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Executive Summary 

 

This document is an outcome of WP3 "Network and System Security" and provides a preliminary description of 

the network and system security solutions designed and developed in the SIFIS-Home project. These are intended 

to be applicable especially – but not only – to the use cases and IoT-based Smart Home environment considered 

in the project. 

 

The documented security solutions include protocols, mechanisms, controls, and tools, which can be grouped 

under the three following activity areas: i) Secure and Robust (Group) Communication; ii) Access and Usage 

Control for Server Resources; and iii) Establishment and Management of Keying Material. 

 

The security solutions have been designed and developed consistently with the requirements presented in the 

deliverable D1.2 "Final Architecture Requirements Report". In particular, they are designed to be scalable as well 

as efficient and effective, thus limiting the impact on performance of the networks and applications involving 

also IoT devices. 

  

Results from WP3 have considerably contributed to dissemination activities in WP7 "Dissemination, 

Standardization and Exploitation", especially with academic publications in international venues, as well as with 

standardization activities in the Working Groups CoRE, ACE, and LAKE of the renowned international body 

Internet Engineering Task Force (IETF). 
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1  Introduction 

 

This document provides a preliminary description of the security solutions, mechanisms and approaches 

developed in Work Package 3 (WP3) "Network and System Security" during the first half of the SIFIS-Home 

project, i.e., up until March 2022. 

 

While displaying relations to one another, the different topics covered in WP3 can be mapped to three different 

activity areas, namely: i) Secure and Robust (Group) Communication; ii) Access and Usage Control for Server 

Resources; and iii) Establishment and Management of Keying Material. 

  

Consistently with the organizational structure of WP3 and in order to closely reflect its activity areas, the core of 

this document includes one section for each activity area and presents the security solutions pertaining to that 

area. According to this organization of content and consistently with the description of work, the contributions 

of this document have been organized as follows. 

  

Section 2 provides a high-level overview of the network and system security solutions from WP3, highlighting 

the activity area and Task(s) where they have been carried out, as well as how the different security solutions 

relate and interact with one another. The detailed description in the following Sections 4, 5 and 6 additionally 

specifies how each security solution relates to the requirements defined in deliverable D1.2 “Final Architecture 

Requirements Report” [D1.2], as well as to the SIFIS-Home architecture components defined in deliverable D1.3 

"Initial Component, Architecture, and Intercommunication Design" [D1.3]. 

  

Section 3 introduces the main background concepts and technologies required to understand the security solutions 

presented in the following sections. These especially include: the Constrained Application Protocol (CoAP); the 

secure communication protocol Object Security for Constrained RESTful Environments (OSCORE); as well as 

the Authentication and Authorization for Constrained Environments (ACE) framework. 

  

Section 4 presents the security solutions under the activity area "Secure and Robust (Group) Communication for 

the IoT", whose work has been carried out under Task T3.1 "Secure, interoperable and robust communication". 

These security solutions comprise protocols and methods for end-to-end protected and robust communication 

with IoT devices, supporting also a group communication model and the presence of (untrusted) transport 

intermediaries such as proxies. The above especially includes the secure communication protocol Group 

OSCORE, as well as the use of the OSCORE and Group OSCORE protocols in environments using group 

communication and/or transport intermediaries. 

  

Section 5 presents the security solutions under the activity area "Access and Usage Control for Server Resources", 

whose work has been jointly carried out under both Tasks T3.2 "Security Lifecycle Management" and T3.3 

"Dynamic Multi-Domain Security and Safety Policy Handling". These security solutions comprise methods to 

enforce fine-grained access control of resources at their hosting server contextually with end-to-end secure 

communication, as well as techniques for dynamically evaluating access policies and consequently adjust/revoke 

stale access credentials. The above especially includes profiles of the ACE framework for end-to-end secure 

communication, as well as methods to achieve dynamic access and usage control of server resources, possibly 

within the ACE framework. 

  

Section 6 presents the security solutions under the activity area "Establishment and Management of Keying 

Material", whose work has been carried out under Task T3.2 "Security Lifecycle Management". These security 

solutions comprise protocols and methods to distribute, establish and renew keying material, as especially 

intended for end-to-end protected message exchange also in group communication environments. The above 
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especially includes: the use of ACE to distribute keying material for Group OSCORE; the EDHOC protocol to 

establish OSCORE keying material among two peers; the KUDOS protocol to update current OSCORE keying 

material. 

  

A final description of the security solutions designed and developed in WP3 will be provided in deliverable D3.3 

"Final report on Network and System Security Solutions". This will be released in June 2023, and it will update 

and obsolete the present document, thus acting as final comprehensive description of WP3 activities. 

 

 

2 Overview of Network and System Security Solutions 

 

The design and development of network & system security solutions in WP3 are carried out over three different 

activity areas, which are overviewed below. 

 

For each developed security solution, a dedicated description is provided in the following Sections 4, 5 and 6, 

together with how the solution in question relates to the requirements defined in deliverable D1.2 “Final 

Architecture Requirements Report” [D1.2], as well as to the SIFIS-Home architecture components defined in 

deliverable D1.3 "Initial Component, Architecture, and Intercommunication Design" [D1.3]. In particular, the 

security solutions developed in WP3 pertain to the SIFIS-Home architecture components within the “Secure 

Communication Layer” module and the “Secure Lifecycle Manager” module. 

 

 

 Secure and Robust (Group) Communication for the IoT 

The work on this activity area occurs within the Task T3.1 “Secure Interoperable and Robust Communication”. 

The topics addressed in this activity area are presented in Section 4 and summarized below. 

 

Group OSCORE – The security protocol Group Object Security for Constrained RESTful Environments (Group 

OSCORE) [TIL21a] is currently under development to protect communications end-to-end when the Constrained 

Application Protocol (CoAP) [SHE14] is used in a group communication environment [RAH14][DIJ21]. That is, 

a CoAP client can send a request intended to multiple recipients (e.g., over IP multicast), each of which can reply 

with an individual response. Group OSCORE builds on the security protocol OSCORE [SEL19], by using the 

same core components CBOR [BOR20] and COSE [SCH17], and provides end-to-end security of CoAP 

messages at the application layer. Group OSCORE provides source authentication of exchanged messages, and 

it ensures secure binding between a request and all the associated responses. 

 

Proxies for CoAP group communication – The CoAP protocol natively supports the use of transport 

intermediaries, such as proxies, deployed between a client endpoint and a server endpoint. A proxy can, among 

other things, serve cached responses or perform protocol translation across different communication legs. When 

one-to-many group communication for CoAP is used [RAH14]][DIJ21], several processing steps and issues to 

address are left open at intermediaries. Activities on this topic have been defining how forward-proxies and 

reverse-proxies forward a group request to multiple servers, and then forward back the multiple individual 

responses to the origin client. Support must be ensured also in case group communications are protected end-to-

end with Group OSCORE. 

 

CoAP responses over IP multicast – The CoAP protocol provides the "Observe" feature [HAR15]. This allows 

a client endpoint to register its interest at a server endpoint’s resource, and to automatically receive notification 

responses upon changes in the resource representation. This has been recently enabled also in group 

communication scenarios [RAH14][DIJ21], where one client endpoint can simultaneously observe a shared 

group resource at multiple servers. However, some group applications (e.g., publish-subscribe) would benefit 
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from a reversed pattern, where multiple clients observe the same resource at the same server. Activities on this 

topic have been defining how a server can provide such functionality, by sending one single notification response 

targeting all the observer clients at once (e.g., over IP multicast). Clearly, support must be ensured also in case 

intermediary proxies are used, and in case group communications are protected end-to-end with Group OSCORE. 

 

Caching of OSCORE-protected responses – As originally specified, the security protocol OSCORE does not 

make it possible to cache protected responses at intermediary proxies. That is, two identical plain requests result 

in two different OSCORE-protected requests, which thus never produce a cache hit. Activities on this topic have 

been enabling cacheability of OSCORE responses, building on the new concept of "deterministic request". In 

applications providing content distribution, this allows proxies to serve several clients' requests from their own 

cache, thus yielding less traffic and accesses at the origin servers, as well as achieving considerable improvements 

in terms of performance. 

 

OSCORE-capable proxies – As originally specified, the security protocol OSCORE is intended to be used only 

between two “application endpoints”, acting as origin CoAP client and origin CoAP server. At the same time, it 

is not intended to be used by possible intermediaries, such as transport proxies, deployed between the two 

application endpoints. That is, only the application endpoints are supposed to be also "OSCORE endpoints”, and 

therefore to apply and consume the OSCORE protection to their exchanged messages. As motivated by a number 

of use cases, activities have been ongoing to define how OSCORE can also be used at OSCORE-capable proxies, 

i.e., at OSCORE endpoints that are not necessarily application endpoints. This in turn opens for multiple, nested 

protections of a same CoAP message, by applying multiple OSCORE protection layers in sequence. For instance, 

an origin CoAP client may want to achieve both end-to-end OSCORE protection with the origin server, as well 

as with the adjacent transport intermediary acting as next hop towards the origin server. 

 

Robustness and resilience against Denial of Service – Denial of Service (DoS) attacks aim at making the targeted 

device unavailable for other devices trying to reach it, hence hindering the system from serving legitimate 

requests. This can be very effective in Internet of Things scenarios, where server devices might be constrained in 

terms of hardware resources and energy budget. Activities on this topic have been developing a solution to 

mitigate the impact of these attacks. This relies on a reactive, adaptive and host-based approach that takes as input 

information about ongoing attacks from already used secure communication layers and protocols, such as DTLS 

[RES21]. By assessing the severity of an ongoing attack, the victim device can react by trading service availability 

and quality of service against attack exposure. Under severe attack conditions, this can further leverage a trusted 

intermediary for holding and later relaying messages, as well as the use of low-power modes of operation to limit 

the attack impact on energy consumption. 
 

 

 Access and Usage Control for Server Resources 

The work on this activity area occurs within the Tasks T3.2 “Security Lifecycle Management” and T3.3 

“Dynamic Multi-Domain Security and Safety Policy Handling”. The topics addressed in this activity area are 

presented in Section 5 and summarized below. 

 

OSCORE and Group OSCORE profiles of ACE – The ACE framework for authentication and authorization in 

constrained environments (ACE) [SEI21] delegates to separate specifications the details about secure 

communication between the ACE entities, especially Clients and Resource Servers. Activities on this topic have 

been defining different profiles of ACE, to enable secure communication between Client and Resource Servers 

as based on i) OSCORE; or ii) Group OSCORE, when the Client is member of an OSCORE group and access 

control is enforced for accessing resources at the Resource Servers in the same OSCORE group. Both profiles 

provide mutual authentication of Client and Resource Server, as well as proof-of-possession of involved secret 

keys. 

 

Notification of revoked access credentials – As authorization credentials, the ACE framework relies on Access 
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Tokens, which may not only expire but also be early revoked. However, discovering about revoked Access 

Tokens is limited to ACE Resource Servers, through an actively started “introspection” procedure to be 

performed for one Access Token at the time. Activities on this topic have been designing a solution to enable 

automatic and efficient notification of revoked, although non expired yet, Access Tokens to any device, 

supporting different levels of granularity in the reported information. This in turn can act as a building block to 

enforce usage control through the dynamic revocation of access credentials, following changes in the evaluation 

of access control policies. 

 

Usage control framework – The Usage Control (UCON) model encompasses and extends the traditional access 

control models introducing new features in the decision process: the mutability of attributes of subjects and 

objects and, consequently, the continuity of policy enforcement. The Usage Control System (UCS) is an extension 

of the well-known XACML standard. In particular, the XACML language has been enriched with new constructs 

to enable attribute mutability and to specify policy rules that need continuous enforcement. In addition, the 

XACML architecture has been extended with new components for keeping the current state of accesses, and to 

enable the continuous evaluation of ongoing accesses. 

 

Combined enforcement of access and usage control – The ACE framework relies on an Authorization Server 

(AS) to issue access credentials in the form of Access Tokens. When doing so, the AS is agnostic of the exact 

approaches taken to evaluate access control policies for the different Clients requesting an Access Token. 

Furthermore, if dynamic policy evaluation is used as a building block to enforce usage control, this would 

practically require convenient means to promptly notify about possible revoked Access Tokens. Activities on this 

topic have focused on bringing together some of the items mentioned above, in order to: i) perform advanced and 

dynamic evaluation of access control policies on the AS, by means of an advanced policy evaluation engine; and 

ii) enable the automatic notification of revoked access credentials. This practically enables the ACE framework 

to enforce access & usage control patterns for accessing the resources of the servers. 
 

 

  Establishment and Management of Keying Material 

The work on this activity area occurs within the Task T3.2 “Security Lifecycle Management”. The topics 

addressed in this activity area are presented in Section 6 and summarized below. 

 

Management for group OSCORE (distribution of group keying material; group configuration; discovery) – 

Group communications for the CoAP protocol protected with the Group OSCORE security protocol rely on an 

OSCORE Group Manager acting as Key Distribution Center. Among other things, the Group Manager is 

responsible for driving the joining process of new authorized group members and for providing those with the 

required group keying material, as well as for providing possible assistance to current group members. Besides, 

two additional services are required to cover the full lifecycle of an OSCORE group. First, authorized 

Administrators must be able to create and configure OSCORE groups at the Group Manager. Second, just 

deployed devices must be able to discover an OSCORE group, and especially which Group Manager they should 

contact in order to join it as new group members. 

 

EDHOC - Key establishment for OSCORE, including profiling and performance optimizations – The key 

establishment protocol Ephemeral Diffie-Hellman Over COSE (EDHOC) currently under development enables 

the lightweight establishment of keying material between two constrained devices, using COSE as its core 

building block. Key establishment through EDHOC also provides mutual authentication of the two devices and 

Forward Secrecy of the established keying material. Its main use case is to establish a Security Context that the 

two devices can use to protect their communications with OSCORE. Specific performance optimizations are also 

under development, especially the merging of, on one hand, the last EDHOC message, and, on the other hand, 

the first request protected with the OSCORE Security Context derived through an EDHOC execution. 

 

Key limits and lightweight key update for OSCORE – The security protocol OSCORE provides application-
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layer end-to-end protection between endpoints communicating with the CoAP protocol. Specifically, OSCORE 

uses AEAD algorithms to ensure integrity and confidentiality of the exchanged messages. A security analysis of 

such algorithms [GÜN21] has identified issues that, in the long run, can allow forgery attacks. Thus, limits must 

be considered as to how many times a certain key is used for encryption, or how many failed decryptions should 

be tolerated for one key. When these limits are exceeded, further use of the same key can break the security 

properties of the used AEAD algorithm. Activities on this topic have focused on i) defining appropriate key usage 

limits when using OSCORE and how to take them into account; and ii) defining an efficient and lightweight 

procedure for two OSCORE endpoints to update OSCORE keying material, while preserving Forward Secrecy. 

 

Use of OSCORE and EDHOC in the LwM2M management framework – The standard OMA Lightweight 

Machine-to-Machine (LwM2M) [OMA-CORE] defines a framework for configuring, monitoring and controlling 

IoT devices, namely LwM2M Clients. This relies on a Bootstrap Server (BS) assisting the LwM2M Client in its 

early enrollment phase, and on a LwM2M Server acting as Device Manager where the LwM2M Client “registers” 

after bootstrapping. The LwM2M standard relies on the CoAP protocol as the main option for transporting 

messages and supports OSCORE as the end-to-end secure communication protocol at the application level 

[OMA-TP]. Typically, the BS provides the LwM2M Client with information to derive an OSCORE Security 

Context to use with the LwM2M Server. This has limited flexibility and does not ensure Forward Secrecy of the 

OSCORE keying material. Activities on this topic have focused on defining how, by following indications from 

the BS, a LwM2M Client can establish an OSCORE Security Context with the LwM2M server by executing the 

key establishment protocol EDHOC, thus overcoming the limitations above. 
 

 
Figure 2.1 - Overview of the network & system security solutions and their relation 

 

 

Figure 2.1 provides a graphical overview of the security solutions mentioned above, as well as of how they relate 

and interact with one another. Security solutions available to a home device as well as their domain can be fairly 
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split into two, i.e., what lies above and below the double-dashed blue line in Figure 2.1. 

 

What lies above the double-dashed blue line relates to secure and robust communication, i.e., to the first activity 

area summarized above, and pertains to the SIFIS-Home module “Secure Communication Layer”. In particular, 

it comprises OSCORE to provide end-to-end protection of one-to-one messages, as well as Group OSCORE to 

provide end-to-end protection of one-to-one and one-to-many messages in group communication exchanges. An 

external intermediary can be deployed between sender and recipient endpoints, as a transport proxy and facilitator 

in counteracting DoS attacks. In such a case, this proxy can preserve cacheability of OSCORE-protected response 

message and may be able to actively use OSCORE. 

 

What lies below the double-dashed blue line is related to the security lifecycle management, i.e., to the second 

and third activity areas summarized above. In particular, this comprises: i) the use and processing of access 

credentials issued by an external Authorization Server (AS), which can especially be used to enforce authorization 

in joining security groups where Group OSCORE is used; ii) methods for establishing and renewing keying 

material between two endpoints (either directly or as part of an authorization workflow), as well as for obtaining 

group keying material as part of an authorized group joining process; iii) methods for discovery, among other 

endpoints and resources, a Key Distribution Center (KDC) acting as Group Manager for a security group  where 

Group OSCORE is used. 

 

A number of security solutions related to security lifecycle management is facilitated by auxiliary entities, 

typically in control of a privileged Administrator. These are, for instance: i) the KDC responsible for one or 

multiple security groups; ii) an AS responsible to issue access credentials according to pre-installed access 

policies; iii) a Resource Directory that facilitates the discovery of links to server devices and their resources; and 

iv) a pair of Bootstrap Server and LwM2M Server, with which a device acting as LwM2M Client interacts 

throughout the Bootstrapping and Registration process as well as follow-up exchanges. 

 

 

3 Background Concepts and Technologies 

 

This section introduces background concepts and technologies referred hereafter. 

 

 CoAP 

The Constrained Application Protocol (CoAP) [SHE14] is an application layer, web transfer protocol based on 

the Representational State Transfer (REST) paradigm [FIE00]. CoAP is designed for resource constrained 

devices and networks, and is now a de-facto standard application-layer protocol for the IoT. 

 

CoAP typically runs on top of UDP [POS80], is not session-based and can handle loss or delayed delivery of 

messages. More recently, [BOR18] has defined how CoAP can work also on top of TCP [POS81] as well as 

WebSockets [FET11]. 

 

In typical resource-constrained deployments, several IoT nodes have limited resources in terms of memory, 

computing power, and energy (if battery-powered). This results in constrained network segments, e.g., due to 

lossy channels and limited bandwidth [BOR14]. In order to cope with this, resource-constrained nodes tend to 

adopt an asynchronous and intermittent communication model, i.e., they handle network traffic according to 

sending/receiving timeslots. To save energy, nodes can go offline (sleep), between two active timeslots, 

considerably extending their lifetime. 

