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Executive Summary 

Deliverable D4.3 is the final outcome of Work Package 4 "Privacy-Aware analytics for Security and 

Services", and it provides the description of the analytics that have been designed and developed in the 

second half of the SIFIS-Home project period, i.e., after M18, as well as the updated versions of a couple 

of analytics that were designed before M18 but they have been significantly updated in the second half 

of the project period. 

Thanks to the analytics designed in the second half of the project, at the end of Work Package 4 we have 

covered the analytics that have been described in deliverable D4.1. For each of these analytics, this 

document gives a detailed description of the aim, of the requirements they address (among the one 

defined in deliverable D1.2 "Final Architecture Requirements Report"), of the input data they need and 

the results they return, of the analytic training and testing, along with some consideration about the 

privacy of the input dataset and of the results. The analytics are grouped under four activity areas, 

following the WP4 task's structure: i) anomalies and misbehavior detection; ii) network intrusion 

detection; iii) policy enforcement; and iv) privacy aware speech recognition. All the analytics designed 

and developed in the project period have been integrated in the SIFIS-Home framework, and this 

document describes how this integration has been implemented. In this way, all the other components 

of the SIFIS-Home framework can invoke such analytics and can benefit of their results. 

When analytics are executed outside the smart home cyber-perimeter, for instance exploiting Cloud 

services, data privacy problems could arise, and hence the data are anonymized before being sent to the 

Cloud based analytics. In deliverable 4.2 we described a set of techniques for preserving privacy of 

sensitive data. However, applying such techniques to the data could reduce the data utility in such a way 

that the accuracy of the results provided by the analytics is significantly affected. Hence, in this 

deliverable we also defined a methodology to fine tune the application of privacy preserving techniques 

in order to preserve data privacy as much as possible but, at the same time, keep the result accuracy 

level over a given threshold. 
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1 Introduction  

Deliverable D4.3 is the final output of Work Package 4, “Privacy Aware Analytics for Security and 

Services” due at the end of the work package activities (M33) and it consists of two parts. The first part 

of deliverable D4.3 consists of this document, which describes the analytics that have been designed 

and developed following the requirements we defined in deliverable D1.2 "Final Architecture 

Requirements Report", in order to be applicable to the Smart Home environment taken into account in 

the SIFIS-Home project. In particular, this deliverable focuses on the analytics that have been designed 

and developed after M18, but also reports an updated description of a couple of analytics that have been 

designed and developed before M18, but that undergone relevant modifications in the last period of the 

project. Instead, the analytics that have been designed and developed before M18, and that did not 

undergo relevant modifications in the last period of the project, are described in D4.2 and, for the sake 

of simplicity, we didn’t report them in this deliverable.  

The following is the complete list of analytics produced by WP4 of the SIFIS-Home project, grouped 

according to the activity areas defined by WP4 task's structure. For each analytics we specify the 

deliverable where it has been described: 

 

Anomaly and Misbehaviour Detection and Prevention Analytics: 

• Device Fault Detection – D4.2 

• Device Activity Monitoring in Centralized Cloud – D4.2 

• xAnomaly – D4.3 

• Face Recognition and Person Recognition – D4.3 

• Parental Control – D4.2 

• Object Detection – D4.3 

• Multilevel Anomaly Detection – D4.3 

 

Network Intrusion Detection Analytics: 

• Netspot Network Anomaly Detection – D4.3 

• Anomaly Detection for IoT Devices in a Consumer Home Network – D4.2 

 

Policy Enforcement 

• Policy Enforcement – D4.2 

 

Privacy Aware Speech Recognition and Smart Services Analytics 

• Privacy Aware Speech Recognition – D4.3  

• Voice Recognition and Verification – D4.3 

• Anomaly Detection in Audio Signal Analysis – D4.3 

 

In deliverable D4.1 we provided a list and a high-level description of the analytics that will be designed 

and developed within WP4, and the previous list covers them.  

Besides designing and developing a number of new analytics, in the second period of the project we 

also integrated all the analytics within the Data Analysis Toolbox, which is a component of the SIFIS-

Home framework (see the next Section). This integration allows the other components of the SIFIS-

Home framework, such as the System Protection Manager, to invoke the execution of the 

aforementioned analytics, and to get their results through the DHT in order to react to intrusions by 
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taking proper countermeasures. 

 

Finally, this document studies the privacy issues concerning data collected in the smart home 

environment when they are sent outside the smart home cyber-perimeter to be elaborated by external 

analytics. In deliverable D4.2 we provided a number of privacy preserving techniques that can be 

adopted to preserve the privacy of data collected in the smart home. However, applying privacy 

preserving techniques to such data could affect the accuracy of the results of the analytics where these 

data are exploited. Moreover, another factor that should also be taken into account according to the last 

directives, such as the EU proposal for the Artificial Intelligence Act1, is the decision explainability. As 

a matter of fact, understanding the decision-making criteria applied by artificial intelligence based 

analytics is very important for both technical and ethical reasons. For this reason, in Section 5 of this 

document we studied a methodology that take into account privacy requirements concerning the data 

exploited in the analytics, but also the desired accuracy of the result in order to define the optimal trade-

off between data utility, privacy, and explainability. We applied this methodology to face analysis. In 

particular, we exploited two common techniques for preserving data privacy, Differential Privacy and 

Autoencoders (already introduced in D4.2) and one technique for ensuring model explainability 

(Saliency Mas enhanced with Smoothgrad), and we performed a set of experiments to demonstrate and 

validate the proposed methodology.  
 

The second part of deliverable D6.3 consists of the source code of the previously mentioned analytics, 

which is available in the project repository at the following link: https://github.com/sifis-home/. 

 

 

2 Role of Analytics in the SIFIS-Home Framework 

To ensure security and privacy in the SIFIS-Home framework, machine learning, deep learning statistics 

and rule-based techniques are adopted to analyze the behaviour of users and devices in the smart home, 

to detect intrusions at cyber-physical level (e.g., face-sound recognition), at network level (Network 

Intrusion Detection Analytics), and at system level (Multi-Level Intrusion Detection). Such analysis 

mechanisms exploit features extracted through continuous monitoring of the full smart-home stack, e.g., 

of device system calls of the smart home devices, network events, sensor data, DHT operations, 

collected sounds, pictures and videos. The results of such analysis are used by the SIFIS-Home 

framework to detect dangerous or not desirable situations in the smart home, in order to timely react 

and take proper countermeasures to prevent, avoid or mitigate the impact of the malfunctioning/attack. 

The SIFIS-Home architecture includes a specific component, namely Data Analytics Toolbox, which 

hosts all the software component implementing the aforementioned analytics. This component provides 

the tools to analyze textual, tabular, and multimedia data in order to perform predictions, analyze voice 

and gesture commands, detect intrusions and misbehaviors, as well as for providing advanced smart 

services to the smart home users. The Data Analytics Toolbox is part of the Application Toolboxes 

module, shown in Figure 1. Please refer to Deliverable D1.3 for a detailed description of the Application 

Toolboxes module and of the rest of the SIFIS-Home framework. 
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Figure 1: Application Toolboxes module 

 

As shown in Figure 1, the Application Toolboxes module also includes the Anonymization Toolbox 

engine, which contains software tools that are used to preserve privacy of data during analysis. 

Depending on the data type and the desired level of privacy, the most appropriate anonymization tool 

can be chosen from the toolbox, in order to generalize or suppress data information, as well as for 

supporting differential privacy for privacy preserving data analysis. These anonymization techniques 

have been described already in D4.2. In this deliverable we focused on two of these techniques, 

Differential Privacy and Autoencoders, and we studied a methodology to guide the choice of the privacy 

degree to use for the data exploited for a given analytics in order to guarantee a good privacy level and, 

at the same time, a good accuracy of the analytics results. This methodology also take into account the 

explainability aspect of analytics, since understanding why a decision has been taken by an artificial 

intelligence based analytics is very important for both technical and ethical reasons. As a matter of fact, 

since the analytics are based on Artificial Intelligence, they could inadvertently inherit biases from the 

data they are trained on, and hence they could produce discriminatory (and even wrong) results. 

Introducing explainability, it is possible to identify such discriminatory patterns and correct them, thus 

ensuring that the system treats all individuals fairly and without discrimination. 

 

 

3 Analytics Design 

This section gives a detailed description of the analytics that have been designed and developed in Work 

Package 4 after M18. We recall that these analytics are grouped into four areas, consistently with the 

tasks of Work Package 4: i) Anomaly and Misbehavior Detection, ii) Network Intrusion Detection, iii) 

Policy Enforcement, and iv) Privacy Aware Speech Recognition. The description is structured in the 

same way for all the analytics. First, we describe the main aim of the analytics in the context of the 

SIFIS-Home scenario and, with reference to deliverable D1.2 "Final Architecture Requirements 

Report", we list the requirements that the analytics contributes to satisfy, as well as the requirements 

that the analytics introduces. Then, we describe the data that are given as input to the analytics, how 

such data are collected from the sensors in the SIFIS-Home framework, how the analytic is trained and 

tested with such data and the results provided, as well as some privacy consideration on the input data 

and results. Moreover, we describe the hardware requirements of the analytics, in order to understand 

what classes of devices it can be executed. Finally, we present some implementation details of the 

analytics, along with some preliminary results that have been obtained by executing the analytics on the 

dataset previously described. 

 

3.1 Anomaly and Misbehavior Detection 

The analytics of the Anomaly and Misbehavior Detection area have been defined to preserve data 

correctness and integrity, in addition to preventing anomalous actions and behaviors in smart 
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environments. Data collected from connected devices and network data are processed to provide 

security as a service, by ensuring multi-level anomaly and misbehavior detection and prevention. 

 

3.1.1 xAnomaly 

3.1.1.1 Aim of the Analytics 

Our goal is to detect intrusion attempts by creating an anomaly detection system for IoT data. Anomaly 

detection is the process of identifying unusual patterns in data that deviate from normal behavior. 

Supervised anomaly detection is a type of anomaly detection that learns from labelled data and can be 

used to identify previously seen anomalies. On the other hand, unsupervised anomaly detection learns 

from unlabelled data and can be used to identify previously unseen anomalies. As new intrusion attempts 

are likely to differ from previous ones, an anomaly detection system for IoT data needs to be able to 

handle previously unseen anomalies. Therefore, we have chosen to work with unsupervised models. We 

have chosen to base our system on autoencoders (AEs), a standard choice in the industry (Pang et al. 

2021, Ruff et al. 2021).  

 

3.1.1.2 Requirements related to the analytics 

The xAnomaly analytics is relevant for satisfying the following requirements defined in [D1.2]: 

• Functional Requirements:  

• F-15: The SIFIS-Home system shall provide means of identifying anomalous situations 

and behaviours inside the smart home 

• Non-Functional Requirements:  

• PE-10: An abnormal (suspicious) behavior caused by a malware shall be identified and 

notified within 60 seconds 

• Security Requirements: 

• SE-17: Anonomalous device behaviours should be identified and signalled in less than 

60 seconds. 

 

3.1.1.3 Input Data 

The input data, X, is equivalent to the output data, X. In our proof-of-concept (PoC), the input data is 

time series windows of length t, xi =x0 ... xt−1, that we create by subdividing the original series into 

one-step windows. 

 

3.1.1.4 Analytic Design 

An autoencoder is a neural network model where the input data is encoded to a bottleneck layer and 

decoded to reconstruct the input data. You can picture encoding as finding a compression function and 

decoding as finding a decompression function. The compression function is enforced by the bottleneck 

layer being small, which forces the data to be represented in a smaller space. 

  

Encoder : z = ϕe (x; Θe ) 

Decoder : x̂ = ϕd (z; Θd ) 

  

The encoder network, ϕe (), with parameters Θe , outputs the bottleneck layer nodes, z. The bottleneck 

layer, z, is used as input in the decoder network, ϕd (), with parameters Θd , to create the reconstruction, 

x̂, of the original series. Training proceeds in a normal fashion by minimizing the loss, which is often 

referred to as the reconstruction error in the autoencoder context. In our PoC, the encoder and decoder 

networks are fully-connected layers. We chose this as a starting point because it allows us to take into 

account time dependencies while circumventing the vanishing gradient problem and, at the same time, 
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it does not add complexity to the model (as noted in Xu, 2018). 

  

Anomaly scores are approximated by using the empirical distribution of the reconstruction error. In our 

PoC, we train using the mean absolute error to limit the influence of anomalies in our training data. We 

calculate an anomaly threshold by letting the user set how many anomalies they want to be flagged per 

year, which implicitly sets specific type 1 and type 2 error rates. We calculate the corresponding 

anomaly threshold by estimating it from the empirical distribution function of the reconstruction error 

on the input data. 

  

It is straightforward to construct anomaly scores for autoencoders, whereas the literature has not yielded 

a conclusive answer on how to construct them for variational autoencoders (Xu et al. 2018, An and Cho 

2015). Therefore, we have refrained from using variational autoencoders so far. The benefit of 

variational autoencoders in our context would be to allow different types of anomalies to cluster in the 

bottleneck space, which would not be a beneficial feature until a user-feedback mechanism exists. 

 

3.1.1.5 Training and Testing 

 

Available Dataset 

We have used a non-public dataset consisting of approximately half a year worth of time series data of 

infrared light readings sampled at irregular intervals (it sends more data if it previously noted a change).  

 

Training strategy 

We have trained the model on the above-mentioned data. 

 

3.1.1.6 Output data 

The analytics outputs a zero if an anomalous event is detected, otherwise nothing. This is to minimize 

data transfer. 

 

3.1.1.7 Hardware Requirements 

The training and verification of xAnomaly has been performed on a standard Sensative Strips Presence 

sensor connected to the SIFIS Home network but could have used any device or measurement that 

delivers time series measurements.  

 

3.1.1.8 Privacy Considerations 

We have based our autoencoder on a single time series to allow us to deploy the models in a privacy-

preserving manner at a fog node. 

 

3.1.1.9 Execution of the Analytics by the Data Analysis Toolbox 

Since the Analytics interact with SIFIS Home Cloud Interface (Yggio), the integration with the Data 

Analysis Toolbox is done through Yggio. A service which forwards a selected set of messages from 

Yggio to the DHT and vice versa has been developed to this aim. 

 

3.1.1.10 Implementation Details 

 

Our PoC is an autoencoder model that takes infrared light readings from a sensor under my office desk 

as the input time series (e.g. it notices that I am in front of my computer writing this). The choice is 
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motivated by the ease of testing deployment, both software engineering- and model-related, from an 

easily accessible sensor. 

 
 

Figure 2: Yggio SIFIS Home Cloud Interface 

 

The figure above displays the architectural overview. SIFIS Home Cloud Interface (Yggio) handles 

most of the functionality. The input time series is streamed in real-time via an MQTT channel to a 

Python-based Docker container. The container uses the Paho MQTT client library to receive input data 

points and the Tensorflow Keras library to query a trained VA-model. If an anomaly is detected, an 

MQTT message is sent back to Yggio and stored in an output time series. Yggio is then configured to 

send a SMS to my mobile phone. 

