajihassani, O. Ardakanian, and H. Khazaei, “Latent representation learning and

manipulation for privacy-preserving sen- sor data analytics,” in 2020 IEEE Second Workshop on

Machine Learning on Edge in Sensor Systems (SenSys-ML). IEEE, 2020, pp. 7–12.

[MCC19] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, “Mobile sensor data

anonymization,” in Proceedings of the international conference on internet of things design and

implementation, 2019, pp. 49–58.

[DJD18] M. D’Souza, M. Johnson, J. Dorn, C. Van Munster, M. Diederich, C. Kamm, S.

Steinheimer, K. Kravalis, J. Boisvert, I. Ormesher et al., “Autoencoder-a new method for keeping data

privacy when analyzing videos of patients with motor dysfunction (p4. 001),” 2018.

[LLL19] J. Liu, J. Liu, P. Li, and Z. Kuang, “Embedded autoencoders: A novel framework for face de-

identification,” in International Cognitive Cities Conference. Springer, 2019, pp. 154–163.

[GAS22] G. Giorgi, W. Abbasi, and A. Saracino, “Privacy-preserving analysis for remote video

anomaly detection in real life environments.” J. Wirel. Mob. Networks Ubiquitous Comput. Dependable

Appl., vol. 13, no. 1, pp. 112–136, 2022.

[STK17] D. Smilkov, N. Thorat, B. Kim, F. Vi´egas, and M. Wattenberg, “Smoothgrad: removing noise

by adding noise,” arXiv preprint arXiv:1706.03825, 2017.

[SSS17] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Member- ship inference attacks against

machine learning models,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–

18.

[ACT21] A. I. Act, “Proposal for a regulation of the european parliament and the council laying down

harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union

legislative acts,” EUR-Lex-52021PC0206, 2021.

[CWS20] J. Chen, W. H. Wang, and X. Shi, “Differential privacy protec- tion against membership

inference attack on machine learning for genomic data,” in BIOCOMPUTING 2021: Proceedings of

the Pacific Symposium. World Scientific, 2020, pp. 26–37.

[PSM22] P. Stock, I. Shilov, I. Mironov, and A. Sablayrolles, “Defending against reconstruction attacks

with r ’enyi differential privacy,” arXiv preprint arXiv:2202.07623, 2022.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 63 of 64

[NSH19] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive pri- vacy analysis of deep learning:

Passive and active white-box inference attacks against centralized and federated learning,” in 2019 IEEE

symposium on security and privacy (SP). IEEE, 2019, pp. 739–753.

[KL51] S. Kullback and R. Leibler, “On information and sufficiency,”Annals of mathematical statistics,

vol. 22, no. 1, pp. 79–86, 1951.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3

Version: 1.1 Page 64 of 64

Glossary

Acronym Definition

ACL Age Classification Layer

CPN Colored Petri Net

DFT Discrete Fourier Transform

DHT Distributed Hash Table

EVT Extreme Value Theory

FEL Face Extraction Layer

FR Functional Requirements

IDFT Inverse Discrete Fourier Transform

IQR InterQuartile Range

JSON Javascript Object Notation

MUD Manufacturer Usage Description

NER Named Entity Extraction

NFR Non-functional requirement

NSSD Not So Smart Device

OS Operative System

OWL Web Ontology Language

P2P Peer to Peer

PAP Policy Administration Point

PSR Privacy-Aware Speech Recognition

PTP Policy Translation Point

RNN Recurrent Neural Networks

SCPN Semantic Colored Petri Net

SD Smart Device

SIFIS-Home Secure Interoperable Full Stack Internet of Things for Smart Home

STT Speech To Text

UC Use case

US User story

XACML eXtensible Access Control Markup Language