 

To manage these limitations, CoAP features an asynchronous messaging model and has native support for 

proxying. That is, proxies are used as intermediaries to enable access to server nodes that are not always online, 

by forwarding requests addressed to them, as well as caching and forwarding back their responses with 

consequent reduction of communication latencies. 
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Being a RESTful protocol, CoAP considers a Client and a Server as communicating parties, where the Client 

sends a Request to the Server, which replies by sending a Response. Depending on the operation to perform, 

CoAP Requests can be of different REST types, e.g., GET, PUT, POST, FETCH, PATCH/iPATCH and 

DELETE. 

 

A CoAP message is divided into header and payload. The header is composed of: i) 4 bytes, including information 

such as the REST code specifying the different request/response type and a Message ID to match a 

Request/Response message with an Acknowledgment; ii) an optional Token to match request and response 

messages; and, possibly, iii) a number of options specified according to a Type-Length-Value format and used to 

control additional features. For example, CoAP options can be used to instruct a proxy on how to handle 

messages, specify for how long a message is valid, or indicate message fragmentation at the application layer. 

 

A number of extensions for CoAP have been engineered. In particular, the Observe extension defined in [HAR15] 

allows a client to “subscribe” for updates to a resource representation at a server. That is, the client sends a first 

request targeting a resource at the server that it is interested in observing, including a new CoAP Observe option 

in the request. Following a first response where the server confirms that an observation has indeed started, the 

server will send unsolicited responses, namely notifications, to the observing client, when the resource 

representation changes. All such notifications sent by the server will match the same original observation request. 

 

The original CoAP specification [SHE14] indicates only the Datagram Transport Layer Security (DTLS) 1.2 

[RES12] protocol to secure message exchanges (see Section 3.4). More recently, the security protocol Object 

Security for Constrained RESTful Environments (OSCORE) [SEL19] has been standardized to provide end-to-

end security of CoAP messages at the application layer (see Section 3.7). 

 

 

 Group CoAP 

The CoAP protocol has been designed also to work in group communication scenarios, and in particular relying 

on IP Multicast. While the main CoAP specification [SHE14] describes the main features, this mode of operation 

has been detailed in the separate Experimental document [RAH14]. At the time of this writing, the new document 

[DIJ21] is intended to replace and obsolete [RAH14], by providing more up-to-date details concerning especially 

organization, maintenance and discovery of different types of groups; usage of CoAP Observation [HAR15] 

within groups; and security for group communication. 

 

From a high-level point of view, the main feature of group communication is that a client may transmit a single 

request message as addressed to multiple recipient servers at once. Practically, this can be achieved by delivering 

the group request over IP Multicast. At this point, the client may not know the amount of other group members 

included in the group. 

 

After that, all the servers listening to the IP Multicast address and receiving the single group request may reply 

to the client, each with its own individual response over IP unicast. This communication model is especially 

convenient for the following classes of applications. 

 

• Discovery and identification of networked devices, or of particular services represented as resources at 

those devices. This relies on requests to interfaces for resource discovery, or on requests to well-known 

resources hosted at reachable devices. 

• Group controlling of multiple actuator devices, intended to synchronously act as a group, possibly with 

timing requirements. Typical examples include lighting applications or broadcast audio alert systems. 

• Group status request from multiple devices, in order to monitor the status and operations of multiple units 

at once. After a first round of feedback, each device can be further polled and addressed individually 

through one-to-one communication. 

• Network-wide queries and notifications, to broadly query or notify about status and change of specific 
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information within a group of devices. In the case of network-wide notifications, a response is typically 

not expected to be sent back by the recipient servers. 

• Software update distribution, in order to provide a same new software release or patch to multiple devices 

within a same group. Since large software updates are supposed to be transferred in smaller blocks, and 

due to the inherent unreliability of CoAP over multicast, backup mechanisms should be in place for 

servers to individually request for possible missing blocks. 

 

When CoAP is used in a group communication scenario, a client can also send a request to the whole group over 

IP Multicast, for which it does not expect a corresponding acknowledgement back. In fact, this would be 

practically infeasible, since the client is not supposed to know how many servers are currently present in the 

group. This means that possible retransmissions of requests have to be handled by the client application, rather 

than by the actual CoAP stack layer. 

 

Furthermore, the client sending a single group request has to be ready to receive multiple individual responses 

from the servers in the group, as matching to that same request. To this end, and unlike in one-to-one CoAP, the 

client has to preserve a group request beyond the reception of a first matching response, and until the expiration 

of a pre-defined timeout. 

 

On the other hand, a server receiving a group request may either ignore it or send back a response to the client, 

depending on the application and its policies. If it replies, the server should not do that right after having processed 

the request, but rather after an additional randomly-selected time, up to a pre-defined leisure time. This makes it 

possible to avoid multiple servers simultaneously replying to a same group request, hence preventing message 

collisions and spreading responses over time in order to further prevent network congestion. 

 

The original CoAP specification [SHE14] indicates only the Datagram Transport Layer Security (DTLS) 1.2 

[RES12] protocol to secure message exchanges (see Section 3.4). However, DTLS is designed only to protect 

one-to-one message exchanges, over IP Unicast. Therefore, DTLS cannot be used to secure communications over 

IP Multicast in a CoAP group. To this end, the ongoing standardization proposal Group Object Security for 

Constrained RESTful Environment (Group OSCORE) [TIL21a] must be used as security protocol (see Section 

4.1). 

 

 

 Channel Security and Object Security 

Channel security refers to the transmission of data over a secure channel [RES03]. The secure channel can be 

negotiated at different layers of the protocol stack, i.e., at the data link, network or transport layer, through a 

specific establishment protocol. In particular, a secure channel handles data in an agnostic fashion, i.e., it has no 

knowledge of the secure data it conveys. 

 

On the other hand, object security refers to protection mechanisms for data objects, and acts as an alternative to 

secure channels [RES03]. That is, instead of relying on a communication protocol at a lower layer to protect 

exchanged messages, applications also take care of protecting and verifying data objects of their own messages 

they generate and exchange. 

 

 

 DTLS 

Datagram Transport Layer Security (DTLS) 1.2 [RES12] is an Internet standard providing channel security at the 

transport layer, to protect communications over unreliable datagram protocols such as UDP [POS80]. In 

particular, security is ensured hop-by-hop, between two nodes that are adjacent transport-layer hops. DTLS is a 

close copy of the Transport Layer Security (TLS) 1.2 protocol [DIE08] and provides equivalent security 

guarantees, i.e., it prevents tampering, eavesdropping and message forgery. Specifically, DTLS is adapted for use 

over UDP [POS80] instead of TCP [POS81], which is important for constrained devices and networks relying on 
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UDP as a connectionless transport protocol. The original CoAP specification [SHE14] indicates DTLS as the 

only security mechanism for protecting the exchange of CoAP messages. 

 

Two communicating devices initially run the DTLS Handshake protocol, in order to exchange network- and 

security-related information, as well as to establish cryptographic keying material for later message protection. 

Specifically, one device acts as client and starts the Handshake execution, while the other device acts as server. 

The default Handshake mode relies on certificates, but constrained applications often prefer extensions based on 

symmetric pre-shared keys [ERO05] or on raw public keys [WOU14]. When the Handshake is completed and a 

secure session is established, the client and server can start exchanging data protected through the negotiated 

session keying material. 

 

Currently, DTLS 1.3 [RES21] is an ongoing standardization proposal, aimed at providing the same security 

guarantees of the recently standardized TLS 1.3 [RES18] over unreliable transports such as UDP. 

 

 

 CBOR and COSE 

Concise Binary Object Representation (CBOR) [BOR20] is a data encoding format designed to handle binary 

data. Its primary goal is achieving a very small parser code size, followed by the secondary goal of achieving a 

small message size. 

 

CBOR Object Signing and Encryption (COSE) [SCH17] builds on CBOR, and specifies how to perform 

encryption, signing and Message Authentication Code (MAC) operations on CBOR data, as well as how to 

encode the result in CBOR. As a further supporting feature, COSE defines how to encode cryptographic keys in 

CBOR. 

 

 

 End-to-End Security 

A considerable amount of IoT devices is resource-constrained, with many of them even battery powered. Thus, 

it is important to limit their resource consumption, especially with respect to energy, in order to achieve a long 

device lifetime and acceptable performance. Improving energy performance may rely on device sleeping, which 

in turn results in the preference for an asynchronous communication model. However, to still provide well 

functioning communications and services, it becomes necessary to schedule requests to sleeping nodes with the 

help of proxies, used as intermediaries between clients and servers. 

 

 
 

 

Figure 3.1 - Hop-by-hop vs. end-to-end security 

 

 

The original CoAP specification [SHE14] indicates DTLS [RES12] as the only method to achieve secure 

communication for CoAP. As a result, when a proxy is deployed between a client and a server, messages are 

protected hop-by-hop, i.e., first between client and proxy, and then separately between proxy and server, as shown 
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in Figure 3.1(a). Therefore, in the presence of an intermediary proxy, DTLS cannot provide end-to-end secure 

communication between a client and server node. Instead, a first secure channel has to be established between 

the client and the proxy, and a second, different secure channel has to be established between the proxy and the 

server. However, this results in a number of security and privacy issues and limitations. 

 

First, this makes it necessary to perform a double security processing of CoAP messages, since the proxy has to 

decrypt a message received on the client DTLS channel, and then re-encrypt the same message for delivery on 

the server DTLS channel. This has an impact on the network and application performance, and especially on the 

Round Trip Time perceived by the client when eventually receiving a response. 

 

Second, the proxy has to be necessarily trusted beyond what is strictly necessary to perform the intended 

operation. In fact, the proxy is effectively able to fully access the CoAP messages it relays to the server and back 

to the client. However, mandating such an extent of trust in proxies and in the service providers operating them 

clearly results in unnecessary and excessive exposure of data, which in turn creates opportunities to tamper with 

them and easily raises privacy implications. 

 

Figure 3.1(b) shows the alternative approach based on end-to-end security, where the client and the server rely 

on a two-way secure communication context. This approach essentially consists in tunneling channel security 

through the proxy, and thus successfully overcomes the two limitations discussed above. However, to be 

practically deployable and functional, a solution based on end-to-end security must not prevent the proxy to 

correctly perform its intended operations, especially the forwarding of CoAP requests and the caching of CoAP 

responses. As a consequence, it must also be possible to selectively protect different parts of a same CoAP 

message in different ways, i.e., some encrypted, others only integrity protected and finally some parts fully 

accessible by the proxy. 

 

This flexibility can be achieved by using object security, so that applications can choose which parts of an 

outgoing message have to be integrity-protected, encrypted, or both. It is worth noting that protecting only the 

CoAP payload is not sufficient, as it does not protect against several other attacks, such as changing the REST 

Code field in the CoAP header, e.g., from GET to DELETE, which tricks a server into deleting a resource instead 

of returning its representation. 

 

The points discussed above have motivated the need for lightweight end-to-end security, which also preserves 

proxying functionalities. This has in turn led to the design of OSCORE [SEL19], an application-layer protocol 

based on object security, which indeed fulfills these requirements. 
 

 

  OSCORE 

This section describes Object Security for Constrained RESTful Environments (OSCORE). For the reader’s 

convenience and due to space constraints, we only present the main features, while a complete description is 

available at [SEL19]. OSCORE provides message confidentiality, integrity and reordering/replay protection, as 

well as a weak freshness protection through sequence numbers for CoAP messages. To this end, OSCORE 

transforms an unprotected CoAP message into a protected CoAP message. A protected CoAP message includes 

the newly defined OSCORE option [SEL19], which signals the usage of OSCORE to protect the message, as 

well as an encrypted COSE object [SCH17] in the CoAP payload. 

 

OSCORE is designed for providing end-to-end security between two CoAP endpoints, while preventing 

intermediaries to alter or access any message field that is not related to their intended operations. The security 

concerns not only the actual payload of the original CoAP message, but also all the fully protected CoAP options, 

the original request and response REST code, as well as parts of the URI to resources targeted in request messages 

(see Section 3.7.3). 

 

To be able to use OSCORE, the following two criteria must be fulfilled. First, the two CoAP endpoints are 
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required to support CBOR and COSE (see Section 3.5), as well as the specific HMAC-based Key Derivation 

Function (HKDF) and Authenticated Encryption with Associated Data (AEAD) algorithms they want to use for 

key derivation and authenticated encryption, respectively. This assumption is often already fulfilled in the vast 

majority of IoT applications using CoAP. Second, the two CoAP endpoints are required to have an OSCORE 

security context (see Section 3.7.1), or the necessary information and keying material to derive it. While this has 

to happen in a secure and authenticated way, and some suitable approaches are proposed in [PAL21a] (see Section 

5.1) and [SEL21] (see Section 6.3), OSCORE is not tied to any particular approach for context establishment. 

 

A Java implementation of OSCORE from RISE has been integrated in the Californium library [CALIFORNIUM] 

from the Eclipse Foundation, and is available for use in the SIFIS-Home project. A Contiki-NG implementation 

of OSCORE from RISE is available at [OSC-DEV], and intended to be integrated in the Contiki-NG operating 

system [Contiki-NG]. 

 

An experimental performance evaluation of the OSCORE protocol has been performed and published in 

[GUN21], based on the two implementations above and involving real resource-constrained IoT devices. 
 

3.7.1  OSCORE Security Context 

OSCORE uses parameters and keying material included in an OSCORE security context, and used to perform 

encryption and integrity protection operations. For this reason, every pair of communication endpoints, i.e., a 

CoAP client and CoAP server, share the same security context. 

 

The security context consists of three parts: a Sender part, a Recipient part and a Common part. The Sender part 

is used to protect outgoing messages (i.e., requests on the client and responses on the server). The Recipient part 

is used to verify incoming protected messages (i.e., requests on the server and responses on the client). Finally, 

the Common part contains shared data. This division is illustrated in Figure 3.2. 

 

An instance of a security context is present as a copy on the client and server, containing the same data values. 

However, as can be seen in Figure 3.2, the sender and recipient parts are mirrored, so that the sender part of the 

server corresponds to the recipient part of the client, and vice versa. 
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Figure 3.2 - OSCORE Security Contexts for a Client and Server pair (only the fields used during operation) 
 

 

More in detail, the Common part includes: 

• an identifier of the AEAD algorithm used to encrypt and authenticate exchanged messages; 

• an identifier of the HMAC-based key derivation function used to derive keys and initialization vectors 

(IVs); 

• the Master Secret, a random byte string used to derive keys and IVs; 

• the Master Salt, an optional byte string used with the Master Secret to derive the keys and IVs;  

• a Context ID, used to identify the Common Context and to derive keys and IVs;  

• a Common IV to generate AEAD nonces. This is the only element of the common part which is going to 

be updated, throughout the lifetime of the Security Context. 

 
 

The Sender part includes:  

• a Sender ID, a byte string identifying the Sender part of the security context; 

• a Sender Key, the symmetric key to protect outgoing messages;  

• a Sequence Number, used for nonce generation to protect outgoing messages, and for replay protection 

of incoming messages (see Section 3.7.4). 

 

 

The Recipient part includes:  

• a Recipient ID, a byte string identifying the Recipient part of the security context; 

• a Recipient Key, the symmetric key to decrypt incoming messages; 

• a Replay Window to verify freshness of incoming messages on the CoAP server (see Section 3.7.4). 

 
 

The combination of Context ID, Sender ID, Master Secret and Master Salt must be unique for each 

communicating pair of Client and Server. This ensures unique keys and nonces for the AEAD. Further details on 

establishing Sender/Recipient IDs and ensuring their uniqueness are out scope for OSCORE and this document. 
 

3.7.2  Protecting the CoAP Message 

Different parts in a CoAP message are protected in different ways. That is, Confidential data, which should 

neither be read or altered by a proxy, are both encrypted and integrity protected. Static data, which should be 

readable but not changed, are integrity protected but not encrypted. Dynamic data, which a proxy should be able 

to modify, are not protected. Finally, there are also Mutually known data, which the sender and receiver have 

agreed upon before exchanging messages. These data are part of the input to the integrity protection process, to 

ensure that the two communicating endpoints behave correctly and possibly detect anomalies. However, they are 

never sent as both parties already know them. 
 

Figure 3.3 shows a comparison between an unprotected CoAP message and the resulting OSCORE-protected 

CoAP message. We can see that sensitive parts of a message are encrypted, e.g., some options and the payload, 

while others are left unencrypted, e.g., some options and some fields of the CoAP header. The encrypted content 

is placed into the payload of the protected message. 
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Figure 3.3 - Message layout for unprotected and protected CoAP messages 

 

 

The actual protection process takes as input an unprotected CoAP message and produces a protected OSCORE 

message as follows. 

 

1. The confidential data are enclosed into a COSE object [SCH17]. These include the REST code of the 

original CoAP message, a subset of the CoAP options, and the CoAP payload (if present). The CoAP 

options considered at this step are the ones not relevant for operations of  intermediary (proxy) units. 

2. The static fields of the CoAP header and static proxy-readable CoAP options need to be authenticated 

and integrity protected, but not to be encrypted. This set of data composes the Additional Authenticated 

Data (AAD). 

3. The COSE object is finalized, by encrypting and integrity protecting the data it encloses, while only 

integrity protecting the AAD. To this end, the Sender Key and the Sender Sequence Number from the 

Sender Context are used. The resulting ciphertext and AEAD-tag is included in the Message Content 

field of the COSE Object. 

4. The COSE object is used as payload of the protected CoAP message, and any encrypted options are 

removed from the CoAP message. The original REST code is replaced with either POST (2.04) for a 

CoAP request (response), or with FETCH (2.05) for a CoAP request (response) using the CoAP 

mechanism Observe [HAR15] for which the POST method is not defined. 

 

An analogous reverse process is performed upon receiving a protected message, together with anti-replay checks 

(see Section 3.7.4). To decrypt the protected message, the recipient CoAP endpoint uses the Recipient Key from 

its own Recipient Context associated with the message originator. 
 

3.7.3 Proxy Functionalities and Data Protection 

Building on the previous sections, we can now describe how OSCORE handles proxying of encrypted messages. 

OSCORE is designed to uniquely bind each request to the corresponding response, thus preventing proxies from 

serving cached responses to clients different from the one originating the request. 

 

As previously stated, OSCORE cannot encrypt entire CoAP messages. An example of static data in a CoAP 
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message which cannot be encrypted but should be integrity protected is the Version field of the CoAP header. 

This field has to remain readable, so that the receiver endpoint knows how to process an incoming message, but 

should be integrity protected to prevent future version-based attacks. The Token field of the CoAP header also 

has to remain readable, as it is used for binding each request to the corresponding response. However, unlike the 

Version field, the Token field cannot be integrity protected, as it can be modified by proxies, when a message 

traverses the network. 
 