 

3.1.1.11 Preliminary Results 

We did not specify the exact model, as there are many possible specifications and currently, we do 

not have a cost-effective way of evaluating anomalies. The challenge is further complicated by the 

fact that IoT data is difficult for humans to interpret, meaning that it is hard to create labelled data. 

Furthermore, for effective labelling, we need to be careful in explaining why certain data points 

constitute anomalies and why others do not. For example, a temperature reading of -10 at 12:00 may 

be considered an anomaly, but at 5:00 it would not be. There are many papers that try to prove that 

their model specification is superior by showing that it works well in a specific case, but we want a 

more general type of anomaly detection system. Therefore, we aim to find commonalities among 

model types that work well. To lower the cost of evaluating anomalies, we plan to have users 

evaluate the model output. As interpretability is crucial for success, we have named our project 

"Explainable Anomaly" (xAnomaly). User input will allow us to redefine our model specifications. 

 

 

3.1.2 Face Recognition – Person Recognition 

3.1.2.1 Aim of the Analytics 

Accurate person recognition is essential for various purposes, including identifying home residents, 

guests, and potential intruders. It enables the provision of personalized smart services based on 

individual identities. Typically, face recognition models are trained using images of the home's resident 

users. When a person enters the home or a specific room, their face image is detected and compared 

against the trained model, allowing for classification based on extracted facial features. This process 

ensures reliable and efficient person recognition in a home environment. 

3.1.2.2 Requirements related to the analytics 

The Face Recognition analytic is relevant for satisfying the following requirements defined in [D1.2]: 

• Functional Requirements:  

• F-1: this analytic satisfies the functional requirement F-1 by identifying the resident users 

and administrators inside the smart home through biometrics.  
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• F-3: this analytic satisfies the functional requirement F-3 by matching read biometrics 

against a database of stored ones. 

• Non-Functional Requirements:  

• PE-2: The user recognition shall happen in less than 5s. 

• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this 

requirement depends on the device computational power and on the time required for 

data collection.  

• US-26: The presence of a GPU is needed to perform DL-based analysis. 

• DE-06: the identification through biometrics should be performed correctly in more than 

95% of cases.    

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single 

point of failure. 

• Security Requirements: 

• SE-21: Gaussian Blurring parameters are configurable for data analysis and can be 

changed. 

• SE-22: this analytic is able to work with anonymized data, but the accuracy of the results 

might be decreased. 

 

3.1.2.3 Input Data 

The face recognition algorithm utilizes video frames captured by surveillance cameras within a 

controlled environment. This includes both the camera of the controlled device itself and other 

surveillance cameras deployed in the surroundings. In addition, recorded videos and captured images 

can also be used as input data. The algorithm requires a database directory that contains the identities 

of authorized users. By processing this input data, the face recognition system can accurately identify 

and verify individuals within the controlled environment. 

 

3.1.2.4 Analytic Design 

The used face recognition model is DeepFace [Facebook, SER20]. It is an open-source model which 

uses a deep learning mechanism for face recognition. The core of the architecture is a Convolutional 

Neural Network (CNN) model that takes image data as input and produces the relative representation 

as output and verifies it with the representations of authorized identities. The model has been trained on 

a large dataset for face recognition based on a distance metric between face representations. This model 

has been validated with a set of experiments on a well-known dataset, the Labelled Faces in the Wild 

(LFW) dataset. Figure 3 shows the entire workflow in a sample scenario, it starts with image capture 

and anonymization using Gaussian blurring on the user side. The resulting anonymized images are 

forwarded to the server to be processed for face recognition starting with a face detector OpenCV to 

detect all faces within an image. Detected faces are aligned and then converted to vectors. Finally, the 

faces are verified by comparing their representations with the representations of face images stored in 

the database. We use VGG-Face deep-learning model for face recognition. The pipeline of the analytic 

is composed of four different components as shown in Figure 3. 
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Figure 3: Privacy-Preserving Face Recognition 

 

The SIFIS-Home face recognition analytic is composed of a pipeline of the following four components:  

Face Detection: using the Haar Cascade classifier. Haar-like features are used to detect facial regions 

like eyes and nose, and they are determined using the integral image representation mechanism, and the 

AdaBoost classifier is used to select only relevant Haar-like features that are known to improve the 

binary face classification algorithm results. 

Face Alignment: face images might have several poses and expressions, which may affect the accuracy 

of the face detection and face verification models. Thus, to decouple these poses and expressions from 

the face identity and to reduce their effect on the face detection and classification algorithms, face 

alignment is used. For face alignment, we use a simple trigonometric method. This method detects eyes 

and eye coordinates as a first step and draws a triangle between eyes based on their centre locations. 

The angle of the lower eye needs to be computed, and this is done based on the horizontal line drawn 

between eye centres, computing the length of the three edges of the triangle between eyes using the 

Euclidean distance. Then, the angle is calculated with the cosine rule. Finally, the image is rotated based 

on this angle. 

Face Representation: converts face images into vector embeddings, so that vectors of similar images 

for the same person are closer in distance among them. Trained Convolutional Neural Networks (NN) 

for face recognition tasks do represent face images in the layer before the output layer. Therefore, these 

trained models on huge datasets can sufficiently represent new face images into high dimensional 

representations, and to extract and represent facial features of complex concepts. 

Face Verification: compares face representations produced by the layer before the output layer of the 

CNN used to perform face recognition. The output layer returns the classification of a face image 

compared to another one, whether they belong to the same person or not, based on semantic closeness. 

To measure semantic similarity, we use the cosine similarity metric, which finds the cosine of the angle 

between two representations. 
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3.1.2.5 Training and Testing 

 

Available Dataset 

The used dataset for testing is the Labeled Faces in the Wild (LFW) dataset, which is a database of face 

photographs designed for studying the problem of unconstrained face recognition [HRB08]. The data 

set contains more than 13,000 images of faces collected from the web. 1,680 of the pictured persons 

have two or more distinct photos in the dataset. 

 

Training strategy 

The DeepFace framework was trained on a large-scale dataset called the Social Face Classification 

(SFC) dataset. The SFC dataset consists of millions of labeled images of individuals sourced from the 

internet, including various social media platforms. Then, we tested the framework face recognition 

models on the anonymized Labeled Faces in the Wild (LFW) dataset with different privacy degrees. 

We reported the results in our paper [AMS22]. 

 

3.1.2.6 Output data 

The output of the face recognition analytic is the identity of a person's face, including the identity label, 

since the analytic has access to a database of known individuals, it provides the identity of the person 

in the detected face by matching it with the stored identities. Also, matching similarity is provided. 

 

3.1.2.7 Hardware Requirements 

The recommended Hardware Requirements for running this analytic are as follows: 

• GPU: for better cost and performance, TX 2070 or an RTX 2080 Ti is recommended, with 16-

bit models and memory >=11 GB.  A blower-style fan for cooling is also recommended. 

• RAM: 16 GB RAM or above is recommended, as appropriate in the presence of high-

performance GPUs. 

• CPU: CPU PCIe lanes and motherboard PCIe lanes must support the desired number of GPUs. 

A minimum of 2 threads per GPU must be supported, i.e., usually one core per GPU.  

 

3.1.2.8 Privacy Considerations 

• Input data 

In order to preserve the privacy of data, Gaussian blurring is used for image/frame 

anonymization [PUL19]. Gaussian blurring convolves an image with a Gaussian filter of 

different sizes for anonymization. The privacy degree is controlled using the radius of blur 

metric. Gaussian blurring uses a low-pass filter which performs the smoothing function of an 

image. 

• Results 

To further protect the data, individual identities can be hashed in the database, so that the 

returned identity would be protected. 

 

3.1.2.9 Execution of the Analytics by the Analytics Toolbox 

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze image/video 

data. The data are passed to be pre-processed for format adaption, then the privacy-preserving technique 

is applied to the dataset to be forwarded to the analytics engine, which performs data processing using 

machine learning and deep learning toolboxes. Afterwards, the analysis results are interpreted, 
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aggregated, and presented to the user. 

 

3.1.2.10 Implementation Details 

This analytic is implemented using the DeepFace, Keras, TensorFlow, PyTorch, and Numpy libraries. 

 

Face Detection: The framework utilizes the Haar cascade classifier, a pre-trained model available in 

OpenCV, to detect faces in images. 

Face Alignment: face alignment is performed after face detection to ensure that the detected faces are 

properly aligned. The facial landmarks, such as the positions of the eyes, nose, and mouth, are detected 

using the dlib library. These landmarks are then used to estimate the pose and alignment of the face.  

Face Representation: the VGG-Face model is used to extract high-level facial features from the aligned 

face images. These features capture the unique characteristics of each face and can be used for various 

face recognition tasks. The VGG-Face model has been trained to recognize a wide range of identities, 

making it suitable for face representation. 

Face Verification: To perform face verification, the analytic calculates the cosine similarity between 

the face representations extracted from the two input face images. A threshold value is then applied to 

the distance or similarity score to determine whether the faces are considered a match or not. 

 

3.1.2.11 Preliminary Results 

The Privacy-Aware-Face-Recognition experiments and results have been reported in the two published 

papers [AMS22, MAS22]. The results include face detection rates, face verification accuracy, and trade-

off score. The trade-off score takes into account the face detection accuracy, face verification accuracy, 

and the privacy gain resulting from the privacy mechanism (Gaussian Blurring at different levels). Face 

Detection Rate Results for the OpenCV detector are presented in Figure 4, which shows the results 

obtained by the Face Detection component on the LFW testing Set by also considering different degrees 

of privacy and comparing blurred images to original images or blurred imagesB2B). The figure shows 

that there is a negative relationship between the privacy degree and the face detection rate, since 

increasing the privacy degree results in a lower face detection rate. 

 

 
 

Figure 4: Face Detection Results 
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Face Verification Accuracy Results are reported in Figure 5, which shows the results obtained by the 

Face Verification component on the LFW testing Set by also considering different degrees of privacy 

and comparing blurred images to original images or blurred images and different similarity thresholds. 

The figure shows that the accuracy is greatly affected by the value of the distance threshold and by the 

used privacy degree. 

 

    
 

Figure 5: Face Verification Results 

 

The Trade-off Results are reported in Figure 6, which shows that the accuracy is greatly affected by 

the value of the distance threshold and by the used privacy degree. 
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Figure 6: Trade-Off Score Results 

 

 

3.1.3 Object Recognition/Detection  

3.1.3.1 Aim of the Analytics 

A crucial aspect of a smart home system is its ability to detect and recognize potentially dangerous 

objects that may not be easily identifiable by humans alone. This process involves object recognition, 

where suspicious objects are identified within captured images or videos and their locations within the 

frame are determined. These suspicious objects can range from intruders to fire incidents, elderly or 

vulnerable individuals in risky situations, or misplaced hazardous items like sharp tools. To achieve 

this, the system utilizes cameras to capture images or record videos, which are then transmitted for 

analysis. During the analysis phase, the system performs object recognition by identifying and 

classifying the objects present in the images, along with their precise locations. If any suspicious objects 

are detected, the user is promptly alerted, ensuring timely response and appropriate action. By 

integrating object recognition capabilities into the smart home system, it becomes capable of effectively 

identifying potential threats and alerting users to take necessary measures. This enhances the safety and 

security of the home environment by leveraging advanced image analysis techniques and automation. 

 

3.1.3.2 Requirements related to the analytics 

The Face Object Recognition analytic is relevant for satisfying the following requirements defined in 

[D1.2]: 

• Functional Requirements:  

• F-17: the SIFIS-Home system shall provide means of recognition of prohibited objects 

inside the smart home and signal resident users and administrators. 

• F-18: the SIFIS-Home system shall provide means of recognition of allowed objects 

inside the smart home in unusual positions, and signal resident users and administrators. 

• Non-Functional Requirements:  
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• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this 

requirement depends on the device computational power and on the time required for 

data collection.  

• US-26: The presence of a GPU is needed to perform DL-based analysis. 

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single 

point of failure. 

• Security Requirements: 

• SE-21: Differential Privacy parameters are configurable for data analysis and can be 

changed. 

• SE-22: this analytic is able to work with anonymized data, but the accuracy of the results 

might be decreased. 

3.1.3.3 Input Data 

The object recognition algorithm employed in the system leverages images or video frames obtained 

from cameras positioned throughout the controlled environment. This encompasses both the camera 

integrated within the controlled device and external surveillance cameras placed in the smart home 

environment. Moreover, recorded videos and individual images can also be utilized as input data for 

analysis. Through the processing of this input data, the object recognition system identifies and classifies 

objects based on the patterns and features learned by the underlying model during training. By 

comparing the detected objects to the known objects, the system can recognize and categorize the 

objects present in the captured frames. 

 

3.1.3.4 Analytic Design 

The process of object recognition begins with acquiring images or video streams using a smart device 

equipped with an embedded camera. The images or video streams undergo pre-processing operations 

such as resizing and perturbation. The pre-processed images or video streams are then fed into our 

YOLOv3 model [RF18]. YOLOv3 operates by dividing the input image into a grid and predicting 

bounding boxes and class probabilities for each grid cell. It uses a single convolutional neural network 

(CNN) to simultaneously perform object localization and classification of object class labels in a single 

pass. YOLOv3 is known for its speed and efficiency, making it suitable for real-time applications. The 

model has been trained on the COCO dataset. The pipeline of the analytic is composed of the 

components shown in Figure 7. It initially detects and localizes objects within the images or video 

frames and tracks them over time in the case of video streams. Finally, the detected objects are identified 

based on the COCO dataset objects that the YOLOv3 model was trained to recognize. 

 

 
 

Figure 7: Privacy-Preserving Object Recognition 

 

3.1.3.5 Training and Testing 



H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D4.3 

 

Version: 1.1 Page 19 of 64 
 

Available Dataset 

The ImageNet dataset is a widely used large-scale dataset for object recognition in computer vision 

research [DJS09]. It consists of millions of labeled images of thousands of object categories. The 

ImageNet dataset contains over 14 million images collected from various sources on the internet. 

There are approximately 1,000 high-level categories in the dataset, and each category contains a 

varying number of images. Examples of categories include animals, vehicles, household items, and 

natural scenes. Due to the large size and complexity of the dataset, researchers often use subsets or 

subsets of subsets for training and evaluation, depending on their specific needs and computational 

resources such as the ImageNette dataset [ImageNette]. 

 

Training strategy 

The YOLOv3 model was trained on the COCO (Common Objects in Context) dataset [LMBH14]. The 

COCO dataset is a widely used benchmark dataset for object detection, segmentation, and captioning 

tasks. It contains over 200,000 images from various contexts and 80 common object categories. It covers 

a wide range of objects, including people, animals, vehicles, and everyday items. 

 

3.1.3.6 Output data 

The output of the object recognition analytic is the class of the detected object, including the object 

label. The analytic also provides information about the locations or bounding boxes of the identified 

objects within the image or video.  

 

3.1.3.7 Hardware Requirements 

The recommended Hardware Requirements for running this analytic are as follows: 

• GPU: for better cost and performance, TX 2070 or an RTX 2080 Ti is recommended, with 16-

bit models and memory >=11 GB.  A blower-style fan for cooling is also recommended. 

• RAM: 16 GB RAM or above is recommended, as appropriate in the presence of high-

performance GPUs. 

• CPU: CPU PCIe lanes and motherboard PCIe lanes must support the desired number of GPUs. 

A minimum of 2 threads per GPU must be supported, i.e., usually one core per GPU. 

 

3.1.3.8 Privacy Considerations 

• Input data 

In order to preserve the privacy of data, Differential privacy mechanism is used [Dwo08]. 

Differential Privacy is a powerful privacy-preserving technique widely used to add noise to data, 

including images. We use it to add random Laplacian noise to the pixel values of images and 

ensure that privacy is protected while still allowing valuable insights to be extracted from the 

data. The amount of noise added is determined by the sensitivity and privacy budget parameters, 

where sensitivity measures the impact of input data changes on algorithm output, and the privacy 

budget controls the level of noise added to protect privacy. 

• Results 

The results are composed of object labels in the images or video frames. Therefore, no additional 

privacy mechanisms are required to be applied to the results. 

 

3.1.3.9 Execution of the Analytics by the Analytics Toolbox 

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze image/video 
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data. The data are passed to be pre-processed for format adaption, then the privacy-preserving technique 

is applied to the dataset to be forwarded to the analytics engine, which performs data processing using 

machine learning and deep learning toolboxes. Afterwards, the analysis results are interpreted, 

aggregated, and presented to the user. 

 

3.1.3.10 Implementation Details 

This analytic needs the OpenCV, Keras, TensorFlow, Darknet, and Numpy libraries to work. 

Object Detection: YOLOv3 employs anchor boxes of different sizes and aspect ratios to enhance the 

detection of objects at various scales. Also, the input image is divided into a grid of cells, and each cell 

is responsible for detecting objects that fall within its boundaries. 

Localization: YOLOv3 performs bounding box regression to accurately localize objects. 

Object Recognition: YOLOv3 predicts class probabilities for each detected bounding box. These 

probabilities indicate the likelihood of the object belonging to different predefined classes. The model 

assigns the class label with the highest probability to each detected object. 

 

3.1.3.11 Preliminary Results 

The Privacy-Aware-Object-Recognition analytic has been implemented to take images and video 

streams as inputs to analyze. YOLOv3 model has been trained using the COCO dataset to learn and 

recognize objects across various categories such as people, animals, vehicles, and everyday objects. The 

training process involves optimizing the model's parameters using the COCO dataset's labeled images 

and annotations. YOLOv3 is fast and accurate in terms of mean average precision (mAP) and 

intersection over union (IOU) values as well, it achieves an (AP) of around 28-33% at an (IoU) threshold 

of 0.5 and above. Therefore, on average, YOLOv3 correctly detects and localizes objects in the COCO 

dataset with an overlap of 50% or more between the predicted bounding box and the ground truth 

bounding box. Figure 8 shows the results obtained by the Object Detection, Localization, and 

Recognition components on a sample original image with the probability of the recognized object class 

using the YOLOv3 classifier. While Figure 9 and Figure 10 show the results obtained by applying 

different degrees of privacy using the epsilon and sensitivity parameters.   

 

 
 

Figure 8: Privacy-Preserving Object Recognition of original image 
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Figure 9: Privacy-Preserving Object Recognition of an anonymized image with low privacy 

 

 
 

Figure 10: Privacy-Preserving Object Recognition of an anonymized image with medium privacy 

 

3.1.4 Multilevel Anomaly Detection  

 

3.1.4.1 Aim of the Analytics 

The primary objective of the system is to identify and detect anomalies at multiple levels within an IoT 

infrastructure, including the kernel level, network level, application level, and DHT (Distributed Hash 

Table) level. By doing so, the system aims to enhance the security, reliability, and performance of IoT 

networks, ensuring their efficient and uninterrupted operation. By actively monitoring anomalies at 
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multiple levels, the system aims to strengthen the security of the networks. It detects and alerts for 

suspicious activities, unauthorized access attempts, and abnormal behaviors that may indicate potential 

security breaches or cyber-attacks. Timely detection enables the system to initiate appropriate security 

measures, such as isolating affected devices or blocking malicious traffic, thereby safeguarding the IoT 

ecosystem against threats. Overall, the multi-level anomaly detection analytics system strives to 

enhance the security, reliability, and performance of IoT networks. By actively identifying and detecting 

anomalies at the kernel, network, application, and DHT levels, the system ensures efficient and 

uninterrupted operation, safeguarding the integrity and functionality of the IoT infrastructure. 

 

3.1.4.2 Requirements related to the analytics 

The analytics is relevant for satisfying the following requirements defined in [D1.2]: 

• Functional Requirements:  

• F-19: The SIFIS-Home system shall detect, identify and disconnect infected devices. 

This analytics allows the identification of infected devices 

• Non-Functional Requirements:  

• PE-10: An abnormal (suspicious) behavior caused by a malware shall be identified and 

notified within 60 seconds. 

• US-20: The Multi-Level Anomaly Detection system (MLADS) must monitor network 

traffic provided by several input sources and several locations. 

• US-21: The workload of the devices should be available to the MLADS 

• US-22: The list of applications running on each device should be available to MLADS 

• US-23: Raw sensor data must be available to be analysed by MLADS 

• Security Requirements:  

• SE-17: Anomalous device behaviours should be identified and signalled in less than 60 seconds. 

• SE-26: The SIFIS-Home architecture shall be resilient to device compromising attacks. 

 

3.1.4.3 Input Data 

The input data for the analytic at each level of the multi-level anomaly detection system can be described 

as follows: 

• Kernel Level: the input data for the analytic typically includes system calls. It includes the total 

number of times in a defined interval of seconds, a specific syscall has been called. 

• Network Level: the input data consists of network traffic data captured from IoT devices, 

gateways, or network monitoring tools. This data includes packet-level information such as 

source and destination IP addresses, protocols used (e.g., TCP, UDP), port numbers, packet 

sizes, and timestamps. 

• DHT Level: the input data includes information related to the distributed storage and lookup 

mechanisms used in IoT networks. It includes the total number of times in a defined interval of 

seconds, a PUSH, PUT, or DELETE has been requested on a specific topic. 

• Application Level: At the application level, the input data includes logs, events, and metrics 

generated by IoT applications or services running on the devices or within the IoT network. 

 

3.1.4.4 Analytic Design 

Monitors are responsible for collecting and monitoring data at each level of the IoT infrastructure, 

including the kernel level, network level, application level, and DHT level. They gather relevant 

information such as system events, network traffic, application logs, and DHT-related data. Each 

monitor operates independently and continuously collects data from its respective level. 

System Protection Manager: serves as a centralized component that acts as an intermediary between the 
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monitors and the analytics. Its primary role is to receive the data collected by the monitors and manage 

the communication between the components. The System Protection Manager is responsible for 

forwarding the collected data from each monitor to the analytics for further analysis. 

Analytics: component performs the core anomaly detection and analysis tasks. It receives the data 

forwarded by the System Protection Manager and applies anomaly detection algorithms and techniques 

to identify abnormal patterns, behaviors, or events. The analytics component processes the data from 

different levels, detects anomalies, and generates alerts or notifications regarding potential security 

breaches or abnormal activities. 

 

Once the analytics component detects anomalies and generates alerts or notifications, the System 

Protection Manager collects these results from the analytics through the DHT. It analyzes the severity 

and impact of the detected anomalies and decides on appropriate actions to be taken. These actions may 

include isolating affected devices, blocking suspicious traffic, triggering incident response protocols, or 

notifying system administrators for further investigation and remediation. 

 

3.1.4.5 Training and Testing 

Data Collection: The training process begins with the collection of labeled training data. For each level, 

data is gathered over a defined interval of seconds, capturing the total number of specific events or 

activities. At the kernel level, the system calls and their frequencies are recorded. At the DHT level, the 

requests for PUSH, PUT, or DELETE operations on specific topics are logged. 

 

Feature Extraction: From the collected data, relevant features are extracted to represent the input for the 

machine learning algorithm. These features include the frequencies of specific system calls or DHT 

operations within the defined interval. 

 

Labeling: The training data is labeled to indicate whether each data instance represents normal or 

anomalous behavior. This labeling is done manually. 

 

Model Training: The machine learning algorithm is trained using the labeled training data and the 

extracted features. The algorithm learns to recognize patterns and relationships between the input 

features and the corresponding labels. 

 

Model Evaluation: The trained model is evaluated using evaluation metrics such as accuracy, precision, 

recall, or F1-score to assess its performance. Cross-validation techniques can be applied to validate the 

model's generalization capabilities. 

 

By utilizing a simple machine learning algorithm such as linear regression, the analytics can effectively 

recognize patterns and deviations, enhancing the anomaly detection capabilities within the IoT 

infrastructure. 

 

3.1.4.6 Output data 

The output of the analytic consists of the interested device or application, the type of analytic conducted, 

and a clear indication of whether an anomaly has been detected or not. This concise information assists 

in understanding the results of the analytic process and determining any necessary actions to address 

anomalies or ensure the normal functioning of the infrastructure.  

 

3.1.4.7 Hardware Requirements 

Devices running these analytics are required to have network connectivity and the capability of running 

minimal Linux distributions. Such devices can be based on either the x86 or ARM architecture.  
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3.1.4.8 Privacy Considerations 

Only statistical values are collected and analyzed on the edge, hence no relevant privacy issues are 

identified. 

 

3.1.4.9 Execution of the Analytics by the Data Analysis Toolbox 

This analytics run in Docker and its integration has been executed following the approach described in 

Section 4. The analytics continuously run while the device is operating, hence it does not need to be 

invoked by the Data Analytics Toolbox.  

 

3.1.4.10 Implementation Details 

Each level presents a layer that catch the required data from the DHT and send these to the specific 

server which presents the data to the classifier. The response is given back to the system protection 

manager. 

 

 

3.2 Network Intrusion Detection  

The Network Intrusion Detection analytics exploit network flows and sensor data to detect intrusions in 

the smart-home network. We defined two distinct Network Intrusion Detection analytics, one performed 

on the edge and the other one in the cloud.  

 

3.2.1 Netspot Network Anomaly Detection 

The netspot solution is used to detect network anomalies. In the SIFIS-Home project, a new service 

application was created to control netspot applications and to forward data and alarm messages to 

appropriate applications. 

3.2.1.1 Aim of the Analytics 

The aim of the analytics is to detect anomalous activities in the network. For example, an exceptionally 

high ratio of packets conveying a certain flag (state of connection indicator), a sudden increase in the 

overall traffic within a time window. 

 

3.2.1.2 Requirements related to the analytics 

The analytics is relevant for satisfying the following requirements defined in [D1.2]:  

• Functional Requirements:  

• F-20: This system's purpose is to alert users if suspicious network traffic is detected, 

such as traffic generated by malware. 

• Non-Functional Requirements:  

• PE-10: Suspicious network traffic is detected and notified within 60 seconds. 

• PE-11: Alerts are created within 5 seconds after suspicious traffic is detected. 

• Security Requirements:  

• SE-22: Anonymized data can be used in this analytics. 

• SE-39: This system identifies denial-of-service attacks based on the activity within the 

network. 

 

3.2.1.3 Input Data 

The input data consists of a network packet exchanged between the connected devices. The packets are 
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captured, and relevant information parsed from them (port numbers, protocol identifiers, timestamps 

and IP address counts. 

 

3.2.1.4 Analytic Design 

 

 

Figure 11: Netspot Docker Container 

 

Control service and netspot instances are run in a docker container. The host system can use an argument 

when running the docker image to allow the container to use host system network interfaces. Using host 

system network interfaces is a critical part of allowing the netspot services to monitor network traffic. 

Docker container has a control service that provides HTTP API for configuration, controlling, and 

reading results. 

 

3.2.1.5 Training and Testing 

SPOT algorithm needs the initial batch of observations to form thresholds for the monitored statistics. 

The thresholds are dynamic, and they adapt to a subtle change in the network by updating them based 

on chosen number of new observations. However, if the initial thresholds are triggered, the values over 

or under the threshold are not used to update the thresholds. 

 

For this test, SPOT was initialised by using 2000 observation from the normal traffic. After the 

thresholds were formed based on the observations, a denial-of-service attack was launched from the 
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Linux workstation. As a results, the statistics that monitor the overall traffic over a certain time window 

and the ratio of tcp packets with a set synchronize flag were triggered and alarms were raised. 

 

3.2.1.6 Output data 

Netspot outputs: raw statistics, thresholds (SPOT will compute one threshold for each monitored 

statistic) and the alarms (in case of triggered threshold). Netspot can also send these to an influx database 

 

3.2.1.7 Hardware Requirements 

Devices running these analytics are required to have network connectivity and the capability of running 

minimal Linux distributions. Such devices can be based on either the x86 or ARM architecture. Netspot 

and control services are lightweight and take less than 200 MiB of memory. 

 

3.2.1.8 Privacy Considerations 

Only statistical values are collected and analyzed on the edge. IP packet size and IP address, protocol 

and port counts are collected. 

 

3.2.1.9 Execution of the Analytics by the Analytics Toolbox 

Netspot anomaly detection solution is run in Docker and exposes the interface described in the following 

section. Hence, and its integration has been executed following the approach described in Section 4. To 

this aim, when the container is started, it is crucial to tell Docker to allow the container to use host 

system network interfaces with the parameter: --network=host 

Setting this parameter is critical for the analytics to be effective in the SIFIS-Home framework, because 

otherwise, the solution will only monitor the container's virtual interface without proper network traffic. 

 

3.2.1.10 Implementation Details 

The control service was written in Rust language, and the netspot service is an open-source project 

written in Go language. Netspot version 2.1.2 was used in the docker image. In addition, Dockerfile was 

added to the project, which automatically compiles both required binaries. The binaries are compiled in 

development containers, and compiled binaries are then copied to the slim Debian docker image. 

The control service provides the following endpoints: 

 

3.2.1.10.1 Status 

 

HTTP 

Method 

Endpoint Parameters Description 

GET https://<ADDRESS>:<PORT>/

v1/netspot/{id}/restart 

Netspot configuration ID Restart netspot 

configuration by ID 

GET https://<ADDRESS>:<PORT>/

v1/netspot/{id}/start 

Netspot configuration ID Start netspot configuration 

by ID 

GET https://<ADDRESS>:<PORT>/

v1/netspot/{id}/status 

Netspot configuration ID Status for the netspot 

configuration by ID 
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GET https://<ADDRESS>:<PORT>/

v1/netspot/{id}/stop 

Netspot configuration ID Stop netspot configuration 

by ID 

GET https://<ADDRESS>:<PORT>/

v1/netspots/ 

- Status of all netspot 

services 

GET https://<ADDRESS>:<PORT>/

v1/netspots/restart 

- Restart all netspot services 

GET https://<ADDRESS>:<PORT>/

v1/netspots/start 

- Start all netspot services 

GET https://<ADDRESS>:<PORT>/

v1/netspots/stop 

- Stop all netspot services 

 

3.2.1.10.2 Statistics 

HTTP 

Method 

Endpoint Parameters Description 

GET https://<ADDRESS>:<PORT>/

v1/netspots/alarms 

 

Optional time and 

number of last result 

parameters  

Returns recorded alarms 

from nestpot statistics. 