3.7.4  Replay Protection 

OSCORE provides protection against replay and message reordering attacks. To this end, both the client and 

server store a sequence number and a replay window as part of the security context (see Section 3.7.1) and include 

said sequence number in every outgoing request, before incrementing it by 1. 

 

Upon receiving a protected request, the server verifies that the conveyed sequence number was not received 

before. To correctly handle messages received out of order, OSCORE relies on a sliding window of sequence 

numbers, where the server accepts only messages with sequence number greater than the lower bound of the 

replay window. In such a case, the server updates its replay window accordingly. Otherwise, the server considers 

the message to be a retransmission and discards it. 

 
 

 ACE Framework for Authentication and Authorization 

Authorization can be described as the process for granting approval to an entity to access a resource. In practice, 

the authorization consists in enabling a requesting device to access a resource at a given host device. 

 

IoT devices can be quite diverse in terms of available computing resources and communication capabilities which 

means that there is a need to support many different authorization use cases. Furthermore, many IoT devices are 

constrained in terms of available memory, battery power, processing capabilities, network bandwidth, or some 

other resource. Thus, authorization solutions applied for IoT scenarios have to be flexible and feasible also for 

resource-constrained platforms. 

 

In networks composed of IoT devices, most of the devices can in fact be constrained, with the notable exception 

of those that serve as intermediary proxies, key distribution servers or providers of some other central 

management service. Due to this reason, it can be beneficial to entirely offload decision making, authorization-

related cryptographic operations and similar from the (constrained) host devices to a dedicated central 

management service. This is accomplished by separating authorization to access a resource from the actual 

resource itself. Additionally, it is convenient to centrally manage the granting to resource access in a network. 

This is especially beneficial when designing, managing, and operating the network. 

 

The ACE framework for Authentication and Authorization in Constrained Environments [SEI21] is based on the 

widely deployed OAuth 2.0 [HAR12] authorization framework, and essentially enables its functionalities in the 

IoT. In particular, the ACE framework mainly relies on the following set of existing components. 

 

The main functionality and overall approach are inherited from the OAuth 2.0 framework, a standard, widely 

adopted solution for authorization and access control. Another component is COSE [SCH17], a compact encoding 

format for security information based on CBOR [BOR20], which is in turn a binary encoding format designed 

for small message sizes and code. Furthermore, the lightweight, web-transfer protocol CoAP [SHE14] is 

(preferably) used. In particular, CoAP can be used for communication scenarios where HTTP is not appropriate. 

In addition, CoAP typically runs on top of UDP [POS80], which provides additional benefits in the form of 

reduced message exchanges and overhead. Lastly, CoAP messages can be secured at the transport layer by using 

the DTLS protocol suite [RES12], and/or end-to-end at the application layer by using the OSCORE security 

protocol [SEL19]. 
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By choosing well established components, existing authorization services can be brought into the IoT 

environment in a secure way. Additionally, these components are flexible enough to provide security for a wide 

range of IoT devices and deployments. This is important as IoT devices are quite diverse and can encompass both 

very resource constrained, battery-powered devices but also more capable devices with a reliable power supply. 

 

A Java implementation of the ACE framework from RISE is accessible at [ACE-DEV], as available for use in 

the SIFIS-Home project. 

 

3.8.1 ACE Entities 

The units involved in a typical interaction as defined by the ACE framework are the following. 

 

The Client (C) is a device wanting access to a specific resource at a given host, namely the Resource Server (RS). 

The Authorization Server (AS) is responsible for authorizing client devices to access remote resources hosted at 

a Resource Server, and for providing them with evidence of such authorization. 

 

This evidence typically consists of an Access Token, and is used by C to access protected resources on the RS. 

Typically, an Access Token is represented as a CBOR Web Token (CWT) [JON18][JON20] efficiently encoded 

as an object in CBOR [BOR13], or alternatively as a JSON Web Token (JWT) [JON15][JON16] encoded in 

JSON [BRA17]. 

 

Detailed documentation on how ACE should be implemented for different scenarios can be found in related 

application and security profiles (see Section 3.8.3). In particular, the ACE framework delegates to the profiles 

the description of how to use the main specification with concrete transport and communication security protocols 

between the involved entities. 

 

The following describes a typical interaction in the ACE framework between the involved entities C, AS and RS. 

 

3.8.2 ACE Workflow 

As also shown in Figure 3.4, the following steps occur during a full ACE transaction. 

 

 

 
 

Figure 3.4 - ACE Framework workflow. 
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1. C sends a request for an Access Token to the AS, targeting the /token endpoint at the AS. When doing 

so, C specifies: 

• The target RS as "audience". 

• The requested “scope”, i.e., the resources it wishes to access at the RS and through which operations. 

• According to the used ACE profile and its selected mode, its own public key. 

 

2. The AS evaluates the request from C against access control policies for the RS, as pre-established by the 

resource owner. In case of success, the AS produces an Access Token as evidence of the granted 

authorization. Depending on the used ACE profile and its mode, the AS also generates a symmetric key 

K, intended to be shared between C and RS. Then, the AS includes, among other elements, the following 

information in the Access Token: 

• The "audience" and the "scope" granted to C. 

• Optionally, an indication of the used ACE profile. 

• According to the used ACE profile and its selected mode, the symmetric key K or the public key of 

C. 

 

3. The AS provides C with the following information: 

• The exact "scope" actually granted to C and specified in the Access Token, if it was possible to only 

partially satisfy the request. 

• Either the newly generated symmetric key K or, the public key of the RS, depending on the used 

ACE profile and its selected mode. 

• Optionally, an indication of the profile of ACE to use. 

• The Access Token, as either encrypted and authenticated, or instead signed. If encrypted, the Access 

Token is protected with keying material shared only between the AS and the RS. In either case, the 

Access Token is opaque to C, which does not understand its content and structure. 

 

4. In case of positive response from the AS, then C uploads the Access Token to the RS. This typically 

happens by sending a request to the /authz-info endpoint at the RS. 

 

5. The RS verifies that the Access Token is intact and actually originated by the AS, by possibly decrypting 

it. Then, the RS verifies that the content of the Access Token is consistent with its own resources and 

scopes. If so, the RS stores the Access Token. 

 

6. Depending on the used profile of ACE and its selected mode, C and RS perform possible additional 

exchanges and operations, in order to establish a secure communication association. To this end, they 

rely on the keying material facilitated by the AS during the previous steps, i.e., each other's public keys 

or the symmetric key K. Also depending on the used profile of ACE, parts of this step might be combined 

with the uploading of the Access Token at step 4. 

 

7. C sends a request to RS, in order to perform an operation at one of the resources hosted at RS, consistently 

with the “scope” granted by the AS at step 3 above. The request is protected using the established secure 

communication association. 

 

8. The RS checks the request against the Access Token stored for C, and verifies that the requested access 

and specific operation are in fact consistent with the "scope" in the stored Access Token. In case of 

positive outcome, the RS processes the request from C and possibly replies with a response. The response 

is protected using the established secure communication association. 

 

 

As an optional feature, the AS can provide an additional service to the RS called "introspection". That is, upon 

receiving an Access Token or later on while storing it, the RS can send a request to the /introspect endpoint of 
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the AS, specifying the whole Access Token or a reference to it. The AS can then return fresh information on the 

current status and validity of the Access Token, that the RS can consider to determine whether to accept or 

preserve the Access Token. 

 

 

3.8.3 ACE Security Profiles 

The following steps occur during a full ACE transaction. 

 

Among other things, an ACE profile has to specify the following points. 

• The Communication and security protocol for interactions between the involved entities, as providing 

encryption, integrity protection, replay protection and a binding between requests and responses. 

• The method used by the client and Resource Server to mutually authenticate. 

• The (secure) method for the client to upload an Access Token at the Resource Server. 

• The specific key types used (e.g., symmetric/asymmetric), and the protocol for the Resource Server to 

assert that the Client possesses such keys (proof-of-possession). 

 

The following Section 3.8.3.1 provides an overview of the DTLS profile of ACE. Further security profiles of 

ACE developed within the SIFIS-Home project are presented in Section 5.1. 

 

3.8.3.1 DTLS Profile 
The DTLS profile of ACE defined at [GER21] describes how a Client (C) and a Resource Server (RS) can engage 

in the ACE workflow and establish a DTLS channel for securely communicating with one another using the 

DTLS 1.2 protocol suite [RES12]. The DTLS profile provides two different modes of operation, i.e., the 

asymmetric mode and the symmetric mode. 

 

Asymmetric mode. In the Token request to the Authorization Server (AS), C includes also its own public key. 

Then, the AS includes the public key of C into the Access Token to be released. After that, the AS provides C 

with both the Access Token and the public key of the RS. For the sake of proof-of-possession, C has to prove to 

the RS to possess the private key corresponding to the public key specified in the Access Token. After uploading 

the Access Token to the RS, C starts performing a DTLS handshake with the RS, in asymmetric mode. In 

particular, C and RS authenticate each other using their own public keys as Raw Public Keys (RPK) [WOU14]. 

 

Symmetric mode. Upon receiving the Token request from C, the AS generates a symmetric key K and includes 

it into the Access Token to be released. After that, the AS provides C with both the Access Token and the key K. 

For the sake of proof-of-possession, C has to prove to the RS to also possess the key K specified in the Access 

Token. After uploading the Access Token to the RS, C starts performing a DTLS handshake with the RS, in 

symmetric mode. In particular, C and RS authenticate each other using K as pre-shared key [ERO05]. As a 

particular, optimized alternative, it is possible to convey the whole Access Token itself within one of the 

handshake messages from C to the RS, rather than as a separate message before the handshake can start. 

 

In both modes, a successful completion of the DTLS handshake achieves proof-of-possession. From then on, C 

and RS securely communicates using the established DTLS channel. 

 

The Java implementation of the ACE framework from RISE accessible at [ACE-DEV] provides also the DTLS 

profile, both in asymmetric and symmetric mode, and is available for use in the SIFIS-Home project. 

 

 

  Dynamic evaluation of access policies 

The Usage Control (UCON) model defined in [PAR04][ZHA05] encompasses and extends other traditional 

access control models. In particular, the UCON model introduces new features in the decision process, such as 
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the mutability of attributes of subjects and objects and, consequently, the continuity of policy enforcement. 

 

These features are meant to guarantee that the right of a subject to use a resource holds not only at access request 

time, but also while the access is in progress. As a matter of fact, rights are dynamic because subjects' and objects' 

attributes change over time, thus requiring continuous enforcement of the security policy during the access time. 

 

 
 

Figure 3.5 - Components of the Usage Control Model 

 

 
In the following, we recall the UCON core components, shown in Figure 3.5. 

 

Subjects and Objects: the entities who exercise their rights on the objects by performing actions on them.  

 

Actions: the operations performed by the subject on the resource.  

 

Attributes: information elements paired to subjects, objects, actions, and environment to describe their features. 

An attribute is immutable when its value can be updated only through an administrative action. An example of 

immutable attribute is the subject's role in systems using the Rule Based Access Control (RBAC) paradigm, as 

updated by the system administrator, for instance as a consequence of a career advancement. 

 

Instead, an attribute is mutable when its value changes over time because of the normal operation of the system. 

Some mutable attributes change their values as a consequence of the policy enforcement, because the policy 

includes attribute update statements that can be executed before (pre-update), during (on-update), or after (post-

update) the execution of the action. As an example, let us consider the mutable attribute which represents the 

number of running VMs deployed by a subject on a Cloud IaaS service. An example of mutable attribute 

concerning the actions is the number of instances of the same action that are currently in execution. 

 

Mutable attributes can change their values also because of other actions performed by the subjects which are not 

regulated by the usage control policy. For instance, the attribute that describes the physical location of the subject 

changes when the subject moves from one place to another. Some mutable attributes change their values due to 

both reasons above. For example, the balance of the subject's e-wallet could decrease because the Usage Control 

policy includes a pre-update statement which states that the subject must pay for executing an action, while it 

could increase when the subject deposits some money in their e-wallet through a bank transaction. Finally, other 

attributes change their values independently of the user behavior. For instance, date, time, and CPU load are 
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attributes of the environment which belong to this last set. 

 

Authorizations: They are predicates that evaluate subject and object attributes and the requested right to decide 

whether the subject is allowed to access the object. The evaluation of the authorization predicates can be 

performed before executing the access (pre-authorizations), or continuously while the access is in progress (on-

authorizations) in order to promptly react to mutable attribute changes. 

 

Conditions: They are environmental or system-oriented decision factors, i.e., dynamic factors that do not depend 

on subjects or objects. Hence, the evaluation of conditions involves attributes of the environment and of an action, 

and it can be executed before (pre-conditions) or during (on-conditions) the execution of the action. 

 

Obligations: They are decision factors considered for verifying whether a subject has satisfied some mandatory 

requirements before performing an action (pre-obligations), or whether a subject continuously satisfies these 

requirements while performing the access (on-obligations). Obligations can be enforced after the execution of 

the action as well (post-obligations), but in this case they cannot affect the execution of the action. 

 

Continuity of Policy Enforcement: Attribute mutability introduces the need to continuously execute the Usage 

Decision process, i.e., while an access is in progress. This is because the values of the attributes that have 

previously authorized the access could change in such a way that the access right does not hold any longer. In 

this case, the access is revoked as soon as the policy violation is detected. 

 

The Usage Control model can be successfully adopted in case of long-standing accesses because the decision 

process consists of two phases: i) the pre-decision phase corresponds to traditional access control, where the 

decision process is performed at request time, to produce an access decision; ii) the on-decision phase is executed 

after the access has started and implements continuity of control, as a specific feature of the UCON model. 

Continuous control implies that policies are re-evaluated each time mutable attributes change their values. The 

pre-decision process evaluates pre-authorizations, pre-conditions as well as pre-obligations, and access is not 

permitted if a policy violation is detected. The on-decision process continuously evaluates on-authorizations, on-

conditions and on-obligations. In this case, if a policy violation is detected, the related ongoing access is 

interrupted. For further details about the Usage Control model and its application to several scenarios please refer 

to [LAZ10]. 
 

 

4 Part 1 – Secure and Robust (Group) Communication for the IoT 

 
This section presents the developed security solutions within the area "Secure and Robust (Group) 

Communication for the IoT". 

 

  Group OSCORE 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29, P-30, P-31, P-32 

• Security Requirements: SE-30, SE-32, SE-33, SE-34, SE-35 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

 
Several deployments relying on CoAP group communication (see Section 3.2) also require security to be 

enforced. That is, the same security requirements of one-to-one communication scenarios have to be fulfilled, 
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also in a group communication setting. In particular, end-to-end security between a message originator and the 

intended message recipient(s) should be achieved. 

 

The currently available standard solutions do not provide this kind of security. In particular, as discussed in 

Section 3.1, the original CoAP specification suggests only DTLS as security protocol to use. However, in group 

communication scenarios this results in the following issues. 

 

First, just as discussed in Section 3.6, DTLS protects communication hop-by-hop at the transport layer. Hence, it 

does not provide end-to-end security, which has led to the development of the OSCORE security protocol (see 

Section 3.7). Second, and most important, DTLS does not support group communication, e.g., over IP Multicast. 

As a consequence, there is currently no standard solution to secure group communication, and especially end-to-

end. 

 

In order to fill this gap, the current standard proposal Group Object Security for Constrained RESTful 

Environments (Group OSCORE) [TIL21a] extends and adapts OSCORE [SEL19] to work also in group 

communication scenarios. In particular, Group OSCORE provides end-to-end security of CoAP messages 

exchanged between members of a group, e.g., using IP multicast. 

 

Specifically, Group OSCORE ensures cryptographic binding between a CoAP group request, sent by a client to 

multiple servers, and the corresponding CoAP responses individually sent by the servers in the group. Since 

message protection builds on commonly shared, group keying material, source authentication of messages 

exchanged in the group is achieved by using asymmetric keying material. This consists in using either digital 

signatures (see Section 4.1.4) or pairwise keys derived from asymmetric, individual keying material (see Section 

4.1.5). 

 

Just like OSCORE, Group OSCORE is independent of the specific transport layer, and it works wherever CoAP 

works. Also, like with OSCORE, it is possible to combine Group OSCORE with communication security on 

other layers. One example is the use of transport layer security, such as DTLS [RES12], between one client and 

one proxy (and vice versa), or between one proxy and one server (and vice versa), to protect the routing 

information of packets from observers. Note that, as discussed above, DTLS cannot be used to secure messages 

sent over IP multicast. 

 

Group OSCORE defines two different modes, as different ways to protect CoAP messages. It is up to the 

application to decide in which particular mode a particular message has to be protected. 

 

• In the group mode, Group OSCORE requests and responses are encrypted with symmetric keying 

material as well as digitally signed, by using the private key of the sender CoAP endpoint. The group 

mode also supports signature verification by intermediaries external to the OSCORE group, e.g., 

gateways. 

• In the pairwise mode, two group members can exchange unicast requests and responses, as protected 

only with symmetric keys and not including a signature. These symmetric keys are derived from Diffie-

Hellman shared secrets, calculated with the asymmetric keys of the two group members. As a signature 

is not included, this results in a smaller message overhead. This method is intended for one-to-one 

messages sent in  the group, i.e., it is applicable to all responses, as individually sent by servers, 

and to requests addressed to an individual server. 

 

Finally, just as OSCORE, Group OSCORE provides message binding of responses to requests, which in turn 

provides relative freshness of responses, and replay protection of requests. In particular, Group OSCORE fulfils 

the following security objectives: 
• data replay protection; 

• source authentication; 

• message integrity; 

• group-level data confidentiality (in group mode) or pairwise data confidentiality (in pairwise mode); 
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• proof of group membership, i.e., a message recipient is able to assert whether the message sender is a 

current group member; 

• group privacy, i.e., an adversary cannot track a user across two OSCORE groups, unless (s)he is also a 

member of both such groups. 

 
A Java implementation of Group OSCORE from RISE is currently under development at [GOSC-DEVa], with 

plans for integration in the Californium library [CALIFORNIUM] from the Eclipse Foundation, as available for 

use in the SIFIS-Home project. 

 

A Contiki-NG implementation of Group OSCORE from RISE is currently under development at [GOSC-DEVb], 

as intended to be integrated in the Contiki-NG operating system [Contiki-NG]. An experimental performance 

evaluation of Group OSCORE has been performed and published in [GUN22], based on the implementation 

above and involving real resource-constrained IoT devices. 

 

The rest of this section is organized as follows. Section 4.1.1 introduces the Group Manager, an entity required 

to operate and maintain an OSCORE group. Section 4.1.2 describes the main differences and extensions of Group 

OSCORE compared to OSCORE. Section 4.1.3 discusses the main points and implications of distributing new 

keying material in the OSCORE group. Section 4.1.4 describes the message protection/verification of Group 

OSCORE when using the group mode, in comparison with OSCORE taken as baseline. Finally, Section 4.1.5 

describes the pairwise mode of Group OSCORE. 
 