 

GET https://<ADDRESS>:<PORT>/

v1/netspots/data 

 

Optional time and 

number of last result 

parameters  

Returns recorded 

measurements from nestpot 

statistics. 

 
 

3.2.1.10.3 Configuration 

HTTP 

Method 

Endpoint Parameters Description 

POST https://<ADDRESS>:<PORT>

/v1/netspot 

Configuration in JSON 

format 

Create a new netspot 

configuration 

GET https://<ADDRESS>:<PORT>

/v1/netspot/{id} 

Netspot configuration ID Get netspot configuration 

by ID 

PUT https://<ADDRESS>:<PORT>

/v1/netspot/{id} 

Netspot configuration ID 

and configuration in 

JSON format 

Update an existing netspot 

configuration 

DELETE https://<ADDRESS>:<PORT>

/v1/netspot/{id} 

Netspot configuration ID Delete netspot 

configuration by ID 

 

3.2.1.10.4 Network 

HTTP 

Method 

Endpoint Parameters Description 
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GET https://<ADDRESS>:<PORT>

/v1/network/interfaces 

- Returns all available 

network interfaces on the 

host system in JSON format 

 

3.2.1.10.5 Webhooks 

HTTP 

Method 

Endpoint Parameters Description 

GET https://<ADDRESS>:<PORT>

/v1/netspot/ webhooks 

- List installed webhooks 

POST https://<ADDRESS>:<PORT>

/v1//netspots/webhook 

Webhook configuration 

in JSON format 

Create a new webhook 

GET https://<ADDRESS>:<PORT>

/v1/netspot/webhook/{id} 

Webhook configuration 

ID 

Get webhook configuration 

by ID 

PUT https://<ADDRESS>:<PORT>

/v1/netspot/webhook/{id} 

Webhook configuration 

ID and webhook 

configuration in JSON 

format 

Update webhook 

configuration 

DELETE https://<ADDRESS>:<PORT>

/v1/netspot/webhook/{id} 

Webhook configuration 

ID 

Delete webhook 

configuration by ID 

 

 

3.2.1.10.6 Testing 

HTTP 

Method 

Endpoint Parameters Description 

GET https://<ADDRESS>:<PORT>

/v1/netspots/test/alarm 

Test alarm message in 

JSON format 

This endpoint allows 

developers to send test 

alarm messages. 

3.2.1.11 Preliminary Results 

Preliminary tests indicate that changes in the monitored statistic ratios, e.g., high ratio of Address 

Resolution Protocol (ARP) packets due to Mirai and excessive traffic (DoS) in the network results in 

statistics that trigger alerts, according to what was monitored during the tests. The netspot control 

service API was tested successfully to configure and run netspot instances. 

 

 

3.3 Privacy Aware Speech Recognition  

3.3.1  Privacy Aware Speech Recognition and Voice Anonymization 

3.3.1.1 Aim of the Analytics 

The Privacy-Aware Speech Recognition (PSR) model is designed to accurately convert spoken 

language into written text while prioritizing privacy. This analytic utilizes computational linguistics to 

analyze audio signals and generate a verbatim and editable transcription of the spoken content. 

Importantly, any sensitive information within the audio is anonymized to protect privacy. Additionally, 

the PSR system allows for the generation of privacy-preserving versions of the original audio. By 

converting the anonymized text back into speech through text-to-speech translation, an audio output is 
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created that maintains privacy while still conveying the intended message. These privacy-preserving 

transcriptions and audio can then be securely shared with external services, as they do not disclose any 

sensitive information. 

 

3.3.1.2 Requirements related to the analytics 

The Privacy-Aware Speech Recognition analytics is relevant for satisfying the following requirements 

defined in [D1.2]: 

• Functional Requirements:  

• F-06: The SIFIS-Home system shall provide Automatic Speech Recognition (ASR) to 

provide resident users and administrators the facility to control their home appliances 

through their speech. 

• F-07: The analytic provides an Automatic Speech Recognition that can be used to control 

the home appliances in the smart home; 

•  

• Non-Functional Requirements:  

• PE-06: The analytic performs an audio transcription in less than 2 seconds. 

• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this 

requirement depends on the device computational power and on the time required for 

data collection.  

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single 

point of failure. 

• Security Requirements:   

• SE-50: The analytic applies an anonymization of the voice timbre in order to make the 

identity of the speaker not identifiable; 

• SE-52: The analytic provides the possibility to anonymize the sensitive information from 

the audio and textual audio translation. 

3.3.1.3 Input Data 

The Privacy-Aware Speech Recognition system requires an audio sample containing voice as its input 

data for translation. The analytic is designed to process WAV audio samples with specific requirements, 

including a sampling rate of 16000Hz, a single channel (mono) representation, and a 16-bit format. If 

the audio sample is in a different format, a preprocessing step may be necessary to adjust it to meet the 

input requirements of the analytic. 

In addition to the audio sample, the analytic also defines a list of textual entities to be anonymized from 

the audio. These textual entities are predefined and managed by the analytic, and you can refer to Table 

1 for a comprehensive list of these entities. 

 

Table 1: Textual Entities managed by the analytic 

Entity  Description 

PERSON People, including fictional 

NORP Nationalities or religious or political groups 

FAC Buildings, airports, highways, bridges, etc 

ORG Companies, agencies, institutions, etc 

GPE Countries, cities, states 

LOC 
Non-GPE locations, mountain ranges, bodies 

of water 

PRODUCT Objects, vehicles, foods, etc. (Not services.) 

EVENT 
Named hurricanes, battles, wars, sports events, 

etc 
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WORK OF ART Titles of books, songs, etc 

LAW Named documents made into laws 

LANGUAGE Any named language 

DATE Absolute or relative dates or periods 

TIME Times smaller than a day 

PERCENT Percentage, including “%” 

MONEY Monetary values, including unit 

QUANTITY Measurements, as of weight or distance 

ORDINAL "first", "second", etc 

CARDINAL Numerals that do not fall under another type 

 

 

3.3.1.4 Analytic Design 

The pipeline of the analytic is composed of three different components, as shown in Figure 12.   

 
 

Figure 12: Pipeline of the privacy aware speech recognition analytics 

 

Speech to Text: We employ the advanced Whisper automatic speech recognition (ASR) model 

[RKX22], developed and maintained by OpenAI, to convert spoken language into written text. Whisper 

stands out as a highly precise and efficient model that harnesses cutting-edge deep learning techniques, 

specifically the transformer architecture presented in Figure 13. This state-of-the-art approach has 

transformed numerous natural language processing (NLP) tasks, including speech recognition. By 

leveraging the transformer architecture, the Whisper model excels in handling the complexities of 

speech recognition tasks. It can capture contextual information, recognize patterns, and generate 

accurate transcriptions by effectively modeling the relationships between different elements of the audio 

sequence. 
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Figure 13: OpenAI Whisper Architecture: A Transformer sequence-to-sequence model [RKX22] 

 

Named Entity Recognition: is concerned with locating key phrases and nouns in texts as entities, and 

these entities fall under several categories, i.e., names, locations, and addresses. The sensitivity of these 

entities depends on the context where the data analysis is applied. For example, names of people and 

locations are highly sensitive when performing data analysis and processing. However, to protect the 

privacy of the user, these entities can be removed from the text. Thus, still providing data valid for 

analysis, but without violating privacy. We used SpaCy deep learning model to perform entity 

recognition on the text recognized from the previous step [MHH21]. The process for Named Entity 

Recognition is composed of the below steps: 

Sentence Segmentation: to split the text into sentences. 

Tokenization: to split each sentence resulting from the previous step into tokens which are usually 

numbers, words, and punctuation marks.  

Tokens Classification: each token is classified according to its part-of-speech (POS) as in Table 2. 

Entity Detection: classifies the word entities according to their type as an address, a time, a location, a 

name, etc. 

 

Table 2: Parts of Speech Description 

POS  Description  

NN  singular or plural noun  

DT  determiner  

VB  verb, base form  

VBD  past tense verb  

IN  preposition or subordinating conjunction  

VBZ  verb, third-person singular present  

NNP  singular proper noun  

“TO”  Word “TO”  

JJ  adjective 
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Text to Speech: To convert anonymized text resulting from the speech recognition and sensitive entities 

elimination into anonymized audio files, we use Google Text-to-Speech (gTTS) which is an interface 

with Google Translate's text-to-speech API. It takes a text with various and unlimited lengths as inputs 

and converts them into voice outputs with human-like reading and intonation, in addition to precise 

pronunciation corrections. gTTS uses a wide range of voices, so that the voice of the original speaker 

can be replaced with any of these voices to keep the identity of the speaker anonymous. 

 

3.3.1.5 Training and Testing 

Dataset 

The Whisper model was trained using a large dataset consisting of 680,000 hours of multilingual and 

multitask supervised data sourced from the web. Among these hours of audio, 117,000 hours were 

dedicated to covering 96 different languages. Additionally, the dataset included 125,000 hours of 

translation data from various languages to English. 

 

3.3.1.6 Output data 

The Privacy Aware Speech Recognition can provide two different outputs described as following: 

• Anonymized textual translation: It represents the audio input translation in textual format after 

the anonymization of the sensitive information specified in the user preferences. In the output 

translation, all the sensitive textual entities detected by the analytic are replaced by default 

keywords which preserve the essence of the word without revealing the exact word. 

• Anonymized voice information: It represents the audio reconstruction of the anonymized 

textual translation. 

 

3.3.1.7 Hardware Requirements 

The recommended Hardware Requirements for running this analytic are as follows: 

• GPU: Models such as NVIDIA Tesla V100 or NVIDIA GeForce RTX series GPUs are 

commonly used for deep learning tasks. 

• CPU: Processors with multiple cores, such as Intel Core i7 or AMD Ryzen series CPUs, are 

typically suitable. 

• RAM: A minimum of 16GB of RAM is recommended. 

• Storage: Solid State Drives (SSDs) are preferred over Hard Disk Drives (HDDs) due to their 

faster read/write speeds, which can significantly improve overall performance. 

 

3.3.1.8 Privacy Considerations 

The Privacy-Preserving Speech analytic focuses on processing voice samples as input data, particularly 

in the context of the SIFIS-home scenario where the samples are captured by sensors deployed in a 

Smart home. It is crucial to handle such data with care as it may contain sensitive and personal 

information that can potentially identify the speaker. Adhering to the GDPR regulations, it is essential 

to ensure compliance and prevent the unauthorized transfer of transcriptions to third-party applications. 

Therefore, an important objective of this analytic is to protect personal data and restrict its dissemination 

beyond the SIFIS-Home context. To achieve this, the analytic employs techniques such as replacing 

sensitive information with default keywords. For example, names like "John" are replaced with the 

keyword "Private Data". This anonymization process safeguards the privacy of individuals by 
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preventing direct identification from the transcriptions. Additionally, to further enhance privacy 

protection, the analytic replaces the original speaker's voice with an alternative voice when generating 

the audio file of the anonymized text. This step ensures an additional layer of privacy for the speaker. 

  

3.3.1.9 Execution of the Analytics by the Analytics Toolbox 

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze audio data. 

The data are passed to the Speech-to-Text component, then the privacy-preserving technique is applied 

to the text using the Named Entity Recognition Component, and the Google Text-to-Speech is used to 

generate an anonymized audio file. Finally, the analysis results are interpreted, aggregated, and 

presented to the user. 

 

3.3.1.10 Implementation Details 

The Python implementation of the Speech-to-Text functionality utilizes the OpenAI Whisper model 

[Whisper] and relies on various libraries, including NumPy, PyTorch, TorchAudio, SoundFile, Librosa, 

and FFmpeg. These libraries provide essential tools for audio processing, deep learning, and handling 

multimedia data. For Entity Recognition, the implementation leverages the SpaCy library [SpaCy], 

specifically using the "en_core_web_sm" pipeline. This pipeline is trained on written web text from 

sources such as blogs, news articles, and comments, enabling it to recognize vocabulary, syntax, and 

entities in English text. To enable Text-to-Speech functionality, the gTTS (Google Text-to-Speech) 

Python library and CLI tool is employed [gTTS]. This library serves as an interface to the Google 

Translate text-to-speech API, allowing the generation of synthesized speech from textual input. 

 

3.3.1.11 Preliminary Results 

The performance of the Privacy-Aware-Speech recognition analytic using is measured by the Word 

Error Rate (WER) for Whisper model. The WER uses the Levenshtein distance metric to measure the 

speech recognition accuracy by comparing the original and predicted transcriptions. For Whisper, the 

WER is 4.2% for English language, indicating a high level of accuracy. In general, spaCy's English 

NER models perform well in identifying and classifying common named entities, such as person names, 

organizations, locations, dates, and monetary values. They also handle other entity types, such as 

product names or geopolitical entities, with reasonable accuracy. It achieves more than 85% average 

accuracy. The preliminary results of the analytic are represented in the implementation of an API that 

interacts with the user recording an audio file and returning the textual translation with pre-defined 

sensitive information anonymized. It is composed of a preliminary activity in which the entities to be 

removed are defined and the second is the transcription of the audio, then SpaCy library is used to detect 

the entities defined in the first step and remove them form the text. As a result, the anonymized text and 

the anonymized audio that is created using the Google Text-to-Speech (gTTS) model are shared back 

with the user. A sample final result is shown in Table 3. 

 

Table 3: Recognition and anonymization sample 

 
Speech Data ruth sat quite still for a time with face intent and flushed it was out now 

Recognized Text ruth sat quite still for a time with face intent and flushed it was out now 

Anonymized Text Private Data sat quite still for a time with face intent and flushed it was out now 

 

3.3.2 Voice Recognition and Verification 

3.3.2.1 Aim of the Analytics 

Speaker verification is a process that involves authenticating individuals based on the unique biometric 
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aspect of their voice. This approach offers a non-intrusive and secure method for identity verification. 

Within the SIFIS-home environment, accurately identifying individuals is crucial for granting 

appropriate privileges based on predefined policies. To achieve this, a speaker verification system 

analyzes the voices of shared audio files and communicates the identified individuals to the smart-home 

components to grant or revoke access. 

 

3.3.2.2 Requirements related to the analytics 

The Voice Recognition and Verification is relevant for satisfying the following requirements defined 

in [D1.2]: 

• Functional Requirements:  

• F-1: this analytic satisfies the functional requirement F-1 by identifying the resident users 

and administrators inside the smart home through biometrics.  

• F-3: this analytic satisfies the functional requirement F-3 by matching read biometrics 

against a database of stored ones. 

• Non-Functional Requirements:  

• PE-2: The user verification shall happen in less than 5s. 

• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this 

requirement depends on the device computational power and on the time required for 

data collection.  

• DE-06: the identification through biometrics should be performed correctly in more than 

95% of cases.    

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single 

point of failure. 

• Security Requirements: 

• SE-03: Personal data stored must be encrypted.   

3.3.2.3 Input Data 

The Privacy-Aware Speaker Recognition and Verification system requires two audio files containing 

voice as input data for verification. The analytic is designed to process WAV or FLAC audio samples 

with specific requirements, including a sampling rate of 16 kHz or 8 kHz, a single channel (mono) 

audio, and the duration of the audio segment should be within a certain range, typically a few seconds. 

If the audio sample is in a different format, a preprocessing step may be necessary to adjust it to meet 

the input requirements of the analytic. 

  

3.3.2.4 Analytic Design 

For speaker verification, we use ECAPA-TDN model with the architecture shown in Figure 14. This 

model was proposed in [DTD20] and developed as part of the SpeechBrain AI toolkit [RPP21]. ECAPA-

TDNN model employs ECAPA Time Delay Neural Networks (TDNNs) derived embeddings, and it 

consists of an input layer, followed by a convolutional block with ReLU activation and batch 

normalization. Then, a sequence of three Squeeze-and-Excitation and residual blocks. Next, a 

convolutional block with ReLU activation. Followed by a layer that applies statistics pooling to project 

variable-length utterances into fixed-length speaker characterizing embeddings with batch 

normalization. Then a fully connected dense layer with batch normalization, and an Additive Angular 

Margin (AAM) Softmax layer. Finally, an output layer to classify the inputs as yes or no for verification 

results. 
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Figure 14: ECAPA-TDNN Model for Speaker verification 

 

3.3.2.5 Training and Testing 

Dataset 

The ECAPA-TDN model was trained on the VoxCeleb2 dataset, which is a comprehensive and 

extensive dataset specifically curated for speaker recognition and diarization tasks. VoxCeleb2 serves 

as an expansion of the original VoxCeleb dataset, offering a significantly larger and more diverse 

collection of speaker data with over 1 million utterances from more than 6,000 speakers. These 

recordings are sourced from a wide array of contexts, including interviews, speeches, YouTube videos, 

and public appearances. This diverse collection ensures that the dataset captures a wide range of speaker 

variations and real-world scenarios, making it an ideal resource for training and evaluating speaker 

recognition models. 

 

3.3.2.6 Output data 

The output of this analytic is a binary decision indicating whether the two input audio samples belong 

to the same speaker or not. It evaluates the similarity or dissimilarity between the input sample and the 

enrolled speaker's reference data in the other sample. The output is represented as a similarity metric 

using cosine similarity. 

 

3.3.2.7 Hardware Requirements 
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The hardware requirements are as below: 

• CPU: A multi-core processor, such as an Intel Core i5 or i7, or an equivalent AMD processor, 

is sufficient for running the analytic. 

• GPU: For faster training and inference, a dedicated GPU is recommended. Models like ECAPA-

TDNN can leverage the parallel processing capabilities of GPUs. NVIDIA GPUs, such as the 

GeForce RTX series or the NVIDIA Titan series, are commonly used for deep learning tasks. 

• RAM: At least 8 GB of RAM is recommended, but larger models or datasets may require more 

RAM. 

  

3.3.2.8 Privacy Considerations 

Since applying privacy mechanisms would alter the speaker’s voice in the audio files, the protection 

mechanisms that can be applied with this analytic include file encryption and employing secure 

protocols for transmitting voice data. 

 

3.3.2.9 Execution of the Analytics by the Analytics Toolbox 

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze audio data. 

The data are passed to the analytics engine, which performs data processing using machine learning and 

deep learning toolboxes. Afterward, the analysis results are interpreted, aggregated, and presented to 

the user. 

 

3.3.2.10 Implementation Details 

The Python implementation of the Speaker Verification functionality utilizes the SpeechBrain ECAPA-

TDNN model [ECAPA-TDNN] and relies on various libraries, including SpeechBrain, Torch, NumPy, 

SciPy, Matplotlib, and Pandas. 

 

3.3.2.11 Preliminary Results 

For this analytic, the weights of the pre-trained ECAPA-TDNN model, that has been trained on the 

VoxCeleb2 standard dataset and evaluated on the VoxCeleb1 test sets. The performance of the model 

is measured by the Equal Error Rate (EER), which corresponds to the error rate value when the False 

Acceptance Error Rate is equal to the False Rejection Error Rate. The False Acceptance Error Rate is 

the rate of incorrectly accepted speaker speech segments to the total number of speech segments, while 

the False Rejection Error Rate. is the rate of incorrectly rejected speaker speech segments to the total 

number of speech segments. For ECAPA-TDNN model, the EER value is equal to 0.80% which 

represents a higher accuracy, since the error rate is very low. The model has been validated with the use 

of privacy mechanisms on 10,000 audio files of 5,000 pairs for matched speakers, and 10,000 audio 

files of 5,000 pairs for mismatched speakers. The results of matched speaker verification show that the 

model has predicted 99.3% of the pairs correctly with a total number of 4,964 pairs. For mismatched 

speakers verification, the model has predicted 96.4% of the pairs correctly as different speakers with a 

total number of 4,820 pairs. 

 

3.3.3 Anomaly Detection in Audio Signal Analysis  

3.3.3.1 Aim of the Analytics 

One valuable source of information for detecting anomalies is the audio signals captured within the 

smart home. Audio anomaly detection in smart homes adds an extra layer of protection, enabling early 
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detection and response to potential threats, improving safety, and enhancing the overall quality of life 

for the occupants. Performing audio anomaly detection in smart homes enhances the overall safety and 

security of the occupants by identifying unusual or potentially dangerous events that may occur within 

the home environment. This includes detecting anomalies such as breaking glass, loud and sudden 

noises, unusual patterns of speech or conversation, or other signs of potential threats or emergencies. 

By continuously monitoring audio signals in the smart home, the system can quickly identify and raise 

an alert for any abnormal activities. 

 

3.3.3.2 Requirements related to the analytics 

The Anomaly Detection in Audio Signal Analytic is relevant for satisfying the following requirements 

defined in [D1.2]: 

• Functional Requirements:  

• F-1: this analytic satisfies the functional requirement F-1 by identifying the resident users 

and administrators inside the smart home through biometrics.  

• F-3: this analytic satisfies the functional requirement F-3 by matching read biometrics 

against a database of stored ones. 

• F-15: this analytic satisfies the functional requirement F-15 by identifying anomalous 

behaviours inside the smart home, as it detects anomalous temperature or humidity 

readings of home devices. 

• Non-Functional Requirements:  

• PE-24: the analytics results are presented in less than 30 seconds. The fulfillment of this 

requirement depends on the device computational power and on the time required for 

data collection.  

• US-26: The presence of a GPU is needed to perform DL-based analysis. 

• DE-06: this analytic can be installed (i.e., replicated) on distinct devices to avoid a single 

point of failure. 

• Security Requirements: 

• SE-21: Differential Privacy and Audio Scrambling parameters are configurable for data 

analysis and can be changed. 

• SE-22: this analytic is able to work with anonymized data, but the accuracy of the results 

might be decreased. 

 

3.3.3.3 Input Data 

The input data for audio anomaly detection in smart homes is the audio signals captured within the smart 

home environment. These audio signals can be obtained from various sources such as microphones or 

audio sensors deployed throughout the home. This analytic is designed to process WAV or FLAC audio 

samples with specific requirements, including a sampling rate of 16 kHz, a single channel (mono) audio 

represented in 16 bit. There is no specific duration requirement for the input audio files, but longer audio 

files may take more time to process, and extremely short audio snippets might not provide sufficient 

information for accurate classification. If the audio sample is in a different format, a preprocessing step 

may be necessary to adjust it to meet the input requirements of the analytic. 

 

3.3.3.4 Analytic Design 

We employ the IBM MAX audio classification model developed and maintained by IBM [IBM-MAX]. 

This model is a multi-attention classifier designed to analyze and categorize audio data into various 

predefined classes or labels. The classifier leverages the power of deep neural networks to learn patterns 

and features from large-labeled audio datasets, allowing it to make predictions on new, unseen audio 

inputs. The core component of the IBM Audio Classifier is a deep neural network model. The 

architecture consists of multiple layers, such as convolutional layers, pooling, and fully connected 
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layers. These layers are designed to learn hierarchical representations and capture relevant audio 

features for classification. The model output includes the top 5 class predictions along with their 

corresponding probabilities. The model is designed to support 527 classes, defined within the Audioset 

Ontology. 

 

3.3.3.5 Training and Testing 

Dataset 

The IBM MAX Audio Classifier model was trained on the "AudioSet" dataset. AudioSet is a large-scale 

dataset created by Google Research that consists of a collection of labelled audio clips from a wide 

variety of sources, including YouTube videos. The dataset covers a diverse range of audio categories, 

such as musical instruments, human sounds, animal sounds, and environmental sounds. AudioSet 

contains over 2 million 10-second audio clips that are labelled with one or more of 632 audio event 

classes. These event classes cover a broad range of sounds and provide a rich source of training data for 

audio classification models. 

 

3.3.3.6 Output data 

The analytic generates the top 5 predictions or classifications, providing insights into the most probable 

classes or categories present in the input audio. For the purpose of audio anomaly detection, we have 

curated a specific set of classes that are indicative of abnormal behavior, including events like glass 

breaking, screaming, and fire. By leveraging these classifications, we can identify potential anomalies 

and ass  ess whether the audio exhibits any concerning patterns or events. 

 

3.3.3.7 Hardware Requirements 

The hardware requirements are as below: 

• CPU: A multi-core processor, such as an Intel Core i5 or i7, or an equivalent AMD processor, 

is sufficient for running the analytic. 

• GPU: For faster training and inference, a dedicated GPU is recommended. Models like ECAPA-

TDNN can leverage the parallel processing capabilities of GPUs. NVIDIA GPUs, such as the 

GeForce RTX series or the NVIDIA Titan series, are commonly used for deep learning tasks. 

• RAM: At least 8 GB of RAM is recommended, but larger models or datasets may require more 

RAM. 

 

3.3.3.8 Privacy Considerations 

Input data 

In order to preserve the privacy of data, two data privacy mechanisms are applied. The first mechanism 

is Differential privacy [Dwo08], a powerful privacy-preserving technique widely used to add noise to 

data, including audio. We use it to add random Laplacian noise to the audio and ensure that privacy is 

protected while still allowing valuable insights to be extracted from the data. The amount of noise added 

is determined by the sensitivity and privacy budget parameters, where sensitivity measures the impact 

of input data changes on algorithm output, and the privacy budget controls the level of noise added to 

protect privacy. The second method is Audio Scrambling, in which the audio file is segmented into 

smaller segments of a fixed duration, shuffles their order, and then concatenates them back together to 

create the scrambled audio. This scrambling technique alters the original audio's temporal arrangement, 

making it difficult to understand the content 

 

Results 
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The output of this analytic is the five top labels of sound classifications included in the audio files. These 

labels do not infer identifying information about the tenants. 

 

3.3.3.9 Execution of the Analytics by the Analytics Toolbox 

This analytic is invoked through physical analysis and multi-level analysis APIs to analyze audio data. 

The data are passed to the analytics engine, which performs data processing using machine learning and 

deep learning toolboxes. Afterward, the analysis results are interpreted, aggregated, and presented to 

the user. 

 

3.3.3.10 Implementation Details 

The Python implementation of the audio anomaly detection functionality utilizes the IBM MAX Audio 

Classifier model [IBM-MAX] and relies on various libraries, including soundfile, pydub, NumPy, 

Matplotlib, and Pandas. 

 

3.3.3.11 Preliminary Results 

The preliminary outcomes of the Privacy-Aware Anomaly Detection in Audio Signal Analytic are 

demonstrated through a Python application. This application takes an audio file as input and 

incorporates privacy mechanisms to introduce noise or scramble the audio. It then identifies the top five 

sound classes along with their corresponding probabilities. The IBM MAX Audio classifier is capable 

of recognizing 527 classes, including anomalous classes such as fire and glass breaking sounds. While 

the model exhibits higher accuracy in speech and music sound due to the training set bias, it also 

performs well across other classes. The classifier is trained on data from Audioset, which originates 

from YouTube videos. However, the model's utility is not limited to music and speech domains, as it 

can be effectively applied to a wide range of audio files. The accompanying test assets encompass 

diverse audio samples, ensuring the model's adaptability and effectiveness across various contexts. 

 

 

4 Integration of Analytics within the Data Analysis Toolbox 

An important activity that has been carried out in the second period of the project is the integration of 

all the analytics designed and developed in WP4 within the Data Analysis Toolbox component of the 

SIFIS-Home framework. Please refer to Deliverable D1.3 for a detailed description of the components 

building up the SIFIS-Home framework. This integration allows the other components of the SIFIS-

Home framework to invoke the available analytics, and the get the results they produced through the 

DHT. For instance, The System Protection Manager component (part of the Secure LifeCycle Module) 

needs to receive the results computed by the analytics to take proper countermeasures to protect the 

Smart Home from intrusions. 

 

 
Figure 15: Analytics Integration within Data Analysis Toolbox 
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In particular, as shown in Figure 15: Analytics Integration within Data Analysis ToolboxFigure 15, the 

Data Analysis Toolbox is the component that directly interacts with the DHT, which is the main 

communication mean of the SIFIS-Home framework. This interaction occurs by exploiting the SIFIS-

Home DHT library, which defines (among the other functionalities) the functionality to get messages 

from the DHT and publish messages on the DHT. The Figure 15: Analytics Integration within Data 

Analysis ToolboxData Analysis Toolbox component is activated by the other components of the 

framework, which request the execution of analytic functions on given sets of data. Figure 17 shows the 

transaction used to publish the image in Figure 16 to invoke the Privacy-Aware Object Recognition 

Analytic through the DHT, and Figure 18 shows the message published to the DHT as an object 

recognition analytic request including all the required parameters. 

 

 
 

Figure 1616: Image published for Privacy-Aware Object Recognition Analysis 

 

 

Figure 1717: Transaction to publish image to the DHT 

 

Figure 1818: Message published to the DHT as an object recognition analytic request 

For each analytics that has been defined in the project (see the list in Section 1), two DHT topics has 

been defined: one used by the other components of the SIFIS-Home framework for invoking the 
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analytics, and the other for publishing the results returned by the analytics. Each analytics runs in a 

dedicated docker container, and it is implemented as an HTTPS REST service. Hence, the Data Analysis 

Toolbox invokes the analytics service exploiting the interfaces it exposes.  

The Data Analysis Toolbox receives the requests from the DHT, having subscribed to the related topics, 

and the parameters are included in the messages paired to the requests. Once a published message has 

been received by the DHT, the data analysis module related to the specified topic is called and executed 

on the data. For instance, For the Privacy-Aware Object Recognition Analytic, the first DHT topic is 

“SIFIS:Privacy_Aware_Object_Recognition” for invoking the analytic as depicted in Figure 10 and the 

second DHT topic is “SIFIS:Object_Recognition_Results” as depicted in Figure 13. The process starts 

by publishing the analytic request to the DHT on the first topic, the analytic toolbox continuously checks 

all published messages to the DHT as shown in Figure 19, and once there is a new message on the first 

topic “SIFIS:Privacy_Aware_Object_Recognition”, it invokes the running analytic responsible for this 

topic through an HTTPS REST, which is the Privacy-Aware Object Recognition as shown in Figure 20, 

and finally the analysis results “bicycle, dog, truck” are published to the DHT as depicted in Figure 21. 