4.1.1  The OSCORE Group Manager 

Group OSCORE relies on the presence of an additional Group Manager entity. This is responsible for one or 

more OSCORE groups, for the respective Group Identifier (Gid) used as OSCORE ID Context, and for the Sender 

ID and Recipient ID of the respective group members. 

 

The Group Manager has exclusive control of the Gid values uniquely assigned to the different groups under its 

control, and of the Sender ID and Recipient ID values uniquely assigned to the members of each of those groups. 

A CoAP endpoint receives the Gid and other OSCORE input parameters, including its own Sender ID, from the 

Group Manager upon joining the OSCORE group. That Sender ID is valid only within that group, and is unique 

within the group. 

 

Furthermore, the Group Manager stores and maintains the public keys of endpoints joining a group, and provides 

information about the group and its members to other current group members. Then, a group member can retrieve 

from the Group Manager the public key and other information associated with other group members. 

 

Finally, it is recommended that the Group Manager takes care of the group joining by using the approach 

described in Section 6.1 and defined in [TIL2b], as based on the ACE framework for authentication and 

authorization in constrained environments [SEI21] (see Section 3.8). 
 

4.1.2  Main Differences From OSCORE 

This section introduces in what respects Group OSCORE mainly differs from OSCORE [SEL19], with a focus 

on the data structure and keying material stored by group members, as well as the COSE object and compressed 

encoding of OSCORE messages. 

 

As a particular case, a group member can assume the special role of “silent server”. This kind of endpoint is 

interested in receiving request messages, but never replies to them. For example, a simple lighting device can be 

configured to never send responses if the user has visual access to the physical environment, with further 

advantages in terms of network latency and reliability. Also, a device can act as a network monitor, thus silently 

listening to and logging messages exchanged in the group, while never replying to requests sent by other group 

members. An endpoint can implement both a silent server and a client, as the two roles are independent. However, 
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an endpoint implementing only a silent server processes only incoming requests, and, in case it supports only the 

group mode, it maintains less keying material and especially does not have a Sender Context for the OSCORE 

group. 

 

A description of the actual message processing is provided in Section 4.1.4 for the group mode and in Section 

4.1.5 for the pairwise mode. 

 

Each CoAP endpoint as member of an OSCORE group stores a Security Context (see Section 3.7.1). Compared 

to the original format used in OSCORE, the Security Context is extended as follows and as shown in Table 4.1. 

Further details are provided in Sections 4.1.2.1 and 4.1.2.2. The elements marked with (*) are optional and 

relevant only if the group mode is used. The elements marked with (^) are optional and relevant only if the 

pairwise mode is used. 

• One Common Context, shared by all the endpoints in the OSCORE group. The following new parameters 

are included in the Common Context: the public key of the Group Manager; the  Signature Encryption 

Algorithm; the Signature Algorithm; and the Group Encryption Key; and the Pairwise Key Agreement 

Algorithm. 

• One Sender Context, extended with the endpoint's private key and the Pairwise Sender Keys to use with 

each other endpoint. The Sender Context is omitted if the endpoint is configured exclusively as silent 

server. 

• One Recipient Context for each endpoint from which messages are received. No Recipient Contexts are 

maintained as associated with endpoints from which messages are not (expected to be) received. The 

Recipient Context is extended with the public key of the associated endpoint as well as with the Pairwise 

Recipient Key to use with that  endpoint. 
 

 

Context component New information element 

Common Context Group Manager Public Key 

* Signature Encryption Algorithm 

* Signature Algorithm 

* Group Encryption Key 

^ Pairwise Key Agreement Algorithm 

Sender Context Endpoint’s own private key 

^ Pairwise Sender Keys for the other Endpoint 

Each Recipient Context Public key of the other endpoint 

^ Pairwise Recipient Key for the other Endpoint 

 
Table 4.1 - Additions to the OSCORE Security Context. 

 

4.1.2.1 Common Context 
The following clarifies the content of the Common Context, as deltas and additions from what is defined for 

OSCORE [SEL19] (see Section 3.7). 

 

The ID Context parameter in the Common Context contains the Group Identifier (Gid) of the OSCORE group, 

which is thus used as Context ID for that group. The choice of the Gid is specific to the application running at 

the Group Manager. It is up to the application running at the group members how to handle possible collisions 

between Gids, as used for OSCORE groups managed by different, non-synchronized Group Managers. 

 

The public key of the Group Manager must be provided to the recipient endpoint together with a proof-of-

possession of the corresponding private key, for instance when the recipient endpoint joins the OSCORE group. 

The public key of the Group Manager is used as part of the Additional Authenticated Data (AAD) when protecting 

and unprotecting a message (see Section 4.1.2.3). 
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Signature Encryption Algorithm identifies the encryption algorithm used to protect messages when using the 

group mode of Group OSCORE (see Section 4.1.4). Signature Algorithm identifies the digital signature algorithm 

used to compute a counter signature on the COSE object when using the group mode. The Counter Signature 

Algorithm has to be selected among the signing ones available in COSE (see section 16.4 of [SCH17]). 

 

A corresponding Pairwise Key Agreement Algorithm is used to derive pairwise symmetric keys, when using the 

pairwise mode of Group OSCORE (see Section 4.1.5). The encryption algorithm used to protect messages with 

the pairwise mode is indicated by the AEAD Algorithm field inherited from the OSCORE Security Context 

original format. 

 

The parameters associated with the Signature Algorithm and the Pairwise Key Agreement Algorithm are 

embedded in the stored public keys of the Group Manager and of the group members. 

 

The Group Encryption Key is common to all the group members, is derived by means of the same key derivation 

process of OSCORE (see Section 3.2 of [SEL19]), and is used to further and separately encrypt the signature of 

messages protected with the group mode of Group OSCORE. 
 

4.1.2.2  Sender Context and Recipient Context 
Group OSCORE uses the same derivation process of OSCORE (see Section 3.2 of [SEL19]) to derive Sender 

Context and Recipient Context – and specifically Sender/Recipient Keys and Common IV – from a set of input 

parameters (see Section 3.2 of [SEL19]). However, in Group OSCORE, the Sender Context and Recipient 

Context additionally contain asymmetric keys. 

 

In particular, the Sender Context includes the private key of the endpoint. When using the group mode (see 

Section 4.1.4), the private key is used to generate a signature included in the sent OSCORE message. When using 

the pairwise mode (see Section 4.1.5), the private key is used to derive a pairwise key between the endpoint and 

another member of the OSCORE group. It is out of scope for Group OSCORE how the private key has been 

established. 

 

Each Recipient Context includes the public key of the associated endpoint. The public key is used to verify the 

signature of the received OSCORE message when using the group mode (see Section 4.1.4), or to derive a 

pairwise key for verifying OSCORE messages from the associated endpoint protected with the pairwise mode 

(see Section 4.1.5). 

 

The input parameters for deriving the Recipient Context parameters and the public key of the associated endpoint 

may be provided to the recipient endpoint upon joining the OSCORE group. Alternatively, these parameters can 

be acquired at a later time, for example the first time a message is received from this particular endpoint in the 

OSCORE group. The received message, together with the Common Context, includes everything necessary to 

derive a security context for verifying a message, except for the public key of the associated endpoint. 

 

For particularly constrained devices, it can be not feasible to simultaneously handle the ongoing processing of a 

recently received message and the retrieval of the associated endpoint's public key. Such devices may instead be 

configured to drop a received message for which there is currently no Recipient Context, and retrieve the public 

key of the sender endpoint in order to have it available to verify subsequent messages from that endpoint. 
 

4.1.2.3  COSE Object 
Compared to OSCORE (see Section 3.7.2), the following differences apply to the COSE object. 

• When using the group mode (see Section 4.1.4), the COSE Object includes an additional signature. Its 

value is set to the counter signature of the Encrypted COSE object, computed by the sender endpoint as 

described in Appendix A.2 of [SCH17], by using its own private key and according to the Signature 

Algorithm specified in the Security Context. The signature is computed over the AAD and the ciphertext 

of the encrypted COSE object. 
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• The 'kid' parameter is present in all messages, i.e., both requests and responses, specifying the Sender ID 

of the endpoint transmitting the message. An exception is possible only for response messages, if sent as 

a reply to a request protected in pairwise mode. 

• The 'kid context' parameter is present in every request message, specifying the Group Identifier value 

(Gid) of the group's Security Context. This parameter remains optional to include in response messages. 

• The AAD takes an extended format than the one used in OSCORE [SEL19], in order to include the 

following additional information: the algorithms specified in the Common Context; the Gid used when 

protecting a request message, i.e., the new ‘request_kid_context’ element; the binary serialization of the 

OSCORE Option; the public key of the sender endpoint and the public key of the Group Manager. Note 

that, like in OSCORE, the AAD is not transmitted, but only takes part in computational operations during 

the message encryption/decryption process. 
 

4.1.2.4  Compressed Message Encoding 
Compared to OSCORE (see Section 3.7.2), the following differences apply to the encoding of an OSCORE 

message. 

• When using the group mode (see Section 4.1.4), the ciphertext of the COSE object as payload of the 

OSCORE message is further concatenated with the value of the countersignature of the encrypted COSE 

object (see Section 4.1.2.3). After that, the countersignature is separately further encrypted through a 

keystream derived from the Group Encryption Key (see Section 4.1.4). 

• The sixth least significant bit, namely the Group Flag bit, in the first byte of the OSCORE option 

containing the OSCORE flag bits is used to signal the usage of the group mode (see Section 4.1.4). In 

particular, the Group Flag bit is set to 1 if the OSCORE message is protected using the group mode. In 

any other case, including when using the pairwise mode (see Section 4.1.5), this bit is set to 0. 
 

4.1.3  Renewal of Group Keying Material 

Due to a number of reasons, the Group Manager may force the members of an OSCORE group to establish a new 

Security Context, by revoking the current group keying material and distributing new one (rekeying). 

 

To this end, a new Group Identifier (Gid) for the OSCORE group and a new value for the Master Secret parameter 

is distributed to the group members. When doing so, the Group Manager may also distribute a new value for the 

Master Salt parameter, while it should preserve the same current value of the Sender ID of each group member. 

 

After that, each group member re-derives the keying material in its own Sender Context and Recipient Contexts, 

as described in Section 4.1.2, by using the newly distributed Gid and Master Secret parameter. The Master Salt 

used for the re-derivations is the newly distributed Master Salt parameter if provided by the Group Manager, or 

an empty byte string otherwise. Thereafter, each group member must use its latest installed Sender Context to 

protect its own outgoing messages. 

 

Note that the distribution of a new Gid and Master Secret parameter may result in group members temporarily 

storing misaligned Security Contexts. Specifically, a group member may become not able to process messages 

received right after the distribution of a new Gid and Master Secret parameter. 

 

Every time a current endpoint leaves the group, the Group Manager renews the group keying material and informs 

the remaining members about the leaving endpoint. This preserves the capability of group members to correctly 

assert the group membership of a message sender, and additionally preserves forward security in the group. 

Depending on the specific application requirements, it is recommended to rekey the group also every time a new 

joining endpoint is added to the group, thus preserving also backward security. 

 

Group OSCORE is not devoted to a particular method or key management scheme for rekeying the OSCORE 

group. However, it is recommended that the Group Manager supports the distribution of the new Gid and Master 

Secret parameter to the OSCORE group according to the Group Rekeying Process described in Section 6.1 and 
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defined in [TIL21b]. 
 

4.1.4  Group Mode 

This section describes how Group OSCORE protects messages in group mode, as a sequence of deltas compared 

to the message processing of OSCORE [SEL19] (see Section 3.7.2). 

 

In particular, source authentication of messages is achieved by appending a signature to the message payload, 

computed by using the private key of the message sender. On the other end, message confidentiality is achieved 

at a group level, i.e., every other member of the OSCORE group is able to decrypt a message protected in group 

mode. 
 

 

A client protects a request in group mode as in OSCORE, with the following differences. 

• The extended Additional Authenticated Data (AAD) defined in Section 4.1.2.3 is used for encrypting and 

signing the request. 

• The encryption and the encoding of the COSE object are as defined in Sections 4.1.2.3 and 4.1.2.4, 

respectively. In particular, the Group Flag bit is set to 1. 

• A countersignature of the Encrypted COSE Object is also computed and added at the end of the payload 

of the protected request message. After that, the countersignature is separately further encrypted. The 

encrypted countersignature is computed by xoring the plain countersignature with a keystream derived 

from the Group Encryption Key. 

• If CoAP Observe [HAR15] is supported, for each newly started observation, the client has to store the 

values of the Gid and of its own Sender ID at the moment, used as 'kid context' and 'kid' parameter in the 

original Observe request. The client must not update those stored values, even in case it receives a new 

Sender ID from the Group Manager or the whole group is rekeyed. This makes it possible to preserve an 

ongoing observation even across a group rekeying (see Section 4.1.3). 
 

 

A server verifies a request in group mode as in OSCORE, with the following differences. 

• The decoding of the compressed COSE object follows the updates in Section 4.1.2.4. 

• If the server discards the request due to not retrieving a Security Context associated with the OSCORE 

group, the server may respond with a 4.02 (Bad Option) error. 

• If the received Recipient ID ('kid') does not match with any Recipient Context for the retrieved Gid ('kid 

context'), then the server may create a new Recipient Context and initialize it at that point in time, also 

retrieving the client's public key. Such a configuration is application specific. If the application does not 

specify dynamic derivation of new Recipient Contexts, the server stops processing the request. 

• The extended Additional Authenticated Data (AAD) defined in Section 4.1.2.3 is used, for decrypting 

the request and verifying the countersignature of the encrypted COSE object. 

• The server decrypts the received countersignature by xoring it with the same keystream used by the client 

and derived from the Group Encryption Key. Then, before decrypting the request, the server also verifies 

the recovered plain countersignature using the public key of the client from the associated Recipient 

Context. If the signature verification fails, the server may reply with a 4.00 (Bad Request) response. 

• If the used Recipient Context was created upon receiving this group request and the message is not 

decrypted and verified successfully, the server may delete that Recipient Context. Such a configuration, 

which is application specific, prevents attacks aimed at overloading the server's storage and creating 

processing overhead on the server. 

• If CoAP Observe [HAR15] is supported, for each newly started observation, the server stores the values 

of the 'kid context' and 'kid' parameters from the original Observe request, i.e., the Gid and the Sender ID 

of the observer client at that time. Then, the server does not update those stored values, even if the 

observer client gets and starts using a new Sender ID received from the Group Manager, or the whole 

group is rekeyed (see Section 4.1.3). 
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A server protects a response in group mode as in OSCORE, with the following differences. 

• The encoding of the compressed COSE object follows the updates in Section 4.1.2.4. In particular, the 

Group Flag bit is set to 1. 

• The extended AAD defined in Section 4.1.2.3 is used, for encrypting and signing the response. 

• A countersignature of the encrypted COSE object is also computed and added at the end of the payload 

of the protected response message. After that, the countersignature is separately further encrypted. The 

encrypted countersignature is computed by xoring the plain countersignature with a keystream derived 

from the Group Encryption Key. 

• If CoAP Observe [RFC7641] is supported, the server may have ongoing observations, started by Observe 

requests protected with an old Security Context. Then, the following applies. 

o After completing the establishment of a new Security Context, e.g., upon group rekeying, the 

server must protect the following notifications with its own Sender Context from that new 

Security Context. 

o For each ongoing observation, the server should include in the first notification protected with 

the new Security Context also the 'kid context' parameter, which has a value set to the ID Context 

of the new Security Context, i.e., the new Group Identifier (Gid). The server can optionally 

include the 'kid context' parameter, as set to the new Gid, also in the further following 

notifications for those observations. 

o For each ongoing observation, the server has to use the stored values of the 'kid context' and 'kid' 

parameters from the original Observe request, i.e., the Gid and the Sender ID of the observer 

client at the time of the original Observe request, as value for the 'request_kid_context' and 

'request_kid' elements in the AAD (see Section 4.1.2.3), when protecting notifications for that 

observation. 
 
Since a group rekeying can occur, with consequent re-establishment of the Security Context, the server must 

always protect a response by using its own Sender Context from the latest owned Security Context. As a 

consequence, right after a group rekeying has been completed, the server may end up protecting a response by 

using a Security Context different from the one used to protect the group request. In such a case, the server: 

• Must encode the Partial IV in the protected response, as set to its own Sender Sequence Number value, 

and use that Partial IV as AEAD nonce for the encryption process. 

• Must increment the Sender Sequence Number by one; 

• Must include in the response the 'Partial IV' parameter, which is set to the Partial IV above. 

• Should include in the response the 'kid context' parameter, which is set to the ID Context of the new 

Security Context, i.e., the new Group Identifier (Gid). 
 

 

A client verifies a response in group mode as in OSCORE, with the following differences. 

• The decoding of the compressed COSE object follows the updates in Section 4.1.2.4. 

• The extended AAD defined in Section 4.1.2.3 is used, for decrypting the response and verifying its 

counter signature. 

• If the request was protected in pairwise mode, the following applies. 

o The client has to check that the replying server is the expected one, by relying on the server's 

public key used to verify the countersignature of the response and earlier used to derive the 

Pairwise Sender Key for encrypting the request. 

o The client assumes the Recipient ID to be the same one considered when sending the request, in 

case a ‘kid’ parameter is not included in the received response. 

• If the Recipient ID ('kid' of the response) does not match with any Recipient Context for the retrieved 

Gid ('kid context'), then the client may create a new Recipient Context and initialize it at that point in 

time, also retrieving the server's public key. Such a configuration is application specific. If the application 

does not specify dynamic derivation of new Recipient Contexts, the client stops processing the response. 

• The client decrypts the received countersignature by xoring it with the same keystream used by the server 
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and derived from the Group Encryption Key. Then, before decrypting the response, the client also verifies 

the recovered plain countersignature using the public key of the server from the associated Recipient 

Context. If the signature verification fails, the server may reply with a 4.00 (Bad Request) response. 

• If the used Recipient Context was created upon receiving this response and the message is not decrypted 

and verified successfully, the client may delete that Recipient Context. Such a configuration, which is 

application specific, prevents attacks aimed at overloading the client's storage and creating processing 

overhead on the client. 

 

As discussed above, a client may receive a response protected with a Security Context different from the one 

used to protect the corresponding group request. 

 

If CoAP Observe [HAR15] is supported, for each ongoing observation, the client has to use the stored values of 

the 'kid context' and 'kid' parameters from the original Observe request, i.e., the Gid and its own Sender ID at the 

time of the original Observe request, as value for the 'request_kid_context' and 'request_kid' elements in the AAD 

(see Section 4.1.2.3), when decrypting notifications for that observation and verifying their signatures. This 

ensures that, during the observation's lifetime and across a group rekeying (see Section 4.1.3), the client is able 

to correctly verify notifications, even if it is individually rekeyed and starts using a new Sender ID received from 

the Group Manager or the whole group is rekeyed. 
 