 

 

Figure 1919: Data Analysis Toolbox DHT messages check 

 

Figure 2020: Privacy-Aware Object Recognition Component running 

 

Figure 21: Message published to the DHT with the object recognition analysis results 
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5 Preserving Privacy of Data Exploited in Analytics 

 AI-based data analysis entail some concerns related to data privacy and also to transparency of the 

analysis process [Xu19,Stro19], and such concerns are relevant in particular when data analysis is 

performed by a third party with respect to the devices deployed in the smart home. In particular, data 

collected in smart homes could bring personal and privacy sensitive information, and their exposure to 

a third party might tamper the reputation of the residents in the smart home. To address this issue, 

Privacy-Preserving Machine Learning (PPML) [AC19] techniques are used to protect such data from 

being disclosed, while still allowing the execution of meaningful data analysis.  

Recently, there has been also a new growing need for AI-based analytics: decision explainability. In 

fact, by following also recent directives, such as the EU proposal for the Artificial Intelligence Act1, 

understanding decision-making criteria is important for both technical and ethical reasons.  

As privacy requirements and their enforcement normally affects the effectiveness accuracy of a decision 

system, considering explainability adds another dimension, which might be in contrast with both 

accuracy of the decision and ensured privacy. Still, all these elements are of crucial importance as they 

pose the basis for the Trustworthy AI paradigm [Hag19]. 

Moreover, when analytics are executed by third parties, data produced by distinct smart homes could 

be elaborated together, in order to get better or earlier results. We call the analytics that consider data 

coming from several source collaborative analytics. 

In light of the previous considerations, we defined a methodology for collaborative data analysis, to 

define the optimal trade-off between data utility, privacy, and explainability, applied it to face analysis. 

In particular, we exploited two common techniques for preserving data privacy, Differential Privacy 

and Atuoencoders (already described in D4.2) and one technique for ensuring model explainability 

(Saliency Mas enhanced with Smoothgrad) which can be tuned through input parameters, and we apply 

them to a face analysis problem. In this context, the proposed approach defines a measure for evaluating 

the trade-off among the data Privacy Gain, Data Utility Loss, and model Explainability Gain 

obtained by applying such techniques. This measure is meant to allow the tuning of the techniques and 

parameters for preserving data privacy and ensuring model explainability for a specific data analysis 

problem, in order to define the configuration which maximizes the Privacy Gain and the model 

explainability while minimizing the Data Utility Loss. 

The methodology defines thus a general trade-off measure and exploits novelly designed tri-

dimensional compatibility matrices to find the configuration yielding the best trade-off value.  

Furthermore, given a set of requirements on minimum Privacy Degree and explainability level, which 

are provided by the participants to collaborative analysis, the proposed framework will calculate the 

optimal solution satisfying these requirements.   

We apply or methodology to facial expression recognition model. The model classifies individual faces 

into different emotion categories, such as happy, sad, or angry, based on the expression detected in an 

image or a video frame. To preserve privacy, for example, a face can be anonymized so that the identity 

of this person is kept private but the facial expression can still be predicted, so the image attributes that 

are responsible to reveal the identity are hidden. 

Both privacy and explainability are extremely relevant in this problem, as privacy of classified faces 

might be a requirement, and it is interesting to understand which physical features are actually relevant 

for the classification decision. For our experiments, we will refer in the following to the Facial 

Expression Recognition (FER) dataset2  

 

 

 
1 Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial 
Intelligence: https://bit.ly/3y5wf6e 
2 https://www.kaggle.com/msambare/fer2013 
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≤ 

5.1 Privacy-preserving Techniques 

Data privacy-preserving techniques are aimed at protecting dataset attributes that are considered 

sensitive or may lead to the re-identification of the person the data refers to. There are two main 

approaches for data privacy protection: the first one is related to hiding sensitive attributes to prevent 

person re-identification, and the second is about delivering models that perform responsible data 

analysis by learning general patterns instead of memorizing specific sensitive attributes and data 

instances. To protect data privacy when being shared or analyzed by third parties, anonymization-based 

techniques are exploited. The most popular ones are k-anonymity [Swee02], l-diversity with all its 

variants [MKG07], t-closeness [LT07,RTG00], (ϵ, δ)- differential privacy [Dwo08] and autoencoders 

[PVG20]. In this work, we will mainly use the last two techniques, which are powerful and effective 

especially when working with image datasets. We detail them in the following. 

 

     

5.1.1 (ε, δ)-differential privacy  

(ϵ, δ)-differential privacy (DP) is considered one of the most powerful privacy-preserving techniques. 

DP technique differs from the traditional methods in the mechanism it uses to add noise to the data 

either before or during analysis, which makes it invulnerable to re-identification or data reconstruction 

attacks. As a matter of fact, traditional methods add noise to individual records, while the DP technique 

adds Laplace or Gaussian distributions noise during the analysis phase and to the learning model used. 

When the DP technique is applied to two neighboring datasets (i.e., datasets differing by one data 

instance), the outputs of the same data analysis on the two datasets are indistinguishable, thus don’t 

disclose whether the given data instance was included in the original dataset or not. The degree to which 

these outcomes are indistinguishable depends on the values of the privacy budget parameter and the 

sensitivity parameter, which measures the algorithm sensitivity to the insertion or removal of an 

individual item from the dataset and is explained in detail in [Dwo08]. (ϵ, δ)-differential privacy 

equation is presented in Equation 1 [Dwo08]. 

 

𝑃𝑟[𝑀(𝐷1) ∈ 𝑆] ≤ 𝑃𝑟[𝑀(𝐷2) ∈ 𝑆] × 𝑒𝑥𝑝(ϵ) + 𝛿 
Equation 1 

Where Pr is the probability of the event in square brackets, ϵ is the privacy budget that is used in our 

approach (as will be explained in section 4.1), δ is the failure probability, M is the randomized algorithm 

that is said to provide (ϵ, δ)- differential privacy, and D1 and D2 are two datasets that differ in at least 

one data instance, and S ⊆ Range(M). 

For privacy analysis, in this work, we use the moments accountant privacy budget tracking method 

proposed by Abadi et al. [ACG16], which uses a Differential Private Stochastic Gradient Descent (DP-

SGD) algorithm with an additive Sampled Gaussian Mechanism (SGM). SGM is an additive Gaussian 

noise [DKM06] and Sampling [RSL08,Smi09] mechanism used in differential privacy as defined in 

Equation 2 for a real-valued function f mapping subsets of D to Rd: 

 

𝑀(𝐷) ≜ 𝑓(𝐷) + 𝑁(0, 𝑆𝑓𝜎2) 
Equation 2 

where D is the dataset and a subset of its elements are sampled randomly and independently from each 

other with sampling rate 0 < q ≤ 1 to be used by the algorithm f . N (0, σ2) is the Gaussian distribution 

of the noise added with a mean equals to 0, and σ is the noise added with  𝑆𝑓𝜎2 standard deviation of 

the noise bounded to ℓ2 sensitivity. 

The moments accountant method exploits the Composability and Group privacy attributes of DP for 

several applications of the Gaussian mechanism on random samples of the dataset, and accumulates the 

overall privacy budget for these executions using the privacy accountant concept introduced in [Mcs09] 
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by implementing the accountant procedure at each execution of the Gaussian mechanism on a sample 

data according to the sampling ratio and performs privacy budget accumulation at the end of all 

procedure executions. 

Using moments accountant, the accounting procedure allows proving that an algorithm is (ϵ, δ)-

differentially private for appropriately selected configurations of the parameters for any ε < c1q
2T  and 

for any δ > 0 if the noise multiplier σ was defined to be as in Equation 3 proposed in [ACG16]: 

 

σ ≥ 𝑐2

𝑞√𝑇𝑙𝑜𝑔(1/δ)

ϵ
 

Equation 3 

 where c1 and c2 are constants so that given the sampling probability q = L/n, L is the sampling ratio of 

each Lot, n is the size of the dataset, and T is the number of training steps and T = E and E is the number 

of Epochs.  

The relationship between the noise multiplier and the privacy budget ϵ is negative, which implies better 

privacy protection when increasing the value of the noise multiplier. TensorFlow Privacy provides an 

implementation of the DP privacy accountant method for SGM5 and a documentation for the privacy 

framework. 

There are three ways to add noise to machine learning models to satisfy the differential privacy property, 

the first one is to add the noise to the objective function, the second is to add noise to the gradients at 

each iteration of the training phase, and the third is to add noise to the output of the training phase 

[JE19]. 

     

5.1.2 Autoencoders  

This technique is a type of neural network that is trained to compress data and represent their most 

important features as a latent representation code. The technique involves two components: an encoder 

and a decoder. The encoder takes an input dataset and encodes it in a latent representation (code), to get 

its important features represented as a code. Then, the decoder takes the latent representation and 

decodes it to get the reconstructed image. A typical application is the dimensionality reduction of the 

feature space, but it is widely used for learning data generative models as well. The Utility Loss in 

autoencoders is represented as the distance between the original image and the reconstructed one. The 

anonymization degree is controlled by the code size (i.e., the latent representation: the lower the code 

size, the higher anonymization we get). The underlying mechanism can be considered similar to the 

compression one [HAK20,MCC19]. Autoencoders are used as a privacy-preserving technique 

themselves [DJD18,LLL19], but they may be fine-tuned or combined with other privacy-preserving 

methods [GAS22]. 

 

5.1.3 Explainable Artificial Intelligence 

 

Explainable/Explicable Artificial Intelligence (XAI) is a recent term that has been proposed to enforce 

safety, fairness, trust and transparency in AI models. AI algorithms and processes have their own 

drawbacks of being complex to trace or understand in terms of the way they process data entries to 

produce results. Sometimes they may be charged with causing discrimination or inaccurate results, or 

not being transparent in the decision-making process, requiring the user to have blind faith in their 

predictions. XAI provides insights into how the predictive model works and the correlations among data 

sources and features, and is mainly used for extracting knowledge about the model and the data.  

Hence, XAI can be exploited for discrimination avoidance, and for granting users the right to get an 

explanation of why certain decisions have been made by AI models. On the other hand, XAI represents 

a threat to data privacy and gives the opportunity for exploration and exploitation of the model by 
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possible malicious users. For instance, when the users understand how the model works, they can 

introduce designed adversarial inputs to produce specific outputs for manipulation and deception. In our 

work, we used Saliency Maps enhanced with the SmoothGrad technique for addressing explainability. 

  

5.2 Saliency Maps 

The Saliency Maps concept was first proposed in \cite{simonyan2013deep} as a gradient-based method 

to explain deep neural networks. The generated maps using this technique make the pixels of the input 

image that have the highest gradient, i.e., the most influence on the classification of the image, more 

visible in the image. These gradients are computed using two alternative methods which differ in the 

scope (local vs global): 

Image-specific class saliency visualization method (local scope): an approximation class score 

is being calculated in this technique using Equation 4 where Sl(d) is the class scoring function, d 

represents the input image, l is the label class, wl is the weight vector, and bl is the model bias. 

 

𝑆𝑙(𝑑) = 𝑤𝑙
𝑇𝑑 + 𝑏𝑙 

Equation 4 

In the case of a Convolutional Neural Network (CNN) model, the equation is updated to be as in 

Equation 5, where w is the derivative of Sl with respect to the image d at the point d0 computed 

using Equation 6: 

𝑆𝑙(𝑑) ≈ 𝑤𝑇𝑑 + 𝑏 
Equation 5 

𝑤 =
∂𝑆𝑙

∂𝑑
|𝑑0

 

Equation 6 

Class model visualizations (global scope): generate numerically computed images representing 

the appearance of classes for a given CNN model and a learned classification by this model. It uses 

a regularisation parameter Ω to generate an L2-regularised image for a specific class l with respect 

to a specific ConvNet layer for an image d, given a high score value for the class scoring function 

Sc by Equation 7: 

 

𝑎𝑟𝑔 𝑚𝑎𝑥𝑑𝑆𝑙(𝑑) − Ω‖𝑑‖2
2 

Equation 7 

5.3 SmoothGrad 

This technique smooths the saliency maps produced by gradient-based models through the elimination 

of noise in these maps. Its main concept is about reducing the noise in generated explanations by adding 

Gaussian noise, which is the standard deviation of the Gaussian perturbations responsible for saliency 

maps sharpening in order to generate better and more accurate explanations of the model predictions. 

The explanation quality can be controlled by regulating the introduced Gaussian noise, as illustrated in 

Figure 22 [STK17], unlike other explainability mechanism. The higher the value of Gaussian noise, the 

better the explanation, as it appears in the rightmost column of the image where a 75% noise value is 

added and resulted in a better explanations than the first column, where 0% noise is added. According 

to [STK17], the ideal noise level depends on the input. 
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Figure 22 Effect of Gaussian noise [STK17] 

 

5.4 Reference Scenario and Problem Statement 

 

This section presents a sample reference scenario where we implemented the proposed methodology. 

The reference scenario we are considering includes a number of stakeholders (i.e., the smart homes) 

that produce image data, the faces taken from surveillance cameras, and they are looking to perform 

collaborative analysis to increase the accuracy of a facial expression detector. To this aim, such 

stakeholders share their data with a centralized honest-but-curious server that will perform the analysis 

(as shown in Figure 23). 

 

 
 

Figure 23: Scenario 

 

However, sharing data with a third party (the central server) or among the stakeholders carries privacy 

concerns [SSS17]. Hence a kind of anonymization process might be required before sharing, and the 

techniques previously described can be used to this aim. Figure 23shows an example where the 

stakeholders on the left adopt the Differential Privacy technique for model anonymization, and they 

share the predictions obtained using these differential private models and/or locally trained model 

weights with the central server, while the stakeholders on the top right adopt the Autoencoders technique 

for data anonymization, and they share the anonymized datasets with the central server. 

Explainability is another key requirement for the image recognition model since the stakeholders must 

be able to explain the criteria on which decisions were made. For instance, a stakeholder should be able 
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to understand why a given image submitted by his smart device has been classified as a “happy face” 

[Act21]. 

 

Moreover, the adoption of privacy and explainability techniques might impact the overall accuracy and 

vice-versa. In fact, the adoption of a technique to fulfill one of the requirements could negatively affect 

the satisfaction of the other two requirements. For example, if the technique used to preserve the privacy 

of the people captured by the smart cameras introduces too much noise in the images, the explainability 

of the decision process could be negatively affected, as well as the accuracy of the results. Our 

methodology addresses this problem by proposing an approach for properly configuring the technique 

to preserve data privacy and the technique to provide explainability in order to obtain the best trade-off 

among Privacy Gain, Data Utility Loss, and Explainability Gain (which are formally defined in the 

following) related to the process for the classification analysis of image datasets. 

Moreover, the problem could also include constraints on the values of the parameter passed to the 

privacy and explainability techniques, i.e., the Privacy Degree and the Explainability Degree, as 

requirements imposed by the stakeholders for sharing their data. For instance, a stakeholder could 

authorize the usage of their dataset in a given analytics only if the privacy of such dataset is preserved 

by applying the autoencoders technique with a code size, i.e., a Privacy Degree, less than 55% of the 

image size. 