4.1.5  Pairwise Mode 

The pairwise mode of Group OSCORE is intended to support one-to-one message exchanges among group 

members. In particular, the pairwise mode protects a message by using only symmetric keys, as derived by using 

the public/private keys of the two communicating endpoints. Besides, the pairwise mode does not include any 

digital signature in the protected message, while still ensuring source authentication. A sender endpoint must not 

use the pairwise mode to protect a message intended to multiple recipients or to the whole group, e.g., sent over 

IP multicast. 

 

Especially for a CoAP request addressed to an individual server in the group, the pairwise mode should be used, 

rather than the group mode. This ensures that the request is indeed received and decrypted only by the exact 

server intended as recipient. 

 

Otherwise, since Group OSCORE (just as OSCORE and DTLS) does not protect addressing information at the 

lower layers, an active adversary would be able to intercept a unicast request protected in group mode, and redirect 

it to a different server in the group than the intended one. Such a server would still successfully verify the request, 

which can have severe consequences especially in case of unsafe REST methods, i.e., POST, PUT, PATCH and 

DELETE. In fact, it is not recommended for a client to protect a unicast request message by using the group 

mode, in order to prevent such attacks altogether. 

 

Relevant cases where a client simply has to send unicast requests to a particular server in the group include, but 

are not limited to: i) the exchange of messages including a CoAP Echo [AMS20] option, to prove reachability 

and message freshness on the server side; and ii) the execution of Blockwise [BOR16] transfer operations as 

limited to happen over unicast. 

 

The usage of the pairwise mode has the following limitations: 

• It is not usable in use cases that include intermediaries as signature verifiers external to the OSCORE 

group. These include, for instance, gateways deployed to forward CoAP messages, upon successful 

verification of an outer countersignature. While this is indeed possible to do with messages protected in 

group mode, the pairwise mode would prevent such gateways to perform their task. 

• It requires endpoints to support signature algorithms that support both a signature and encryption scheme. 

These include, for instance, ECDSA and EdDSA. In particular, ECDSA can be used “as is” both for 

signature operations as well as derivation of symmetric shared secrets. Instead, EdDSA relies on using a 

particular elliptic curve (e.g., the Ed25519 Edward curve) for signature operations, and requires a 
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remapping to different curve coordinates (e.g., the X25519 Montgomery curve) to perform the derivation 

of symmetric shared secrets. On the contrary, these algorithms do not include RSA, that can be used only 

for signature operations. 

 

The pairwise mode relies on an additional key derivation process, which is described in Section 4.1.5.1. Then, 

Section 4.1.5.2 describes the message processing performed in pairwise mode. 
 

4.1.5.1  Pairwise Key Derivation 
If they support the pairwise mode of Group OSCORE, two members in an OSCORE group can derive symmetric 

pairwise keys, by using two main inputs: i) their own Sender/Recipient Key; ii) a static-static Diffie-Hellman 

shared secret [BAR18]. Then, a pairwise key is used to protect a message, using the same AEAD Algorithm 

specified in the Common Context. 

 

The actual key derivation process is described below, and relies on the same construction used in OSCORE 

[SEL19] for establishing the Security Context. 

 

Pairwise Sender Key = HKDF(Sender Key, IKM-Sender, info, L) 

Pairwise Recipient Key = HKDF(Recipient Key, IKM-Recipient, info, L) 

 

with 

IKM-Sender = Sender Public Key | Recipient Public Key | Shared Secret 

IKM-Recipient = Recipient Public Key | Sender Public Key | Shared Secret 

 

where: 

• The Pairwise Sender Key is the AEAD key for processing outgoing messages addressed to endpoint X. 

• The Pairwise Recipient Key is the AEAD key for processing incoming messages from endpoint X. 

• HKDF  is the OSCORE HKDF algorithm from the Common Context. 

• The Sender Key from the Sender Context is used as salt in the HKDF, when deriving the Pairwise Sender 

Key. 

• The Recipient Key from the Recipient Context associated with endpoint X is used as salt in the HKDF, 

when deriving the Pairwise Recipient Key. 

• The Sender Public Key is the endpoint’s own (signature) public key from the Sender Context. 

• The Recipient Public Key is the endpoint X’s (signature) public key from the Recipient Context 

associated with the endpoint X. 

• The Shared Secret is computed as a cofactor Diffie-Hellman shared secret (see Section 5.7.1.2 of 

[BAR18]), using the Pairwise Key Agreement Algorithm specified in the Common Context. The 

endpoint uses its private key from the Sender Context and the Recipient Public Key. For curves X25519 

and X448, the procedure is described in Section 5 of [LAN16], possibly using signing public keys first 

mapped to Montgomery coordinates. 

• IKM-Sender is the Input Keying Material (IKM) used in the HKDF for the derivation of the Pairwise 

Sender Key. IKM-Sender is the byte string concatenation of the Sender Public Key, the Recipient Public 

Key, and the Shared Secret. 

• IKM-Recipient is the Input Keying Material (IKM) used in the HKDF for the derivation of the Pairwise 

Recipient Key. IKM-Recipient is the byte string concatenation of the Recipient Public Key, the Sender 

Public Key, and the Shared Secret. 

• The 'info' and 'L' are as defined for the establishment of the Security Context of OSCORE (see Section 

3.2.1 of [SEL19]). That is: the 'alg_aead' element of the 'info' array takes the value of AEAD Algorithm 

from the Common Context; L and the 'L' element of the 'info' array are the size of the key for the AEAD 

Algorithm from the Common Context, in bytes. 

 

The security of using the same key pair for Diffie-Hellman and for signing is proven in [DEG11] and [THO21]. 

If EdDSA asymmetric keys are used, the Edward coordinates have to be re-mapped into Montgomery coordinates, 
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by using the maps defined in [LAN16], before using the X25519 and X448 functions also defined in [LAN16]. 

 

When using any of its pairwise keys, a sender endpoint including the ‘Partial IV’ parameter in the protected 

message has to use the current, fresh value of its own Sender Sequence Number, from its own Sender Context 

(see Section 4.1.2). In fact, at each endpoint, the same Sender Sequence Number space is used for all outgoing 

messages sent by that endpoint to the group and protected with Group OSCORE. This has the benefit to limit 

both storage and complexity. 

 

Once completed the establishment of a new Security Context, e.g., following a group rekeying (see Section 4.1.3) 

or the assignment of a new Sender ID from the Group Manager, a group member must delete all the pairwise 

keys it stores. In fact, as new Sender/Recipient keys have been derived, those must be used to possibly derive 

new pairwise keys. On the other hand, as long as any two group members preserve the same asymmetric keys, 

the Diffie-Hellman shared secret does not change across updates of the group keying material. 

 

4.1.5.2  Message Processing 
To protect a message in pairwise mode, a sender endpoint needs to know the public key and the Recipient ID for 

the recipient endpoint, as stored in its own Recipient Context associated with that recipient endpoint. 

 

Also, the sender endpoint has to know the individual, unicast address of the recipient endpoint. To make this 

information available and facilitate its retrieval, servers may provide a resource to which clients in the group can 

send a multicast request for addressing information. For instance, such a request can aim at discovering a server 

identified by its 'kid' value, or a set thereof. The specified set may be empty, hence identifying all the servers in 

the group. 

 

The processing of messages using the pairwise mode is very similar to the one defined for OSCORE [SEL19], 

from which the following differences apply. 

• The 'kid' and 'kid context' parameters of the COSE object are used as per Section 4.1.2.3. 

• The extended AAD defined in Section 4.1.2.3 is used for the encryption process. 

• The Pairwise Sender/Recipient Keys used as Sender/Recipient keys are derived as defined in Section 

4.1.5.1. 
 
When using the pairwise mode, messages are protected and unprotected as in OSCORE [SEL19], with the 

differences summarized above. Also, when CoAP Observe is used [HAR15], the same additions defined in 

Section 4.1.4 for the group mode apply, as to the handling of the ‘kid’ and ‘kid context’ parameters throughout 

long-living observations. Furthermore, the following applies: 

• Failure on the server side when processing a request may result in returning an error message. 

• If the server is using a different Security Context for the response compared to what was used to verify 

the request, then the server must include its Sender Sequence Number as Partial IV in the response and 

use it to build the AEAD nonce to protect the response. 

• If the server is using a different ID Context (Gid) for the response compared to what was used to verify 

the request, then the server must include the new ID Context in the 'kid context' parameter of the response. 

• The server may have received a new Sender ID from the Group Manager. In such a case, the server 

should include the 'kid' parameter in the response even when the request was also protected in pairwise 

mode, if it is replying to that client for the first time since the assignment of its new Sender ID. 

• If the request was protected in pairwise mode, the following applies when the client receives a response 

also protected in pairwise mode. 

o The client has to check that the replying server is the expected one, by relying on the server's 

public key used to derive the Pairwise Recipient Key for decrypting the response. 

o The client assumes the Recipient ID to be the same one considered when sending the request, in 

case a ‘kid’ parameter is not included in the received response. 
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  Proxies for CoAP Group Communication 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29, P-30, P-31, P-32 

• Security Requirements: SE-30, SE-32, SE-33, SE-34 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

As explained in Section 3.2, CoAP can be used in group communication environments, e.g., transported over IP 

multicast. Also in such a case, it is possible to provide end-to-end security, by using the Group OSCORE protocol 

(see Section 4.1). 

 

In such a group communication scenario, a proxy can be additionally deployed between the origin client and the 

origin servers in the group. From a high-level point of view, the proxy has to perform the following tasks, 

similarly to the case of a non-group communication scenario. First, the proxy has to forward a group request from 

the origin client to the origin servers. Then, the proxy has to relay the possible individual responses from the 

origin servers back to the origin client. 

 

This setup raises a number of issues, as summarized below. 

• In general, after forwarding a group request, the proxy does not know for how long it should accept 

responses from the origin servers, to be relayed back to the origin client. 

• Technically, the origin client sends a single unicast request to the proxy, to be forwarded to the origin 

servers over multicast. However, the client has to be ready to receive multiple responses to the original 

group request. 

• In general, the client is not able to distinguish the different origin servers producing the different 

individual responses, or to learn their addressing information for possibly contacting them individually 

later on. 

 

Furthermore, a number of additional requirements have to also to be fulfilled. That is: 

• The proxy has to explicitly identify the origin client. This can rely on a secure communication association 

used between the client and the proxy, e.g., based on DTLS (see Section 3.4) or on OSCORE (see 

Sections 3.7 and 4.5). 

• Once identified the origin client as above, the proxy has to verify that the client is allowed-listed to 

perform group requests through the proxy. 

• If the origin client and the origin servers protect their communication end-to-end through the proxy, they 

do so by using Group OSCORE (see Section 4.1). 

 

There is ongoing research work to fully enable the group communication setup discussed above and including a 

proxy. This has also resulted in the IETF standardization proposal at [TIL21f]. In particular this work introduces 

a signaling protocol between the origin client and the proxy, which addresses all the issues mentioned above. The 

following summarizes the main rationale and steps of such a signaling protocol. 

 

When sending the unicast group request to the proxy - to be forwarded to the group of origin servers - the origin 

client includes in the request a new CoAP option. Its value specifies the amount of time T, in seconds, that the 

client is fine to wait for multiple responses to the group request. The indication about forwarding the group 

request – and intended to the proxy – is expressed, as usual, by including in the request the appropriate proxy-

related CoAP options. Finally, the client sets an internal timeout, aimed to expire after T seconds. 
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When receiving the group request from the origin client, the proxy identifies the client and verifies it to be 

allowed-listed, as discussed above. Then, the proxy: i) sets an internal timeout aimed to expire after T seconds, 

consistently with the amount of time indicated by the client; ii) consumes the proxy-related CoAP options and 

forwards the group request to the origin servers over multicast. From then on and until the timeout expiration, 

the proxy proceeds as follows. When receiving a response to the group request, the proxy adds to the response a 

new CoAP option. Its value specifies the individual address of the origin server that originated the response. 

Then, the proxy relays back the response to the origin client. 

 

Until its local timeout expires, the client accepts individual responses to the original group request, as they are 

relayed back by the proxy. In particular, the client can retrieve from each response the addressing information of 

the origin server. This allows the client to distinguish the different origin servers producing the different 

responses, as well as to possibly contact them later on individually, either directly or again through the proxy. 

 

The signaling protocol described above also displays the following benefits. 

 

• It is usable for both classes of CoAP proxies, i.e., forward-proxies and reverse-proxies. 

• It is usable also when multiple, consecutive proxies are deployed between the origin client and the origin 

servers, thus forming a chain of intermediaries. 

• It preserves support for cacheability of response messages as originally defined for CoAP. To this end, 

it adapts both the original response freshness and response validation model. If Group OSCORE is used 

end-to-end between the origin client and the origin servers, cacheability of responses requires to use 

additional means, as described in Section 4.4. 

• It can be adapted to work in a setup using cross-proxies, especially an HTTP-CoAP proxy. This allows 

an origin HTTP Client to send a group request to a group of origin CoAP Servers to the proxy. Also in 

this case, it is still possible to use Group OSCORE to achieve end-to-end security between the origin 

client and the origin servers, by leveraging the HTTP-to-CoAP and CoAP-to-HTTP mapping originally 

defined for OSCORE. 

 

 

 CoAP Responses over IP Multicast 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29, P-30, P-31, P-32, P-33 

• Security Requirements: SE-30, SE-32, SE-33, SE-34 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

Some use cases display a typical communication pattern where multiple CoAP clients are interested in observing 

[HAR15] exactly the same resource at a same CoAP server. 

 

A notable example is the Pub-Sub architecture [KOS19], where multiple clients subscribe to a topic, by observing 

a topic resource at a Pub-Sub Broker acting as server. Upon changes in the topic value, the Broker automatically 

notifies each subscriber by sending a unicast response. In this particular use case as well as more in general, it 

would be convenient to have the server sending one single message to all the observer clients, e.g., by using IP 

multicast. This would obviously result in considerable performance improvements, due to a much lower time in 

propagating the update, with consequent less utilization of the available bandwidth. 
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An obvious approach consists in sending such an update as a multicast request to all the observers. However, this 

would require all the observers to have a dedicated group resource, hence practically acting also as servers. 

Ideally, a better solution would be distributing the update as a single response message, and as an actual observe 

notification over IP multicast. However, CoAP currently does not support response messages over IP multicast. 

 

The standardization proposal at [TIL21e] fills this gap and describes how observe notifications can be distributed 

as responses over IP multicast. In particular, it defines which common Token value should be considered by the 

server as well as by all the observer clients. Furthermore, it defines how such multicast notifications can possibly 

be protected by using Group OSCORE. 

 

Intuitively, the approach described in [TIL21e] works as follows. At some point in time, the server can start by 

itself a “group observation” of one of its own resources. Practically, this may happen when a first client attempts 

to register as an observer of that resource; or when sufficiently many clients are observing that resource and can 

all be made group observers. 

 

In either case, the server starts a group observation by crafting and sending to itself a “phantom request” targeting 

the resource to observe. Such a phantom request has a Token value chosen by the server as available to use. That 

is, the server is practically in control of the Token space for the group observations, on behalf of the potential 

observer clients. 

 

While not actually transmitted on the wire, the server sends the phantom request to itself, as if it was sent from a 

multicast address (which is not practically possible otherwise on a real communication medium). As a result, a 

group observation is started at the server, as if requested by a group of clients reachable at that multicast address. 

 

Whenever a client tries to normally observe the resource at the server, the latter replies with an error response, 

with the intent to signal that the client can actually rely on an ongoing group observation. That is, the error 

response to the client includes a serialization of the phantom observation request. Upon receiving it, the client is 

able to set itself as taking part of the group observation, for which it uses the phantom request and its Token value 

as an anchor. 

 

Then, when the observed resource value changes, the server sends a single notification response to the multicast 

address associated with the phantom request. As per the CoAP protocol, the notification response has the same 

Token value of the phantom request. Therefore, all the clients listening to the multicast address of the group 

observation will receive the multicast notification and successfully match it with the phantom request, by means 

of the Token value. 

 

For a number of reasons, at some point in time the server may decide to cancel a group observation. When this 

happens, the server simply sends an error response over IP multicast, targeting the registered client and matching 

the same original phantom request. 

 

As mentioned above, it is possible to protect multicast notifications by using Group OSCORE, having the server 

and the observer clients as members of the same OSCORE group. To this end, the server first of all protects also 

the phantom request by using Group OSCORE, and the serialization of such request will again be included in the 

error response to a new client attempting to observe. Then, each following multicast notification will be also 

protected with Group OSCORE. In order to ensure that each of such multicast notifications is also 

cryptographically bound to the phantom request, the Additional Authenticated Data (AAD) used when protecting 

each of them always includes the ‘kid’, ‘kid context’ and ‘piv’ from the phantom request, as ‘request_kid’, 

‘request_kid_context’ and ‘request_iv’ elements (see Section 4.1.2.3). 
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  Caching of OSCORE-Protected Responses 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29, P-31, P-32, P-34 

• Security Requirements: SE-30, SE-32, SE-33, SE-34, SE-38 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

As discussed in Section 3.1, CoAP natively supports the possible deployment of intermediary entities such as 

proxies. Other than forwarding requests to an origin server on behalf of the origin client as well as relaying back 

the corresponding responses, the proxy can conveniently cache responses from the server, according to the 

freshness model defined for CoAP. 

 

Then, if a different origin client sends to the proxy a “similar enough” request to be forwarded to the same origin 

server, the proxy actually does not need to forward the request. Instead, the proxy can efficiently serve the client, 

and reply with the response from its cache. In fact, if still valid, such response is what would be anyway obtained 

by forwarding the request to the origin server. 

 

The above is limited to the caching of responses to requests that perform non-destructive content retrieval 

operations at a server’s resource. With particular reference to CoAP, this is the case for original plaint requests 

that use the REST methods GET and FETCH. 

 

The same caching principle holds in group communication scenarios, where a proxy can also be deployed 

between an origin client and the origin servers in the group, as discussed in Section 4.2. 

 

Unfortunately, cacheability of responses at the proxy cannot be seamlessly achieved if end-to-end security is used 

between the origin client and the origin server(s). This is the case when OSCORE (see Section 3.7) is used for 

one-to-one communication, or Group OSCORE (see Section 4.1) is used for group communication. That is, the 

proxy remains capable to cache responses protected with (Group) OSCORE, but it would not be able to use them 

to serve client requests from its cache. 