 

5.5 Concepts and Model 

This section formally discusses the three key measures on which the proposed approach is based, 

namely: the Privacy Gain, the Data Utility Loss, and the Explainability Gain. 

  

5.5.1 Anonymization and Privacy Gain 

Data privacy in image datasets can be preserved using the two techniques previously presented: 

Autoencoders and Differential Privacy. Autoencoders technique is used to disturb the original images 

before being fed to the model, i.e., before being sent to the server, while the differential privacy 

technique in this proposal is used during the analysis phase, i.e., on the stakeholder side to restrict model 

memorization of specific attributes and dataset entries and to let the model only learn general patterns 

about the dataset. Referring to the facial expression recognition problem, applying the previous two 

privacy-preserving mechanisms on the face images would alter either the original images to produce 

anonymized faces that are unrecognizable, or the gradients computed during the data processing phase. 

However, in both cases, this anonymization could affect the accuracy of the facial expression 

recognition model causing some facial expressions to be not correctly recognized anymore. Moreover, 

the explainability of the decisions in terms of saliency maps could be affected since the dataset images 

are less visible.  

The first privacy-preserving technique, autoencoder deep neural networks, first encodes the original 

image into a latent representation and then decodes the latent representation to reconstruct the 

anonymized image. This phase is executed on the smart device which captures the image. The 

anonymized image is then fed to the classifier, which runs on the server. This technique enhances data 

privacy because performing encoding and decoding procedures on the original image and the latent 

space representation, respectively, alters the original image in a noisy manner. The integration of the 

autoencoders technique within the image classification system is illustrated in Figure 24. 
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Figure 24: Autoencoders for dataset anonymization with multi-class classifier architecture 

 

The second privacy-preserving technique, differential privacy, instead of operating on the images of the 

dataset, add noise to the gradients during the training process using a differential private optimizer. 

Hence, the classification model memorization of data instances is limited, as the used model only learns 

general patterns of the dataset. In fact, the trained differential private model can't distinguish whether 

specific dataset instances were used for training, thus providing protection against reconstruction and 

membership inference attacks [CWS20,PSM22]. The integration of a differential privacy mechanism 

within our image classification system is depicted in Figure 25. 

 

 
 

Figure 25: Differential Privacy with multi-class classifier architecture 

 

Both the previous anonymization techniques accept an input parameter, the Privacy Degree. In 

particular, when adopting the differential privacy technique, such a parameter is represented by the noise 

introduced in the model, as explained in Section 5.1.1. 

Instead, when adopting the autoencoders technique, such a parameter is represented by the size of the 

code, as explained in Section 5.1.2 as well. Figure 26 illustrates an example of the application of the 

autoencoders technique on FER dataset with different code sizes.  
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Figure 26: Autoencoders technique applied to FER dataset with distinct code size 

 

Applying such techniques in the image classification process results in a Privacy Gain, i.e., the 

modifications made by these techniques introduce an uncertainty degree in the resulting model. This 

uncertainty is due to the lack of knowledge of all dataset attributes caused by the application of the 

anonymization techniques, and it reduces the confidence in the predictions performed using this model 

[NSH19]. 

The Privacy Gain obtained by applying the differential privacy technique to the dataset D and the 

classifier λ, denoted by PGDP(D, λ), is measured according to the returned privacy budget, i.e., the ε 

value we got from Equation 1). Errore. L'origine riferimento non è stata trovata. The lower the ε 

value, the higher the Privacy Gain returned, as shown in Equation 8. 

When the autoencoders method is applied, the Privacy Gain is measured as the percentage of the code 

size C compared to the original image size I, as expressed in Equation 9. Considering that the code size 

C is always not greater than the size of the images in the dataset D (denoted by I(D)), we observe that 

PGAuto(C,D) is normalized in the interval (0,1]. The smaller the code size defined, the higher the Privacy 

Gain returned, since the code size represents the compression degree and the smaller the code size is, 

the more compression degree is applied and the more privacy gained.  

 

PGDP(D, λ) =
1

ϵ(D, λ)
 

Equation 8 

PGAuto(C, D) = 1 −
C

I(D)
 

Equation 9 

5.5.2 Classifier and Data Utility Loss 

The enforcement of the privacy-preserving techniques discussed above may reduce data utility and 

affect model performance. Data Utility Loss computation depends on the privacy technique used. In 

particular, when adopting the autoencoders technique, the Utility Loss UAuto can be measured as shown 
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in Equation 10 based on the divergence concept, which represents the change between two distributions 

(or two datasets in this case): 

 

UAuto(D, D′) = GD(D, D′) 
Equation 10 

where GD is the divergence between the original dataset distribution D and the anonymized dataset 

distribution D '.  

 

Divergence computation is done using several methods such as: (i) Earth Mover’s distance (EMD, 

Wasserstein distance) where a ground distance is defined between any pair of values [RTG00], (ii) Total 

Variation Distance (TVD), (iii) Hellinger Distance (HD), (iv) Kullback-Leibler Divergence (KLD) 

[KL51], (v) X2 divergence. 

 

In our approach, we adopt the Earth Mover’s distance (EMD, Wasserstein distance) as a divergence 

computation method because it defines the ground distance between any pair of values [RTG00]. EMD 

is simply the minimum cost or work in Equation 11 needed to match two distributions normalized by 

the weight of one of these distributions (D, D'), as shown in Equation 12: 

  

Work(D, D′, F) = ∑ ∑ dijfij

n

j=1

m

i=1

 

Equation 11 

 

EMD(D, D′) =
∑ ∑ dijfij

n
j=1

m
i=1

∑ ∑ fij
n
j=1

m
i=1

 

Equation 12 

 

where D is the first dataset distribution with m elements, D' is the second dataset distribution with n 

elements, [dij] is the ground distance matrix where dij is the ground distance between clusters Di and D'j, 

and F represents a flow matrix [fij] among the two dataset distributions D and D' with fij the flow 

between Di and D'j, that minimizes the overall cost to get the optimal flow F. We recall that in our 

scenario m=n because the dataset D' has been produced by anonymizing each element of the dataset D 

applying the autoencoder privacy technique. 

Other popular divergence computation methods used in literature are the Kullback-Leibler Divergence 

(KLD) [KL51] and the Total Variation Distance (TVD). However, these methods do not reflect the 

semantic distance among values of the clusters, since they compare the ratios of the probability density 

function of the two distributions, and even if the values of the dataset attributes are diverse, some values 

of one attribute are related to one category and semantically close. Therefore, these measurements fail 

to reflect this semantic distance among values. Instead, the EMD method measures the ground distance 

between the two distributions, taking into consideration all values even if they were semantically close. 

To compute the Data Utility Loss when the differential privacy technique is exploited, instead, we 

cannot adopt the same method and compute the divergence between the original and the anonymized 

datasets. As a matter of fact, in our approach the differential privacy technique does not anonymize the 

original dataset before the training process, but, instead, it adds the noise to the gradients during 

gradients computation. Thus, the method we use in order to compute the Utility Loss compares the 

accuracy of the classification results of the original data analysis model against the accuracy of the 

classification results obtained from the differential private model and converts this percentage reference 

into a decimal number, following the approach proposed in [JE19].  

The resulting Utility Loss measure is shown in Equation 13 and it falls in the range 0-1: 
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UDP(D, λ, λ′) = Acc(D, λ) − Acc(D, λ′) 
Equation 13 

where D is the original dataset, λ is the analysis model, λ’ is the differential private analysis model that 

adds noise to the gradients during training, and Acc is the accuracy of the results of the analysis model 

applied to the dataset. 

  

5.5.3 Explainer and Explainability Gain 

A relevant requirement of the reference scenario concerns the understanding of why the model has 

produced a given prediction, e.g., the classification of a face image as a "happy" facial expression.  

For instance, the prediction could have been made due to edges at certain positions of the image, 

brightness in some areas, or some other aspects. XAI provides the possibility to understand this by 

producing explanations. In other words, XAI provides an explanation of why a specific prediction has 

been made.  

In our approach, we produce these explanations in the form of Saliency Maps, using the SmoothGrad 

explainability method described in Section 5.3. SmoothGrad method takes an input image, and 

generates n sample images by adding Gaussian noise, computes a Saliency Map for each of these sample 

images, and computes a single Saliency Map as an average of the previous ones. Despite adding the 

same amount of Gaussian noise to the same image, the resulting n samples are different due to the 

random nature of the noise addition process. This process is controlled acting on the number of samples 

used during the averaging process and on the Gaussian noise level parameter used for map sharpening. 

Summarizing, the computation of a saliency map for each data instance of any image dataset used by a 

classification model λ is shown Equation 14: 

 

α�̂�(𝑑) =
1

𝑛
∑ α𝑙(𝑑 + 𝑁(0, σ2))

𝑛

1

 

Equation 14  

where d is a data instance representing an input image, l is the class predicted for an input image among 

a set of classes L, n is the number of sample images used to produce the final saliency map, α(d + N (0 

, σ2 )) is a Saliency Map for a sample image  generated by adding Gaussian noise (N (0, σ2)) to the 

original one. The saliency map of a sample image is computed by differentiating αl with respect to the 

input image d based on the analysis function λ, as shown in Equation 15: 

 

α𝑙(𝑑) =
∂𝑆𝑙(𝑑)

∂𝑑
 

Equation 15 

where Sl is the class scoring function. Smoothgrad method uses Equation 14 to enhance originally 

generated saliency maps by basing a visualization on a smoothing of gradient ∂Sl(d) with a Gaussian 

kernel instead of basing it directly on ∂Sl(d). Detailed equations explanation is presented in [STK17]. 

 

SmoothGrad mechanism improves the quality of the saliency maps generated by increasing the degree 

of Gaussian noise used to smooth the map compared to the original non-smoothed map as indicated in 

[STK17]. Thus, to compute the Explainability Gain EG(d) for the smoothed saliency map, we use 

Equation 16: 
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𝐸𝐺(𝑑) =
𝑛

max(𝑛)
× 𝑁(0, σ2)𝑑 × 100 

Equation 16 

where d is a data instance (an input image), n is the number of sample images used for averaging saliency 

maps to produce one saliency map, max(n) is the maximum number of used samples, and N(0, σ2) is 

the Gaussian noise. 

However, this equation needs to be modified in case a privacy mechanism has been used, since the 

privacy mechanisms applied in our methodology either modifies the analysis model in the way it 

computes gradients when using differential privacy, or alters the input dataset in case of autoencoders. 

Therefore, to quantify Explainability Gain EGDP when applying differential privacy mechanism, we 

need to take into consideration the model performance change represented by model accuracy, because 

explainability mechanisms do explain model decisions. Thus, when the model’s accuracy decreases due 

to the use of a differential private model, the Explainability Gain needs to be bounded to this change 

represented by UDP in Equation 13. Explainability Gain when using differential privacy mechanism is 

reported in Equation 17, where d is a data instance (an input image), D is the Dataset, λ is the analysis 

function, and λ′ is the differential private analysis function obtained from λ. 

 

𝐸𝐺𝐷𝑃(𝑑, γ) = ((
𝑛 × 𝑁(0, σ2)𝑑

max(𝑛)
) − 𝑈𝐷𝑃(γ) (

𝑛 × 𝑁(0, σ2)𝑑

max(𝑛)
)) 

Equation 17 

 For Autoencoders privacy-preserving mechanism,  Equation 18, where θ = {D, D′} is used to compute 

the Explainability Gain, where γ = {D, λ, λ′} , by taking into consideration the change percentage 

between images of the original dataset and anonymized dataset, since saliency maps are generated based 

on these input image and any change to the input image affects the output saliency map. This the EG(d) 

is also bounded to the change of input images. This change percentage is measured by the geometric 

divergence using the EMD method. 

 

𝐸𝐺𝐴𝑢𝑡𝑜(𝑑, θ) = ((
𝑛 × 𝑁(0, σ2)𝑑

max(𝑛)
) − 𝐺𝐷(θ) (

𝑛 × 𝑁(0, σ2)𝑑

max(𝑛)
)) 

Equation 18 

Providing decision explanations for classifications made on image datasets means highlighting the 

pixels that have the most influence on the model prediction in the generated saliency maps.  

For instance, in the facial expression recognition case, the pixels representing eyes and mouth are 

highlighted, as shown in the maps of Errore. L'origine riferimento non è stata trovata. for FER 

dataset. 

As a matter of fact, controlling the noise parameter affects saliency map explanations. The higher value 

we define for the Gaussian noise, the more explainable the analysis result is. Therefore, the 

Explainability Gain is quantified using the noise value, and this noise value ranges between 0 and 1. 

  

5.6  Proposed Methodology 

This section describes the data format and the methodology we defined to properly set up the data 

analysis process, i.e., to find the values for the Privacy Degree and for the Explainability Degree 

parameters (see Section 4.1), in order to balance preserved data privacy, explainability of the model and 

classification analysis accuracy. As discussed in Section 3, we are considering a scenario where several 

stakeholders produce image datasets consisting of faces taken from surveillance cameras  

and they want to exploit them to perform collaborative analysis, by training a common analysis model 

which would give more accurate results than a model built from the dataset of a single user only.  
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In particular, each stakeholder defines their own privacy and explainability requirements in terms of 

constraints on the values of Privacy Degree and Explainability Degree parameters, which must be 

respected for the stakeholder to consent to the use of their dataset. 

In this scenario, the proposed methodology is aimed at finding a proper configuration of the data 

analysis process which allows for obtaining an analysis model which respects the stakeholders' 

requirements while balancing preserved data privacy, explainability level, and classification accuracy. 

  

5.6.1 Data Format 

We are focusing on image datasets, i.e., datasets where each element is a picture. Typical features of 

the elements of such datasets are thus pixel-related, such as: color, brightness, edges. A further feature 

is the image resolution, n, which is equal to x × y (where x and y are the dimensions of the image) in 

the case of gray-scale images and to x × y ×3 in the case of colored images. In particular, we are 

considering two labeled gray-scale image datasets, FER and MNIST, in addition to a labeled colored 

image dataset, CIFAR-10. The FER dataset is relevant for the reference scenario because the images in 

the dataset are people's faces, and the labels paired with the images represent the facial expression 

category, they are classified into seven classes (e.g., angry, disgust, fear, happy). In the MNIST dataset, 

instead, the images are handwritten digits and the label paired with each image corresponds to the digit 

represented by the image. Hence MNIST images are classified into ten classes, with labels ranging from 

0 to 9. This dataset has been chosen because it is a well-known dataset typically used as a benchmark 

to validate proposed approaches. In the CIFAR-10 dataset, instead, the images are of various objects 

and the label paired with each image corresponds to the object represented by the image. Hence, the 

images are classified into ten classes. This dataset has been chosen because it is a more complex well-

known dataset and is used usually as a benchmark for validation. As usual, all datasets are divided into 

a training set and a testing set. Each dataset is thus processed by the multi-class classifier λ, one image 

at a time to be divided into pixels based on the image resolution as an input layer in the neural network.  