 

In fact, different clients that all wish to send a same plain request will practically send to the proxy very different 

protected requests, thus failing to produce a cache hit at the proxy. As a result, caching of responses becomes 

pointless in the first place, and the proxy would simply forward every request to the origin server. Clearly, it 

would be nice if cacheability of responses at the proxy remained possible, also when end-to-end secure 

communication is used. 

 

To this end, there is ongoing research work to re-enable cacheability of end-to-protected responses. This has also 

resulted in the IETF standardization proposal at [AMS21b]. In particular, this work builds on Group OSCORE, 

and introduces the concept of “consensus request”, i.e., an end-to-end protected request that all clients are able 

to identically produce. The following summarizes the main rationale and steps of such a signaling protocol. 

 

When setting up a communication scenario using end-to-end security and cacheability of responses, the following 

steps are taken. 

 

• An OSCORE group is established. Then, the CoAP clients and servers involved in the communication 
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scenario join that OSCORE group through its Group Manager (see Section 6.1), and are thus able to 

communicate in the group using Group OSCORE. 

 

• Upon joining the OSCORE group, all the group members are provided with some additional information, 

namely: i) a hash algorithm H(); and ii) the OSCORE Sender ID of a Deterministic Client, i.e., a fictitious 

group member that all the real group members can “impersonate”. This information is under the entire 

control of the Group Manager, and all the real group members can use it to derive the same deterministic 

keying material. 

 

• A client can prepare a content retrieval request (i.e., a GET or FETCH request) addressed to a server, and 

then protect it with Group OSCORE by using the keying material associated with the Deterministic 

Client. While details are omitted in this description, such a request protection relies on an altered version 

of the pairwise mode of Group OSCORE (see Section 4.1.5). In particular, the request is protected with 

an encryption key derived from: i) the deterministic keying material; and ii) a hash of the original plain 

request to protect. 

 

The interesting point here is that every client in the same group, when wishing to send the same plain 

request, will thus protect it in the very same way. Therefore, all clients wishing to send a same plain 

request will produce a same protected “deterministic request”, which is in fact a particular instance of 

the early introduced consensus request. 

 

Finally, the client includes a new CoAP option in the protected request. The new option fulfils two goals. 

First, it signals the fact that the request is a deterministic request. Second, it includes as value the hash of 

the original plain request. This will be later used by the server to enforce the binding between the 

deterministic request and a response to it. 

 

• The server receiving a deterministic request recognizes it as such and decrypts it similarly to how defined 

for the pairwise mode of Group OSCORE, with the following differences. 

o The decryption key is derived from the deterministic keying material and from the hash of the 

original plain request, as retrieved from the received CoAP option. 

o No replay checks are performed on the request, as clarified in the following point. 

o Once produced the decrypted plain request, the server asserts that the request is indeed a GET or 

FETCH request (i.e., a content retrieval request) and that it is REST-safe to perform on the 

particular target resource. In fact, in such a case, it is indeed fine to accept such a request, even 

though: i) it does not have source authentication, since any client in the OSCORE group could 

have sent it; ii) it might be a replay, since any client in the OSCORE group could have already 

sent it before. 

 

• After having processed the plain request at the application, the server replies to the client with a response 

protected with the group mode of Group OSCORE (see Section 4.1.4). Using the group mode is necessary 

here, to allow the client to verify source authentication of the response. When protecting the response, 

the server involves in the process also the hash of the original plain request, thus effectively enforcing a 

cryptographic binding between the response and the corresponding deterministic request. Finally, the 

server includes in the response a CoAP option Max-Age with value greater than 0, thus indicating the 

validity time of such response and consistently indicating to the proxy to cache it. 

 

• Upon receiving the response, the proxy will simply cache it, for as long as specified in the conveyed 

CoAP option Max-Age set by the server. 
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• Upon receiving the response, the client decrypts and verifies it using the group mode of Group OSCORE. 

During such a process, similarly to what the server did on its side, the client also involves the hash of the 

original plain request, thus effectively asserting that the response is cryptographically bound to the 

previously sent deterministic request. 

 

As mentioned above, if later on a client in the group produces the same plain request, this will result in the same 

OSCORE-protected deterministic request. Therefore, when reaching the proxy, such deterministic request will 

produce a cache hit, and the proxy will reply to the client with the response retrieved from its cache, until it is 

valid and stored. Note that, beyond normal caching capabilities, no additional support is required on the proxy 

side. 

 

 

 OSCORE-capable Proxies 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29, P-31, P-32 

• Security Requirements: SE-30, SE-32, SE-33, SE-34, SE-37 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

As discussed in Section 3.1, the CoAP protocol natively supports the presence of intermediaries, such us forward- 

or reverse-proxies. These assist an origin client by performing requests to origin servers on its behalf, and then 

forwarding back possible related responses. 

 

A number of use cases relying on proxies have the need for a security association also between the origin client 

and the proxy, to be used for protecting the messages exchanged over that communication leg. In particular, this 

allows the proxy to securely identify the origin client, before forwarding its request to the origin server. Some of 

such use cases are summarized below. 

 

CoAP group communication with proxies – CoAP can also be used for group communication, e.g., over IP 

multicast (see Section 3.2). In particular, communications between a client and the servers in the group can be 

protected by using Group OSCORE (see Section 4.1). 

 

When a proxy is deployed between the origin client and the servers, it can use the approach described in Section 

4.2. That is, following indications from the origin client, the proxy forwards the request to the origin servers in 

the group, and relays individual responses to the origin client. 

 

In such a case, the proxy has to identify the origin client and verify that it is allowed-listed, before forwarding its 

request to the group of servers. This raises the need for a secure communication association between the origin 

client and the proxy. 

 

CoAP observe notifications over multicast – When multiple clients “observe” (see Section 3.1) the same 

resource at the same server, it is possible for the server to setup a group observation. That is, when the resource 

representation changes, the server can send a single notification response over IP multicast, thus targeting all the 

observer clients. This relies on the multicast notifications all matching against a common “phantom request”, that 

the server has provided to all the observer clients as they register their observation (see Section 4.3). 
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On top of that, if a proxy is deployed and Group OSCORE is used end-to-end between the origin clients and the 

server, then each client is required to take an additional step, by providing the common “phantom request” to the 

proxy. Hence, this particular exchange between a client and the proxy is also required to be secured, to especially 

ensure integrity protection. 

 

External application servers in LwM2M deployments – CoAP is used as message transfer protocol in the 

OMA Lightweight Machine-to-Machine (LwM2M) standard [OMA-CORE]. Intuitively, a LwM2M Client 

device can securely “bootstrap” at a Bootstrap Server, and then securely register at a LwM2M Server, with which 

it performs most of the following communication exchanges. As defined in [OMA-TP], the OSCORE protocol 

can be used to secure communications also between the LwM2M Client and the LwM2M Server. 

 

In such a case, it is further possible for the LwM2M Client to communicate with an external Application Server, 

with the two of them also using OSCORE end-to-end. In particular, this would rely on the LwM2M Client using 

the LwM2M Server as forward proxy, while still using their own original OSCORE Security Context on their 

communication leg. This allows the LwM2M Server to identify the LwM2M Client, before forwarding its 

requests outside the LwM2M domain. 

 

 

While the security association between the origin client and the proxy can generally use the DTLS protocol (see 

Section 3.4) or other means, it is preferable to rather rely on the OSCORE protocol, especially if (Group) 

OSCORE is used end-to-end between the origin client and the origin server. However, this clashes with how 

OSCORE has been originally specified in [SEL19]. That is: 

 

• OSCORE was designed to be used end-to-end only between an origin client and an origin server, i.e., 

between the actual “application endpoints” as also the only “OSCORE endpoints”. Instead, proxies were 

not supposed to also act as “OSCORE endpoints”. 

 

• In its original design, OSCORE does not admit the same CoAP message to be protected multiple times, 

i.e., by multiple OSCORE layers. However, in the scenarios discussed above, this would need to be the 

case when OSCORE is used both end-to-end between the origin client and the origin server, as well as 

between the origin client and the proxy. 

 

There is ongoing research work to fill the gaps discussed above, which has also resulted in a current IETF 

standardization proposal [TIL21g]. In particular, this work defines how OSCORE can be used also between an 

“application endpoint” (e.g., an origin client) and a proxy, as well as between two proxies in a chain of 

intermediaries. That is, a proxy can also be an “OSCORE endpoint.” In addition, this work explicitly admits that 

a same CoAP message can be protected by multiple, nested OSCORE layers applied in sequence, thus yielding 

an “OSCORE-in-OSCORE” protection. 

 

In order to achieve this, the following deviations from the original OSCORE are introduced. 

 

• When applying an OSCORE layer, some CoAP options that are usually not protected can instead be 

protected. These include: 

o The OSCORE option, when present in a message as the result of the OSCORE layer immediately 

previously applied to that same message. 

o  A CoAP option intended to be protected for and consumed by the other “OSCORE endpoint” 

that shares the OSCORE Security Context used to apply the OSCORE layer in question. For 

instance, if the “OSCORE endpoint” is a proxy, the CoAP option can be one of the proxy-related 

ones, such as Proxy-Uri, Proxy-Scheme and the Uri-* options. 
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• When an “application endpoint” applies multiple OSCORE layers in sequence to protect an outgoing 

message, and it uses an OSCORE Security Context shared with the other “application endpoint”, then 

the first OSCORE layer has to be applied by using that Security Context. 

• When receiving a protected message, a recipient “OSCORE endpoint” does not have to treat as an error 

the case where, after message decryption, the resulting message also includes an inner OSCORE option 

and thus has to be further decrypted. 

 

Building on the general rules above, the processing of incoming and outgoing messages is also further extended, 

compared to the original OSCORE specification. In particular: 

 

• When receiving a request, an endpoint assesses which of the following conditions occurs. 

 

A – The request includes proxy-related options. If the endpoint is actually a proxy, it consumes the proxy-

related options and accordingly forwards the request to the (next hop towards the) origin server. 

Otherwise, it replies with an error. 

 

B – The request does not include proxy-related options and does not include an OSCORE option. The 

endpoint is also the intended “application endpoint”, thus it delivers the request to its application, if any 

is present. Otherwise, it replies with an error. 

 

C – The request does not include proxy-related options, but it includes an OSCORE option. Then, the 

endpoint decrypts the request by using the OSCORE Security Context retrieved as indicated by the 

OSCORE option. If decryption fails, the endpoint stops and replies with an error response. After a 

successful decryption, the endpoint re-assesses which of the three conditions applies to the decrypted 

request. 

 

Note that there is no need to introduce additional, explicit signaling information. That is, a recipient 

endpoint is able to understand what is happening and what to do, based on the (possibly combined) 

presence of the OSCORE option and proxy-related options. 

 

• When protecting an outgoing response, an OSCORE endpoint applies the same OSCORE layers that 

have been successfully removed from the corresponding request, but in the reverse order than the one in 

which they were removed. 

 

• When receiving a response, an OSCORE endpoint expects to remove the same OSCORE layers that it 

applied in its previous corresponding request, but in the reverse order than the one in which they were 

applied. However, the recipient endpoint expects to remove at most as many OSCORE layers as it applied 

to its original corresponding request. 

 

 

 Robustness and Resilience against Denial of Service 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29, PE-35, AV-03, AV-04 

• Security Requirements: SE-24, SE-39 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 
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• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

• The “Network Protection Manager” component of the “Secure Communication Layer” module. 

 

Maintaining availability of devices in a networked environment is key for effectively providing the intended 

functionalities of the use case and application. Denial of Service (DoS) attacks ultimately aim to make a targeted 

device unavailable to other devices attempting to reach it. Practically, such an attack results in impeding 

legitimate clients from accessing resources on the target server device, thus preventing requests from such clients 

from being processed and served. DoS attacks can be particularly harmful against IoT networks where many 

deployed devices can be constrained in terms of energy budget, processing power and network bandwidth. These 

factors make such devices and the applications they run more susceptible to DoS attacks. 

 

This section presents SARDOS, a security solution for counteracting (Distributed) Denial of Service (DoS) 

attacks that leverage message flooding and possibly target different communication layers. SARDOS takes a 

host-based approach, hence running on potential victim servers, and dynamically reacts to the (suspected) 

ongoing DoS attack in an adaptive fashion, based on the currently perceived attack intensity. 

 

That is, SARDOS dynamically adapts the operative state of the victim server, thus limiting worthless usage or 

computing/communication resources and energy consumption. At the same time, it also ensures a (best-effort) 

fulfillment of requests from legitimate clients to the victim server. Furthermore, SARDOS is cross-layer, since it 

leverages the detection of invalid messages at different communication layers, as well as context-aware, since it 

regularly considers current attack conditions to accordingly adjust the operational state of the victim server. 

 

Practically, the victim server is able to perform an adaptive and dynamic trade-off between availability and quality 

of service. That is, as an ongoing attack becomes more severe, the server can gracefully scale down its availability 

and maintain a reduced but acceptable quality of service for legitimate clients, while also reducing the 

experienced attack impact. Means to scale down availability and reduce the attack impact include relying on a 

trusted intermediary to (store-and-)forward messages, as well as temporarily switching off network interfaces, 

possibly using low-power operating modes to further limit energy consumption. 

 

An early version of SARDOS, together with a proof-of-concept Java implementation [AdaptiveDoS] and a 

preliminary evaluation was presented in [TIL18], proving that the approach effectively limits the needless usage 

of resources on a server under DoS attack, while still providing (best-effort) service to legitimate clients. 

 

The current ongoing work extends SARDOS to achieve its goals more effectively in resource- and energy-

constrained devices, by also taking advantage of built-in power saving modes. To this end, an implementation 

for the Contiki-NG operating system is in progress [AdaptiveDoSContiki], as also leveraging multiple OFF states 

associated with the utilization of low-power modes. This will be used to experimentally evaluate SARDOS on a 

constrained IoT device under DoS attack, considering different attack intensities. 

 

 

4.6.1 Invalid Messages as Attack Indicators 

Intuitively, SARDOS determines how to adjust the device service behavior by leveraging the intensity of the 

(suspected) ongoing DoS attack, as inferred from the secure communication protocols already in use. 

 

For instance, incoming protected messages that repeatedly fail to decrypt or to be asserted as non-replayed can 

be taken as an indication of an ongoing DoS attack. When this happens, the target device can temporarily adapt 

its performance and service behavior, in order to mitigate the attack effects until the monitored indicators suggest 

that the situation has become better, i.e., that the attack intensity has fallen below an acceptable threshold. 
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One example of such secure communication protocols is DTLS [RES12][RES21] (see Section 3.4), which can 

be used to protect messages exchanged with the CoAP protocol [SHE14] (see section 3.1). However, the same 

applies also when different secure communication protocols are used, which makes SARDOS independent of the 

application and able to work within different secure communication stacks. 

 

Along the same lines, SARDOS can also work in concert with non-full-fledged secure communication protocols, 

such as narrowly scoped security services aimed to deter and detect ongoing DoS attacks. An example is provided 

by SMACK, a security service that enables early and efficient detection of invalid (DoS) messages [GEH15]. 

SMACK leverages a short Message Authentication Code (MAC), which is seamlessly embedded in transmitted 

messages. Then, the message recipient verifies the short MAC and determines if the received message is genuine 

and coming from a legitimate sender, or is instead invalid and to be discarded. 

 

In [GEH15], SMACK was adapted to work specifically for CoAP messages. That is, the short MAC is embedded 

in the Token field of the CoAP message header, hence resulting in no communication overhead and no changes 

to the overall message format. The rest of this section considers this specific adaptation of SMACK to detect DoS 

attacks, when communications between two CoAP endpoints occur over an insecure channel. 

 

SMACK assumes the presence of a Key Distribution Center (KDC) entity, which is in a trust relation with the 

recipient device and shares with it a long-term cryptographic key. Upon request, the KDC provides a sender 

device with: i) a nonce to use as initial Message ID in CoAP messages sent to the recipient device; and ii) unique 

key material valid for a SMACK session with that recipient device, which expires after a fixed number of 

messages sent to that device. The sender increments the Message ID after each message transmitted to that 

recipient in the SMACK session, and uses the session key material to compute the short MAC. By using the 

Message ID and the long-term key shared with the KDC, the recipient derives the same key material and verifies 

that the short MAC is correct. 

 

 

4.6.2  Application Scenario and Adversary Model 

The following refers to the scenario shown in Figure 4.1, where a Server S and a Client C communicate using 

the CoAP protocol (see Section 3.1), either over an insecure channel or using DTLS (see Section 3.4). 

 

Furthermore, we consider an active adversary A that performs a DoS attack against S, i.e., it repeatedly sends 

invalid CoAP request messages to S, inducing it to parse and process them. We refer to these messages as attack 

messages. This attack induces S to worthlessly commit and use resources, thus endangering responsiveness or 

even availability altogether for serving requests from legitimate clients. SARDOS aims to reduce this needless 

processing and waste of resources, while preserving (best-effort) availability. 
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Figure 4.1 - DoS robustness network topology 

  

 

When under attack, S should be able to identify and discard attack messages. To this end, S can generally use 

different detection mechanisms, possibly at the same time, in order to distinguish between messages from 

legitimate clients and invalid messages. For the sake of simplicity and with the intent to later introduce more 

details about SARDOS, the following focuses on two specific detection mechanisms, i.e., SMACK or the Record 

protocol of DTLS (see Section 4.6.1). While invalid messages may be due to accidental corruption or processing 

errors, we refer to a conservative policy where S considers all invalid messages as attack messages. 

 

Also, we consider a Proxy P that, only during DoS attacks, acts as intermediary between C and S. That is, P does 

not normally participate in the communications between C and S, if S is not under attack and is operating in 

normal conditions, i.e., it directly communicates with C. The behavior of P is detailed in Section 4.6.3. 

 

A server is associated only to one Proxy, which can however be associated to multiple servers. We assume that 

both C and S securely communicate with P, by using CoAP over DTLS. If S uses SMACK, then P acts also as 

KDC (see Section 4.6.1). Also, we consider P trustworthy and designed as reliable and secure, thus practically 

infeasible to compromise. P can be centralized or based on a distributed architecture. SARDOS is not devoted to 

any specific architectural design, and further related details are out of scope. 

 

Note that IoT scenarios typically rely on intermediary or third-party entities, as often intended to support 

asynchronous communication models and to offload effort from server devices. For instance, intermediaries are 

often used as: i) authorization servers, to enforce access control policies [SEI21][SEI13]; ii) proxies, for message 

forwarding and caching [SHE14]; iii) key managers, to revoke and distribute cryptographic material. 

 

 

4.6.3  Reaction against Denial of Service 

SARDOS builds on the following rationale: when under DoS attack, it is not convenient for a server to be fully 

and directly available to serve requests. In fact, resources at the server would be mostly used to handle and process 

attack messages, thus worsening availability and performance anyway. The server can instead adaptively and 

gradually enforce a trade-off between direct service availability and protection from DoS. Building on this 

consideration, SARDOS is designed to achieve two main goals. 

 

• Limiting the impact of DoS on the server’s resources. To this end, the server regularly collects the number 

of received invalid messages, then assesses the attack intensity, and finally adjusts its operative state 

accordingly. Invalid messages can be detected with multiple, possibly co-existing, security mechanisms 

at different layers. 
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• Preserving a (best-effort) capability to serve requests from legitimate clients. To this end, SARDOS relies 

on the trusted Proxy to assist the server when under attack. The Proxy relays messages between clients 

and the server during mild/intermittent DoS, and stores client messages to be later forwarded to the 

server, during intense/persistent DoS. 

 

The following describes the server operative states, the transition among states, and how they affect the client 

experience. 

 

4.6.3.1  Server Operational Perspective 
At any point in time, a server running SARDOS is in one specific operative state from the state machine shown 

in Figure 4.2, whose evolution is driven by the experienced intensity of DoS attacks. 

 

The three operative states can be described as follows. 

 

• NORMAL (negligible/no attack) - When in this state, the server performs as per its typical behavior, i.e., 

it serves client requests at its earliest convenience. Once moved back from the PROTECTED state, the 

Server notifies the Proxy to be resuming its operations in NORMAL state. 

• PROTECTED (mild/intermittent attack) - When in this state, the server performs according to a limited 

behavior, i.e., it serves clients only through the Proxy acting as message relay. By doing so, the server 

reduces its resource consumption when under mild/intermittent DoS attack. Before entering this state, 

the server notifies the Proxy to be operating in PROTECTED state for t1 seconds. When specifically 

returning from the OFF state, the server will receive from the Proxy any stored message. 

• OFF (intense/persistent attack) - When in this state, the server performs according to a best-effort 

behavior, i.e., it has its network interface turned off and relies on the Proxy to store client requests until 

it leaves the OFF state. This greatly reduces resource consumption on the server. Before entering this 

state, the server notifies the Proxy that it will be in OFF state for t2 seconds, during which the Proxy 

stores client requests to be relayed and served later. 

 

  

  
 

Figure 4.2 - Server state machine 
 

 

While in NORMAL or PROTECTED state, the server regularly checks the reception rate of invalid messages 

and determines whether to switch to a different state. To this end, the server considers consecutive time windows, 

during each of which it maintains a counter X of received invalid messages. If, at the end of a particular time 

window, the corresponding counter exceeds a set threshold, the server will transition into the next higher 

operative state. Different threshold values Thx are used for transitioning into PROTECTED and OFF states, i.e., 

the attack intensity needs to be more severe for the server to move to the OFF state. Instead, for transitioning 
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back to a previous lower state, the Server relies on two timers, namely t1 and t2, for transitions from PROTECTED 

to NORMAL and from OFF to PROTECTED, respectively. The threshold values Thx and the timers t1 and t2 are 

dynamically updated according to the intensity of incoming attack messages, thus appropriately adjusting the 

attack tolerance. The server always keeps the Proxy informed of which state it is in. 

 

As discussed in Section 4.6.1, invalid messages can be detected at the server through different security 

mechanisms, which can possibly co-exist at different communication layers. While focus on this respect has been 

put on using either SMACK or the DTLS Record protocol (see Section 4.6.1), SARDOS is not devoted to any 

specific detection mechanism, and different approaches than SMACK and DTLS can be seamlessly used, 

possibly at the same time. In fact, regardless the specific mechanisms and their rationale, each received message 

assessed as invalid is silently discarded, and results in the counter X incremented by 1. That is, the server enforces 

a conservative policy where all invalid messages are considered attack messages. 

  

Furthermore, work is ongoing in order to extend the OFF state of the SARDOS state machine, by introducing 

multiple OFF sub-states as especially relevant for resource- and energy-constrained IoT devices. These sub-states 

can take advantage of built-in power saving modes, in order to further reduce the energy consumed by the server 

when in one of the OFF sub-states. Many classes of commercially available constrained devices support low-

power modes of operation, which can be controlled via software or hardware. By introducing the OFF sub-states 

above to reflect varying levels of "depth" for the main OFF state, energy consumption can be further reduced, 

while still according to the overall dynamic and adaptative rationale of SARDOS. In particular, the OFF sub-

states can be mapped to different low-power modes, and the transition to one sub-state or a different one can be 

chosen as the most appropriate to the current intensity of the ongoing DoS attack. In case of particularly intense 

attacks, the Server can switch to the most extreme OFF sub-state, hence to the most extreme low-power mode, 

and shut down most of its functionalities thus maximally reducing its energy consumption. 

 

More investigation is required into how to make use of such extreme operative states in a way which is still 

overall worthwhile in terms of resource preservation. That is, switching to a specific state at a certain point in 

time and then back after a certain amount of time might generally risk costing more energy than would be gained 

in the first place. Hence, it is important to identify good practical criteria for setting and dynamically adjust 

thresholds and timeout values, such that state transitions effectively occur at the right moment and for an 

appropriate amount of time, thus ensuring to overall pay off. 

 

This becomes especially relevant when introducing multiple OFF sub-states. For instance, leaving a sub-state 

OFF_0 in order to move back to the PROTECTED state can require to only switch on the radio interface again. 

However, moving back to the PROTECTED state from a sub-state OFF_1 or OFF_2 may additionally require 

making the CPU and other hardware components fully operative again. This in turn results in an additional “wake-

up” energy consumption. Thus, it must be ensured by construction that the amount of time spent in a sub-state 

OFF_1 (OFF_2) always pays off from an energy consumption point of view, compared to rather spending that 

amount of time in the sub-state OFF_0 (OFF_1). Such an assessment is not trivial to perform, as it must consider 

the power consumption of the different device components (e.g., CPU, radio interface) as well as the different 

amounts of energy spent for “waking up” and moving back to the PROTECTED state. 

 

 

4.6.3.2  Client Operational Perspective 
  

As described below, the client experiences a different service depending on the current state of the server. 

 

• The server is in NORMAL state - The client communicates directly with the server as usual. If the 

client believes the server to be in PROTECTED or OFF state, and sends a request to the Proxy to be 
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relayed to the server, then the Proxy replies with a SARDOS control message, telling the client to transmit 

its requests directly to the server. 

• The server is in PROTECTED state - The server accepts only requests that are relayed by the Proxy, 

thus the client must send its requests to the Proxy to be relayed to the server. If the client believes the 

server to be in NORMAL state and attempts to communicate directly with the server, two cases can 

occur. 

o If the client already has an established communication session with the Server, i.e., through 

SMACK or DTLS, the server verifies the request to be a valid message, and silently discards it 

anyway. Then, the server replies to the client with a SARDOS control message, signaling to be 

currently operating in PROTECTED state. 

o If there is no established communication session, the server does not process the request, 

counts it as an invalid message (i.e., increments the counter X) and discards it. Then, the 

server does not reply to the client, which would re-transmit the same request until it 

reaches its retransmission limit. The network administrator should properly configure 

the SARDOS parameter on the server side, in order to avoid that relatively few 

retransmissions from legitimate clients can unfairly induce transitions to OFF state. 

In either case, the client assumes that the server is in PROTECTED state, and starts transmitting to the 

Proxy all requests intended to the server, indicating to relay them. After that, the client receives the related 

responses as relayed by P, and assumes the server to be in PROTECTED state until the Proxies notifies 

that the server has switched to a different state. 

• The server is in OFF state - The server has its network interface turned off and cannot serve any request. 

Then: 

o If the client believes the server to be in NORMAL state and contacts the server directly, it does 

not get a reply and would re-transmit a request until reaching its retransmission limit. After that, 

the client assumes the server to be in PROTECTED state, and transmits to the Proxy its requests 

intended to the server, indicating to relay them without storing them. 

o Alternatively, the client might have already known the server to be in PROTECTED state. If so, 

the client sends to the Proxy its requests intended to the server, indicating to relay them without 

storing them. 

In either case, the Proxy replies to the client with a SARDOS control message, signaling that the server 

is in OFF state. Then, the client may still transmit to the Proxy all its requests intended to the server, 

indicating to store them and to relay them to the server when it switches back to PROTECTED state. 

When doing so, the client can provide an indicative amount of time t_OFF_C that it is fine to wait for 

getting a response from the server, although relayed through the Proxy. Then, the Proxy accordingly 

stores such requests if the residual time that the server spends in OFF state is less than the amount of time 

indicated by the client. Otherwise, the proxy discards those request messages. 

In either case, the Proxy informs the client of the residual amount of time to wait until the server switches 

back to PROTECTED state. This prevents the client from performing further worthless request 

transmissions during that time interval. Upon receiving responses to requests stored at the Proxy, the 

client assumes the server to be in PROTECTED and accordingly sends new requests through the Proxy. 

 

  

5 Part 2 – Access and Usage Control for Server Resources 

 
This section presents the developed security solutions within the area "Access and Usage Control for Server 

Resources". 
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 OSCORE and Group OSCORE Profiles of ACE 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29, PE-31 

• Security Requirements: SE-19, SE-30, SE-35, SE-40 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Authentication Manager” component of the “Secure Lifecycle Manager” module. 

• The “Key Manager” component of the “Secure Lifecycle Manager” module. 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

This section briefly overviews two relevant profiles of the ACE framework for authentication and authorization 

(see Sections 3.8 and 3.8.3), i.e., the OSCORE profile and the Group OSCORE profile. 

 

 

5.1.1  OSCORE profile 

The OSCORE profile of ACE defined at [PAL21] describes how a Client (C) and a Resource Server (RS) can 

engage in the ACE workflow and establish an OSCORE Security Context for securely communicating with one 

another using the OSCORE security protocol [SEL19] (see Section 3.7). 

 

Upon receiving the Token request from C, the Authorization Server (AS) generates an OSCORE Security Context 

Object. This includes information and parameters for C and the RS to establish an OSCORE Security Context, 

such as and especially an OSCORE Master Secret. The AS includes the OSCORE Security Context Object into 

the Access Token to be released. After that, the AS provides C with both the Access Token and the OSCORE 

Security Context Object. For the sake of proof-of-possession, C has to prove to the RS to also possess the 

OSCORE Master Secret specified in the Access Token. 

 

Upon uploading the Access Token to the RS, both C and the RS exchange a pair of nonces as well as the respective 

OSCORE identifiers they intend to use. Then, C and RS use such values together with the OSCORE Security 

Context Object received from the AS, to derive a complete, fresh OSCORE Security Context. After that, C sends 

a first secure request to the RS, protected with the new OSCORE Security Context. Proof-of-possession is 

achieved when the RS receives such first request and verifies it as cryptographically correct. 

 

The OSCORE profile of ACE is also included in the Java implementation of the ACE framework from RISE 

available at [ACE-DEV], as available for use in the SIFIS-Home project. 

 

 

5.1.2  Group OSCORE profile 

The Group OSCORE profile of ACE defined at [TIL21a] describes how a Client (C) can engage in the ACE 

workflow to access a resource shared by multiple Resource Servers (RSs) in a group, where communication in 

the group is protected by using the Group OSCORE security protocol [TIL21b] (see Section 4.1). This requires 

C as well as all the targeted RSs to have already joined the OSCORE group, for instance using the approach 

defined in [TIL21c] and also based on the ACE framework (see Section 6.1). 

 

In some applications relying on Group OSCORE, it may be just fine to rely on a “flat” access control model. That 

is, being a member of the OSCORE group, and hence legitimately owning the group keying material, 
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automatically grants the right to perform any action at any resource hosted at any group member. While this is 

acceptable in some scenarios, it is not sufficient for applications that require a more fine-grained enforcement of 

access control, on a per-node basis. 

 

In particular, it may be necessary to distinguish different classes of clients, e.g., low-privileged or high-privileged, 

so that some group members can perform only some operations on some resources hosted at other group 

members. One can achieve this by creating multiple OSCORE groups, i.e., one for each class of access rights that 

clients belong to. However, this would require additional, inconvenient key management operations, and 

especially revocation and renewal of the keying material of all the involved groups, if access rights of any group 

member change. 

 

The Group OSCORE profile addresses this type of requirements, and enables fine-grained access control using 

ACE. In particular, it does not require the creation of additional OSCORE groups than the ones already set up 

and deployed. Furthermore, it deals with the fact that no other profile of ACE supports secure group 

Communication. 

 

Assuming C and the RSs as already members of an OSCORE group, C sends a Token request to the AS, 

specifying also: i) the Group ID of the group; ii) the identifier it has in the group; iii) the public key it uses in the 

group; and iv) a Proof-of-Possession (PoP) evidence (e.g., a signature computed using its own private key), over 

a challenge that the AS is also able to derive, as tight to the secure communication channel it has with C. 

 

Then, upon receiving the Token request from C, the AS verifies the PoP evidence, and creates an Access Token 

which includes the Group ID, the client identifier and the public key received from C. After that, the AS provides 

C with the Access Token. For the sake of proof-of-possession, C has to prove to the RS for which the Access 

Token has been issued to also possess the private key corresponding to the public key specified in the Access 

Token. 

 

After that, C uploads the Access Token to the correct RSs in the group. Upon receiving the Access Token from 

C, the RSs can retrieve the public key of C in the group, and verify with the OSCORE Group Manager that C is 

indeed a member of that group and owner of that public key. 

 

Note that C can acquire and upload one Access Token for each RS in the group, or instead a single Access Token 

intended for multiple RSs at once, if the AS supports its release. 

 

Finally, C can send (multicast) messages to the group protected with Group OSCORE, reaching all the RSs in 

the group. At a given RS, proof-of-possession is achieved when the RS receives such first request and verifies it 

as cryptographically correct, by using the public key of the client. This includes verifying the signature of the 

message (if using the group mode of Group OSCORE), or verifying the integrity of the message using a pairwise 

key derived from the asymmetric keys of both C and RS (if using the pairwise mode of Group OSCORE). 

 

 

  Notification of Revoked Access Credentials 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29 

• Security Requirements: SE-19, SE-40 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Authentication Manager” component of the “Secure Lifecycle Manager” module. 
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• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

Access Tokens issued by an Authorization Server (AS) eventually expire, and the AS can give an explicit 

indication of expiration time. When that happens, both a Client (C) and a Resource Server (RS) owning that 

Access Token would discard it. In particular, C would have to get a new Access Token from the AS and upload 

it to the RS, before continuing accessing resources at that RS. 

 

On top of that, there are additional circumstances when an Access Token may be revoked, before its expiration 

time comes. Practical effects should be the same ones mentioned above for the case of expiration, and they apply 

to both C and the RS, hereafter referred to as registered devices, due to their registration at the AS. 

 

Examples of situations resulting in revoking an Access Token include: 

 

• a registered device has been decommissioned; 

• a registered device has been compromised, or it is suspected of being compromised; 

• there has been a change in the ACE profile for a registered device; 

• there has been a change in access policies for a registered device; 

• there has been a change in the outcome of policy evaluation for a registered device (e.g., if policy 

assessment depends on dynamic conditions in the execution environment, the user context, or the 

resource utilization). 

 

In the OAuth 2.0 framework [HAR12], it is possible for C to initiate the revocation of an Access Token, as 

specified in [LOD13]. This builds on the assumption that, in OAuth 2.0, the AS issues Access Tokens with a 

relatively short lifetime. However, this is likely not the case for the AS in the ACE framework. In fact, resource-

constrained and intermittently connected devices practically require Access Tokens with relatively long lifetimes. 

 

With particular reference to the ACE framework (see Section 3.8), a RS would be able to learn about revoked 

Access Tokens that it owns, by checking at the AS through the introspection mechanism (see Section 3.8.2), in 

case the AS provides such an optional service. On the other hand, C has no means to learn whether any of the 

Access Tokens it owns has been revoked. 

 

More generally, it is not possible for the AS to take the initiative and notify registered devices about pertaining 

Access Tokens that have been revoked, but are not expired yet. Specifically, an Access Token pertains to a Client 

if the AS has issued the Access Token and provided it to that Client. Also, an Access Token pertains to a Resource 

Server if the AS has issued the Access Token to be consumed by that Resource Server. 

 

The novel approach specified in the standardization proposal [TIL21d] aims to fill this gap. That is, it specifies a 

method for registered devices to access and observe a Token Revocation List (TRL) resource on the AS, in order 

to get an updated list of revoked, but yet not expired, pertaining Access Tokens. 

 

In particular, registered devices can rely on resource observation [HAR15] for CoAP [SHE14]. That is, the AS 

would automatically send a notification to an observer registered device, when the status of the TRL resource 

changes. Specifically, this happens when: 

 

• an Access Token pertaining to that device gets revoked; or 

• a revoked Access Token previously included in the list eventually expires. 

 

The main benefits of this method are that it complements the introspection mechanism, and it does not require 
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any additional resources or endpoints to be created on the registered devices. 

 

The TRL resource at the AS does not contain the full representation of the currently revoked Access Tokens, but 

rather their ad-hoc identifiers computed for this purpose. Such identifiers, namely token hashes, are computed as 

per [FAR13], and make it possible to correctly handle different types of Access Tokens conveyed over different 

transports. 

 

As mentioned above, a registered device can at any time send a request to the TRL resource at the AS, or 

alternatively observe it to get automatic notification responses in case of changes in the TRL. In either case, the 

registered device is not going to receive the full content of the TRL, but rather only a pertaining subset, which 

contains only token hashes of Access Tokens pertaining to that registered device, as extracted from the whole 

current the TRL resource. 

 

More specifically, a registered device can access the TRL resource at the AS in different modes, which 

result in different responses from the AS. 

 

• Full query mode: the AS returns the token hashes of the revoked Access Tokens currently in the TRL 

and pertaining to the registered device that has sent the request. 

 

• Diff query mode: the AS returns a set of diff entries. Each entry is related to one of the N most recent 

updates in the portion of the TRL pertaining to the registered device that has sent the request, where N is 

specified as a query parameter of the request. In particular, the entry associated with one of such updates 

contains a list of token hashes, such that i) the corresponding revoked Access Tokens pertain to the issuer 

of the request; and ii) they were added to or removed from the TRL at that update. This mode of operation 

can potentially be extended, in order to allow a registered device to retrieve a set of diff entries not only 

as limited to the most recent TRL updates, but rather starting from an arbitrary point in time taken as 

resumption point. 

 

 

 Usage Control Framework 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Functional Requirements: F-30, F-31, F-32, F-33, F-34, F-35, F-47, F-48, F-49, F-50, F-51, F-52, F-

53 

• Non-Functional Requirements: P-19, PE-20, PE-21, PE-28, PE-29, US-15, US-16 

• Security Requirements:  SE-19, SE-40, SE-42 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Authentication Manager” component of the “Secure Lifecycle Manager” module. 

 

The Usage Control System (UCS) regulates the usage of a resource following the UCON model [PAR04] (see 

Section 3.9). The UCS architecture extends the XACML reference architecture [XAC13] to include the 

components required for the evaluation of XACML-based Usage Control Policies (UCPs) and for the 

management and revocation of ongoing usage sessions because of mutable attributes.  