 

5.6.2 Optimal Trade-Off computation through Compatibility Matrix 

As discussed, two possible techniques can be used for performing the analysis in a privacy-preserving 

way, namely autoencoders and differential privacy. When the autoencoders technique is used, our 

methodology determines the optimal values of the Privacy Degree and Explainability Degree 

parameters as follows. First of all, the stakeholders apply the autoencoder technique to their datasets. In 

particular, each stakeholder computes a set of anonymized datasets varying the value of the Privacy 

Degree parameter according to the requirements they defined, and computes locally both the Privacy 

Gain and the Utility Loss for each of these datasets. Then, each stakeholder shares requirements, the set 

of anonymized datasets, and the related Privacy Gains and Utility Losses with the server. The server 

executes the data analysis process on each of the received datasets, applies the Smoothgrad technique 

for a set of values of the Explainability Degree (chosen according to the requirements defined by the 

stakeholder originating the dataset), and for each of them computes the related Explainability Gain. 

Finally, using the values of the Privacy Gain, Utility Loss, and Explainability Gain computed varying 

the values of the Privacy Degree and Explainability Degree parameters, the server computes the trade-

off scores to fill the compatibility matrix.  

If the Differential Privacy technique is selected, then the analysis process is performed on the 

stakeholder side and only analysis results will be shared with the server. The values of Privacy Gain, 

Explainability Gain, Utility Loss, and trade-off score are computed on the stakeholder’s side for each 

configuration of Privacy Degree and Explainability Degree satisfying the stakeholder’s requirements. 

Afterward, all these values, along with the stakeholder’s requirements, are shared with the server to find 

the optimal trade-off score. 

Hence, as a first step of our methodology, we define the formula to calculate the trade-off among the 
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aforementioned three measures, i.e., TDP (D, λ, λ′) (shown in Equation 19) when the differential privacy 

technique is applied or TAuto(D, D′, λ) (shown in Equation 20) when the autoencoders technique is 

applied. The trade-off formulas enable us to balance the conflicting objectives of privacy, explainability, 

and utility loss by aggregating them into a single score. The numerator of the formula captures the 

desirable goals of privacy and explainability, while the denominator represents the undesirable objective 

of utility loss. Dividing the desirable objectives by the undesirable objective yields a trade-off score that 

reflects the optimal balance between these objectives. 

 

𝑇𝐷𝑃(𝐷, 𝜆, 𝜆′) =
𝑃𝐺𝐷𝑃(𝐷, λ) + 𝐸𝐺𝐷𝑃(𝑑, 𝐷, λ, λ′)

2 + 𝑈𝐷𝑃(𝐷, λ, λ′)
 

Equation 19 

where D is the original dataset, λ is the analysis function, λ′ is the differential private analysis function, 

PGDP (D, λ) is the Privacy Gain defined by Equation 8, EGDP (d, D, λ, λ′) is the Explainability Gain 

defined by Equation 17, and UDP (D, λ, λ′) is the Utility Loss defined by Equation 13; 

 

𝑇𝐴𝑢𝑡𝑜(𝐷, 𝐷′, λ) =
𝑃𝐺𝐴𝑢𝑡𝑜(𝐶, 𝐷) + 𝐸𝐺𝐴𝑢𝑡𝑜(𝑑, 𝐷, 𝐷′)

2 + 𝑈𝐴𝑢𝑡𝑜(𝐷, 𝐷′)
 

Equation 20 

where D is the original dataset, D′ is the anonymized dataset, λ is the analysis function, C is the Code 

size used for the autoencoders technique, PGAuto(C, D) is the Privacy Gain defined by Equation 9, 

EGAuto(d, D, D′) is the Explainability Gain defined by Equation 18, and UAuto(D, D′) is the Utility Loss 

defined by Equation 10. 

By first performing discretization on the intervals of Privacy Degree and Explainability Degree, we 

transform these continuous intervals into two sets of discrete values across the original interval range. 

Thus, for any specific dataset, privacy parameter value, and explainability value in the discretized 

ranges, the related trade-off is computed. Considering the available datasets, the computed trade-off 

values can be represented in a schematic manner by means of a tri-dimensional compatibility matrix. 

 

5.6.3 Compatibility Matrix 

The compatibility matrix has been defined in [SSM21] as a mechanism to compute the best trade-off 

between data utility and privacy in a multi-stakeholder collaborative analysis problem. Each element of 

the compatibility matrix represents, in fact, the trade-off value computed on a specific dataset (row) for 

a given privacy configuration (column). In our work, we are considering a further dimension, i.e., 

explainability. Hence, we define a tri-dimensional compatibility matrix which on the x dimension it 

reports the values obtained from the discretization of the Privacy Degree (ϕk) interval, on the y 

dimension it reports the available datasets (Di, generally one per stakeholder), and on the 𝑥 dimension 

the values obtained from the discretization of the Explainability Degree (ωj) interval. Each element 

CMi,k,j represents the trade-off value computed with the specified combination of the three parameters, 

i.e., the trade-off computed on dataset Di, with Privacy Degree ϕk according to the selected privacy-

preserving mechanism, and with the Explainability Degree ωj. 

 

In the image analysis problem that we are considering, we are using two different privacy mechanisms, 

whose trade-off values are not comparable, since they are computed in different ways. To this end, two 

compatibility matrices will be defined respectively for the Differential Privacy-based analysis, and for 

the Autoencoders-based one. Thus, the compatibility matrix representing the differential privacy 

mechanism uses Equation 19 to compute the trade-off, while the compatibility matrix representing the 

autoencoders mechanism uses Equation 20. Figure 27 reports the structure of a compatibility matrix. 
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Figure 27 Tri-dimensional compatibility matrix 

If the values of either ϕk or ωj do not respect specific requirements expressed on the dataset Di by the 

owning stakeholder, the corresponding element CMi,k,j is set to 0, representing thus the impossibility to 

compute a trade-off for that specific configuration. Once the compatibility matrix has been computed, 

it is reduced to bi-dimensional by aggregating the dataset dimension. In particular, the trade-offs 

obtained for distinct datasets with the same Privacy Degree and Explainability Degree are averaged to 

compute the optimal trade-off, according to Equation 21 for differential privacy mechanism and 

Equation 22 for autoencoders mechanism: 

 

𝑇𝐷𝑃
̅̅ ̅̅ ̅(�̅�, λ, λ′) = ∑ 𝑤𝑖𝑇(𝐷𝑖, λ, λ′)

𝑚

𝑖=1

 

Equation 21 

𝑇𝐴𝑢𝑡𝑜
̅̅ ̅̅ ̅̅ ̅(�̅�, 𝐷′̅̅ ̅, λ) = ∑ 𝑤𝑖𝑇(𝐷𝑖, 𝐷𝑖

′, λ)

𝑚

𝑖=1

 

Equation 22 

where wi is the inverse of the number of datasets for which the trade-off value is not 0. 

Finally, after obtaining the best trade-off score using the concept of linear objective optimization, which 

chooses the maximum score among all trade-off scores, the corresponding privacy and Explainability 

Degrees are used for performing the analysis process in a trustworthy manner satisfying all stakeholders’ 

requirements. 

 

5.6.4 Applicative Example 

Let us consider a case where three stakeholders, S1, S2, and S3 are willing to perform collaborative 

analysis. The stakeholders request an analysis function on their own datasets, D1, D2, and D3, 

respectively, from a central server using the architecture defined in Section 5.4, where D1 ∪ D2 ∪ D3 

represent the whole dataset D. 
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Figure 28 Tri-dimensional compatibility matrix for three stakeholders using DP mechanism example 

Each stakeholder shares its privacy and explainability requirements R1, R2, and R3, where each 

requirement defines the privacy mechanism, and constraints on the Privacy Degree to be used. The 

Privacy Degree is defined by each stakeholder to be higher than a specific threshold or to obtain the 

maximum achievable degree. Also, the Explainability Degree is defined by each stakeholder to be 

higher than a specific threshold or to obtain the maximum achievable degree. Hence, the requirement 

items provided by stakeholder Si are as the following: 

• Pmi: Privacy mechanism selected, which is either autoencoders or differential privacy in this 

work. 

• ϕi: Minimum Privacy Degree, which is the code size for autoencoders mechanism and Privacy 

Degree parameter for differential privacy. 

• ωi: Minimum Explainability Degree. 

 

To find the best trade-off score, all returned configurations trade-off scores are investigated for the 

datasets using Equation 21 or Equation 22 which refer, respectively to the differential privacy and the 

autoencoders privacy-preserving techniques. Then the trade-off score that has the maximum value 

representing the optimal solution is returned. An optimal solution is a configuration that provides the 

maximum achievable degrees of privacy and explainability with the least possible effect on data utility. 

As an example, taking into account the reference scenario described in Section 5.4, in the following we 

consider 3 stakeholders having an image dataset of 20, 000 images each. These stakeholders want to 

analyze these datasets with the help of a central server. In order to do so, each stakeholder selects the 

privacy mechanism of interest and defines his own privacy and explainability requirements with specific 

degrees for each of them. For instance, we assume that all stakeholders have chosen the same privacy 

technique, e.g., differential privacy, and that they defined their privacy and explainability requirements 

as shown in Table 1. For instance, Stakeholder1 wants that the Privacy Degree, ϕ, is greater than 1.7, 

and that the Explainability Degree, ω, is greater than 0.6. Instead, Stakeholder3 does not specify any 

requirement, meaning that he is interested in getting the optimal value among all. 

 
Table 1 Stakeholder's Requirements 

Stakeholders ϕ ω 

Stakeholder1 > 1.7 > 0.6 

Stakeholder2 > 1.5 > 0.6 

Stakeholder3 Empty Empty 
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From the above-mentioned details, the compatibility matrix shown in Figure 28 is created. The x 

dimension of the matrix consists of 21 values for Privacy Degree in the interval [0.0 − 2.0] with step 

0.1, the y dimension of the matrix consists of 3 rows representing the 3 stakeholders’ datasets, while the 

z dimension consists of 11 possible degrees of explainability ω of the SmoothGrad mechanism in the 

interval [0.0 − 1.0] with step 0.1. Hence, the size of the compatibility matrix is 21 × 3 × 11 and is 

computed following the below steps: 

 

Step 1: For Stakeholder1, Trade-off score is calculated for all possible combinations of Privacy Degrees 

1.8 ≤ φ ≤ 2.0 and Explainability Degrees 0.7 ≤ ω ≤ 1.0 and reported in the related cells of the 

compatibility matrix; 

 

Step 2: For Stakeholder2, Trade-off score is calculated for all possible combinations of Privacy Degrees 

1.6 ≤ φ ≤ 2.0 and Explainability Degrees 0.7 ≤ ω ≤ 1.0 and reported in the related cells of the 

compatibility matrix; 

 

Step 3: For Stakeholder3, Trade-off score is calculated for all possible combinations of Privacy Degrees 

φ and Explainability Degrees ω and reported in the related cells of the compatibility matrix; 

 

Step 4: The remaining empty cells of the compatibility matrix are filled with 0, because the 

corresponding combination of Privacy Degrees and Explainability Degrees do not satisfy the 

requirements defined by stakeholders. The resulting tri-dimensional matrix is represented in Figure 28; 

 

Step 5: The averaged trade-off score is calculated on the y dimension by aggregating the trade-off values 

obtained for the 3 datasets using Equation 21 with their respective weights. For instance, the trade-off 

score cells for φ = 1.0 and ω = 0.5 would have the value 0 for Stakeholder1 and Stakeholder2, while it 

would be greater than 0 for Stakeholder3. Therefore, the trade-offs aggregation equation will have the 

following weights: w1 = 0, w2 = 0, w3 = 1. On the other hand, the trade-off score cells for φ = 1.8 and 

ω = 0.7 would have values greater than 0 for Stakeholder1, Stakeholder2, and Stakeholder3 since they 

have all defined requirements having these values for privacy and Explainability Degrees. Therefore, 

the trade-off aggregation equation will have the following weights: the w1 = 1/3, w2 = 1/3, w3 = 1/3. 

The averaged compatibility matrix is represented in Figure 29; 

 

Step 6: Finally, the combination of privacy and Explainability Degrees yielding the best-averaged trade-

off score is considered the optimal solution, which is at φ = 2.0 and ω = 1.0 in our example as it returns 

the maximum trade-off score highlighted in Figure 29. 

 

 
 
Figure 29 Averaged Tri-dimensional compatibility matrix for three stakeholders using DP mechanism example 
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6 Conclusion 

This document is a part of the final deliverable from Work Package 4 “Privacy Aware Analytics for 

Security and Services”, and it described the outcome of the WP4 activities carried out during the second 

half of the project. In particular, this deliverable provided a detailed description of the analytics designed 

and developed in the second part of the SIFIS-Home project, namely: xAnomaly, Face Recognition and 

Person Recognition, Object Detection, Multilevel Anomaly Detection, Voice Recognition and 

Verification, and Anomaly Detection in Audio Signal Analysis. The Netspot Network Anomaly 

Detection and the Privacy Aware Speech Recognition Analytics have been significantly modified with 

respect to the version presented in D4.2, and hence an updated description has been provided in this 

document. 

Moreover, this deliverable describes how all the SIFIS-Home analytics have been integrated within the 

Data Analytics Toolbox, which is a component of the SIFIS-Home framework embedded in the 

Application Toolboxes module, as shown in Figure 1. Consequently, the other components of the SIFIS-

Home framework can benefit of the results of the SIFIS-Home analytics for carrying out the smart home 

protection tasks. For instance, the System Protection Manager can exploit the results produced by the 

Network Intrusion Detection analytics to decide that a device of the smart home must be removed from 

the SIFIS-Home devices because it has been corrupted. 

Finally, since some analytics could be executed on the Cloud, and the data collected in smart homes 

could bring personal and privacy sensitive information, their exposure to a third party might tamper the 

reputation of the residents in the smart home. Hence, smart home data must be anonymized before being 

sent to the Cloud to be processed. We proposed a methodology to decide the anonymization level of 

such data in order to obtain, at the same time, a good privacy protection as well as a good accuracy of 

the analytics’ results. 
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Glossary 
 

Acronym Definition 

ACL Age Classification Layer 

CPN Colored Petri Net 

DFT Discrete Fourier Transform 

DHT Distributed Hash Table 

EVT Extreme Value Theory 

FEL Face Extraction Layer 

FR Functional Requirements 

IDFT Inverse Discrete Fourier Transform 

IQR InterQuartile Range 

JSON Javascript Object Notation 

MUD Manufacturer Usage Description 

NER Named Entity Extraction 

NFR Non-functional requirement 

NSSD Not So Smart Device 

OS Operative System 

OWL Web Ontology Language 

P2P Peer to Peer 

PAP Policy Administration Point 

PSR Privacy-Aware Speech Recognition 

PTP Policy Translation Point 

RNN Recurrent Neural Networks 

SCPN Semantic Colored Petri Net 

SD Smart Device 

SIFIS-Home Secure Interoperable Full Stack Internet of Things for Smart Home 

STT Speech To Text 

UC Use case 

US User story 

XACML eXtensible Access Control Markup Language 

 