 

A UCP is a policy written in UPOL policy language [DIC18] and is composed of three different sections, i.e., 

pre-, on- and post- sections, which are evaluated separately and at different times. A standalone XACML policy 

is derived from each section, and derived policies can be evaluated by a traditional XACML engine. The first 

policy is called pre-policy and contains pre-authorizations, pre-conditions, and pre-obligations; the second policy 
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is called on-policy and contains on-authorizations, on-conditions, and on-obligations; and the third policy is called 

post-policy and contains post-authorizations, post-conditions, and post-obligations. 

 

Ongoing usage sessions are continuously monitored in the context of the on-policy. As soon as a mutable attribute 

changes its value, a policy re-evaluation starts to verify whether the access is still legit or should be revoked, i.e., 

whether the on-policy is still satisfied or not after the attribute value change. 

 

The UCS is the core of the UCON framework, which includes other components that interact with the UCS. 

Figure 5.1 shows the UCON framework architecture and its main components, which are described in the 

following. 
 

 
 

Figure 5.1 - UCON framework architecture 

 

 
The Policy Enforcement Point (PEP) component regulates the access to a resource for a subject following the 

instructions received by the UCS. The PEP acts on behalf of the user and interacts with the UCS through three 

different types of requests: tryAccess, startAccess, and endAccess. 

 

• tryAccess request: the PEP gathers (i) information about the subject performing the access request, e.g., 

their identity, role, etc., (ii) the action to be performed, e.g., read, write, etc., (iii) the resource to be 

accessed, e.g., a file, a thing, etc., and (iv) available environmental information, e.g., some sensor’s 

reading, weather conditions, current day and time, etc. 

 

By using this information, the PEP creates and sends an XACML request (access request) to the UCS 

for evaluation (step 1 in Figure 5.2). More in detail, the request is sent to the Context Handler (CH) –the 

front-end of the UCS– which manipulates it and asks the Policy Decision Point (PDP) to evaluate it 

against the pre-policy. 

 

After evaluation, the CH replies with either a positive response (permitAccess response) or a negative 

response (denyAccess response), shown in step 2 of Figure 5.2. If a positive response is received, the PEP 
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authorizes the subject s to access the resource r to perform the action a on it. 

 

• startAccess request: upon receiving a permitAccess response following a tryAccess request, the PEP 

sends a startAccess request to the CH as soon as the access has started. In this phase, the PEP does not 

specify a new access request, and the PDP evaluates the original request against the on-policy. 

 

After evaluation, the CH replies with either a positive response (permitAccess response) or a negative 

response (revokeAccess response), shown in step 4 of Figure 5.2. If a negative response is received, the 

PEP terminates the access to the resource r for the subject s and sends an endAccess request to the CH. 

 

• endAccess request: the PEP sends this request to the UCS as soon as the access to the resource terminates. 

An access can be terminated for two different reasons: (i) the access has naturally ended (step 5(i) of 

Figure 5.2), or (ii) the PEP received a revokeAccess message from the UCS (step 5(ii) of Figure 5.2). In 

the latter case, upon receiving the revokeAccess message, the PEP first undertakes actions to terminate 

the access and then informs the UCS through an endAccess request (step 6(ii) of Figure 5.2). 

 

In both scenarios, the PDP evaluates the original request against the post-policy, which typically includes 

obligations (see Section 3.9). After evaluation, the CH replies with either a positive response 

(permitAccess response) or a negative response (denyAccess response), shown in steps 6(i) and 7(ii) of 

Figure 5.2. Note that, independently of the UCS response, the access to the resource terminated before 

the endAccess request was sent by the PEP. 

 

 
 

Figure 5.2 - PEP-CH interaction 
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The Policy Administration Point (PAP) component manages and stores the UCPs. Each UCP must be written 

in UPOL language and must implement the pre- and the on- sections, and, optionally, the post- section. 

 

 

The Policy Decision Point (PDP) component evaluates an access request against an access policy. When serving 

a tryAccess request, the PDP is also responsible for finding an applicable UCP UCP* among those stored at the 

PAP to be used for evaluation. An applicable UCP is a policy whose XACML <Target> field matches the access 

request, and, therefore, the access request can be evaluated against. 

 

The PDP evaluates either the pre-policy, the on-policy, or the post-policy of the applicable UCP against the access 

request and produces an access decision. The access decision is the result of the evaluation, and it is either Permit 

if the policy is satisfied by the request, or Deny otherwise. For the sake of simplicity, the results Indeterminate 

and NotApplicable are omitted here. 

 

Both the access request and the access policy are expressed in XACML format, thus the PDP can use a standard 

XACML engine, such as WSO2 Balana [BAL21], for evaluating the access request. 

 

 

The Attribute Managers (AMs) are components responsible for mutable attributes. They communicate with the 

Policy Information Points (PIPs) and provide them with fresh attribute values. Although less useful, AMs can 

also manage immutable attributes and always provide the PIPs with the same value. 

 

Examples of AMs can be local and remote databases, a file stored on the file system, a resource reachable at a 

URL, or an Identity Provider controlling users’ information, such as nationality or age. These can be mutable 

attributes since their value can change over time.  

 

 

The Policy Information Points (PIPs) are adapters placed between CH and AMs, and their duty is to provide 

the CH with fresh attribute values. They offer a standard interface to the CH, while the interface with AMs is PIP 

specific. 

 

The PIP-CH interface consists of four methods: (i) retrieve, (ii) subscribe, (iii) unsubscribe, and (iv) update. The 

retrieve method is invoked by the CH to obtain fresh attribute values for the attributes the PIP is responsible for. 

When calling this method, the CH can specify a value, e.g., an identity number, that the PIP uses to query the 

AM to obtain the pertaining attribute values. With reference to the previous example, the PIP could send the 

identity number to the AM, which returns the age associated with that number. 

 

The subscribe method is invoked by the CH to get notified when an attribute value changes. When a PIP receives 

a subscription request, it starts a continuous monitoring of the attribute at the AM. As soon as the attribute value 

changes, the PIP notifies the CH, which performs a policy re-evaluation. 

 

The unsubscribe method is invoked by the CH to stop receiving notifications from a PIP. When a PIP receives a 

request for subscription cancellation, it stops the attribute monitoring. 

 

The update method is invoked by the CH to change the value of an attribute at the AM. When a PIP receives an 

update request, it commands the AM to update the attribute value with the one provided by the CH. 

 

The PIP-AM interface is specific for every PIP since AMs are heterogeneous components. The way in which the 

PIP retrieves an attribute value is clearly dependent on the specific AM it is attached to. Examples are resource 

polling at the AM, subscription to a publish-subscribe topic resource at the AM, and resource observation through 

the CoAP Observe Option [RFC7252][RFC7641]. 

 

 

The Context Handler (CH) component interacts with the PEP according to the protocol shown in Figure 5.2 and 
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coordinates the process of evaluation of access requests.  

 

For any type of access request and for performing a policy re-evaluation on it, the CH retrieves fresh attribute 

values from the PIPs, and it forms an enriched request by adding these attributes and their values to the original 

access request. 

 

Then, the CH asks the PDP to find an applicable UCP, namely UCP*. Finally, the CH sends the enriched request 

and either the pre-policy, the on-policy or the post-policy of UCP* to the PDP, which produces an access decision. 

The access decision is sent to the CH, which undertakes different actions depending on the type of request it is 

serving: 

 
tryAccess request: 

• Deny – The CH sends a denyAccess response to the PEP. 

• Permit – The CH communicates to the Session Manager (SM) that a new session for the current request 

must be created. The session includes a unique identifier (SessionID), the original access request, UCP* 

and the status of the access, which in this case is TRY_ACCESS. Then, the CH includes the SessionID 

in a permitAccess response and sends it to the PEP. 

 

startAccess request: 
• Deny – The CH communicates the SessionID to the SM, which updates the related session with the status 

REVOKE_ACCESS. Then, the CH sends a revokeAccess response to the PEP.  

• Permit – The CH communicates the SessionID to the SM, which updates the related session with the 

status START_ACCESS. Then, the CH sends a permitAccess response to the PEP. From that moment 

on, the mutable attributes in the on-policy are continuously monitored: the CH subscribes to the 

pertaining PIPs, which notify it in the event of attribute value change. When this happens, the CH 

performs a policy re-evaluation. 

 

policy re-evaluation: 
• Deny – The CH communicates the SessionID to the SM, which updates the related session with the status 

REVOKE_ACCESS. Then, the CH cancels its subscription to the pertaining PIPs and sends a 

revokeAccess response to the PEP. 

• Permit – The CH performs no further action. 

 

endAccess request: 
• Deny – The CH communicates the SessionID to the SM, which deletes the related session. Then, the CH 

sends a denyAccess response to the PEP. 

• Permit – The CH communicates the SessionID to the SM, which deletes the related session. Then, the 

CH sends a permitAccess response to the PEP. 

 

 

The Session Manager (SM) component keeps track and administers the lifecycle of usage control sessions. A 

session is the representation of an existing access. It is created when the access is first granted and is deleted after 

the access has terminated. A session consists of at least the following information: 

• The session identifier (SessionID), i.e., a unique label that identifies an exact session; 

• The status, which identifies the current state of an access and can assume the value TRY_ACCESS, 

START_ACCESS, or REVOKE_ACCESS;  

• The original access request; and 

• The UCP against which the access request was evaluated. 

 

The SM creates a new session when the access decision following a tryAccess request is Permit; it updates the 

session after the evaluation of a startAccess request or if the access decision following a policy re-evaluation is 

Deny; and it deletes the session after the evaluation of an endAccess request. 
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The SM is queried by the CH every time it gets notified by a PIP of an attribute value change. When this happens, 

the SM retrieves and sends back to the CH the SessionIDs of the affected sessions. These are the sessions whose 

status is equal to START_ACCESS and whose on-policy includes the attribute that has changed. Then, the CH 

performs a policy re-evaluation for all the affected sessions. The sessions for which the access decision after re-

evaluation is Deny are updated with status REVOKE_ACCESS. 

 

 

 Combined Enforcement of Access and Usage Control 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29 

• Security Requirements: SE-19, SE-40 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Authentication Manager” component of the “Secure Lifecycle Manager” module. 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

When using the ACE framework to enforce access control (see Section 3.8), the Authorization Server (AS) must 

implement an evaluation and decision process to determine if an Access Token can be issued to a Client asking 

for access to resources at a target Resource Server (RS), and with what exact scope. In addition, it would be good 

for the AS to be able to perform a dynamic assessment of access control policies, possibly resulting in a revocation 

of issued Access Token before their expiration. To this end, the AS can leverage the UCON model (see Section 

3.9), by relying on an integrated and specifically customized UCON-based decision maker (see Section 5.3). The 

following describes how such a decision maker component has been integrated into the AS. 

 

The work-in-progress Java implementation from CNR [ACE-UCON-DEV] has been integrating a customized 

UCON-based decision maker within the implementation of the ACE framework from RISE [ACE-DEV], 

together with the mechanism for automatic notification of revoked Access Tokens described in Section 5.2. 

 

 

5.4.1 Integration of the UCON framework into the ACE framework 

The PEP component is embedded in the AS and interacts with the /token endpoint, which entrusts it the practical 

task of determining the rights to be granted in accessing the set of resources at the RS specified by the Client. In 

order to do this, the PEP communicates with the UCS through the mechanisms described in Section 5.3. 

 

In ACE, a Client C performing an Access Token request to the /token endpoint at the AS specifies an audience 

AUD and a scope SCOPE. If not specified, a default audience and scope are assumed. Through this request, C is 

essentially saying that it wants to access a specific resource RES (or more than one, as inferred from the scope) 

at a target RS and perform an operation OP on that resource. Note that all the ACE actors are aware of the 

semantics used to express a scope and are thus able to map scopes to resources and operations on those. For 

example, a scope named "r_temp" might be mapped to the resource "temp_sensor" and operation "read". 

 
From a UCON perspective, the former example translates to: the subject C wants to access the resource RES and 

perform the action OP on it. The target RS can be specified as additional attribute both in the XACML requests 

and in the UCPs. An Access Token request can therefore be transformed by the PEP into an XACML request 

that the UCS can evaluate. An example of XACML request is reported in Figure 5.3. 
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Figure 5.3 - Example of XACML access request. The Client C has requested access privileges to perform the 

operation OP on the resource RES at the audience AUD associated with the target RS. 

 

 

In the ACE framework, the scope requested by C is actually mapped into a set of resources and operations on 

those. If it is possible to satisfy the request only partially, the AS grants to C only a subset of the requested access 

rights on such resources. Consistently with a correct integration of the UCON framework into ACE, the AS first 

determines the set of resources and requested operations on those from the scope specified by C. Then, the PEP 

creates a separate XACML access request for each resource as described above. Such requests are individually 

submitted to the UCS, which evaluates them and creates the sessions at the SM for those whose access decision 

is Permit. After that, the UCS returns either a permitAccess or a denyAccess response for each request. Then, the 

PEP saves the session identifiers for the requests associated with the resources on which access to be granted. 

Finally, the /token endpoint expresses the resources through a scope and includes it in the response returned to 

the Client. 

  

As an example (also shown in Figure 5.4) the scope SCOPE could refer to the set of resources {RES1, RES2}, 

the scope SCOPE1 to {RES1}, and the scope SCOPE2 to {RES2}. The operation on all the resources is assumed 

to be READ. Let a client C specify SCOPE as scope and AUD as audience in its Access Token request. The AS 

obtains the set of resources corresponding to the scope SCOPE, i.e., {RES1, RES2}, and the related operation, 

i.e., READ. Then, the PEP creates the XACML requests and individually submits them to the UCS. Each request 

contains C as subject, AUD as audience identifying the resource server, READ as action, and either RES1 or 

RES2 as resource. Then, the UCS evaluates the two requests and returns an access decision for each request. Let 

the access decision for RES1 be Deny and the access decision for RES2 be Permit. Then, the AS expresses 

{RES2} through the scope SCOPE2 and includes such a scope in its response to the Client. 
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Figure 5.4 - Diagram showing how the UCON framework has been integrated into the ACE framework.  

 

 

5.4.2 From access revocation to Access Token revocation 

The UCS provides a continuous monitoring of active usage control sessions and can revoke accesses to resources 

at the RS according to the mechanisms described in Section 5.3. Its revocation mechanism is fine grained and 
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capable of revoking accesses to single resources. On the other hand, the ACE framework considers the possible 

revocation of Access Tokens as a whole. Since a single Access Token can grant access to more than one resource, 

this results in the creation of more than one session per Access Token at the UCS. That is, in ACE, the revocation 

of a Client’s access privileges on a resource at a RS implies the revocation of the whole Access Token issued to 

that Client and to be consumed by that RS. For this reason, an additional customization has to be done to correctly 

integrate the UCON framework into ACE, while preserving a consistent enforcement of access and usage 

policies. 

 

In the UCON framework, an access is revoked when a policy re-evaluation produces Deny as an access decision. 

In such a case, the UCS sends a revokeAccess message to the PEP, and the PEP sends an endMessage request to 

the UCS. Both these messages convey information about the session to be revoked, i.e., the SessionID. 

 

In order to correctly integrate the UCON framework into ACE, the PEP embedded in the AS implements the 

logic to group together the sessions related to the same Access Token. By doing so, when the PEP receives a 

revokeAccess message for a specific SessionID, it first finds the Access Token associated with that session, and 

then it looks for other session identifiers associated with the same Access Token. Finally, it sends an endAccess 

request to the UCS for each session associated with the Access Token. Also, the Access Token identifier, i.e., the 

token hash of the Access Token, is stored in the TRL resource at the AS (see Section 5.2), whose representation 

changes over time as valid Access Tokens are revoked or when revoked Access Tokens eventually expire. After 

that, the additional notification of revoked Access Tokens can take place as per Section 5.2. 

 

In the following, a practical example is given, and the workflow from the Access Token request to the Access 

Token revocation and related notification is described. 

 

Tenants of a smart home can use a washing machine by means of a SIFIS-Home application. They could be 

allowed by the administrator to trigger the execution of high-temperature wash cycles, as far as the threshold of 

daily energy consumption of the overall household is not passed. Consistently, the administrator defines an access 

policy for the tenants and the resource "washing machine high-temp cycle", and it adds the attribute "daily energy 

consumption" in the on- section of the UCP, specifying that its value must be lower than a certain threshold in 

order to let tenants perform high-temperature wash cycles. The daily energy consumption value is managed by 

an AM, which is the smart meter deployed in the smart home. 

 

Within the SIFIS-Home application, a tenant selects the high-temperature wash cycle and then starts the washing 

process. If an Access Token has not already been issued to the user and uploaded to the washing machine, or if 

such an Access Token has ceased to be valid due to expiration or revocation, an Access Token request for the 

resource washing machine high-temp cycle is sent to the AS. The access is granted by the UCS, and the Access 

Token is issued to the tenant, which can now trigger the execution of the high-temperature wash cycle. 

 

In case the daily consumption threshold is passed, the Access Token is revoked. That is, the policy re-evaluation 

at the UCS returns an access decision of Deny because the current daily energy consumption value is higher than 

the threshold value set within the policy. Then, the UCS sends a revokeAccess message to the PEP, which replies 

with an endAccess request. Then, the token hash of the revoked Access Token is stored in the TRL of the AS, 

and the notification procedure from Section 5.2 is performed. 

 

If the tenant attempts to get another Access Token within the same day, the AS does not grant a scope allowing 

access to the resource "washing machine high-temp cycle" at the washing machine, because the on-policy is not 

satisfied at the time of Access Token request. 

 

 

6 Part 3 – Establishment and Management of Keying Material 
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This section presents the developed security solutions within the area "Establishment and Management of Keying 

Material". 

 

 

 Key Provisioning for Group OSCORE using ACE 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Functional Requirements: F-55, F-56, F-57 

• Non-Functional Requirements: PE-28, PE-29, PE-31 

• Security Requirements: SE-30, SE-31, SE-35, SE-36, SE-41, SE-44, SE-45 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Authentication Manager” component of the “Secure Lifecycle Manager” module. 

• The “Key Manager” component of the “Secure Lifecycle Manager” module. 

• The “Device Registration Manager” component of the “Secure Lifecycle Manager” module. 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

In order to use Group OSCORE [TIL21a] to securely communicate with other CoAP endpoints (see Section 4.1), 

a node has to explicitly join that group through the associated Group Manager (see Section 4.1.1). 

 

Before doing so, the node has to be explicitly authorized to join the OSCORE group and has to prove it to the 

Group Manager. After that, the actual joining procedure can be performed, and the Group Manager can especially 

provide the joining node with the necessary keying material to communicate in the OSCORE group. 

 

Both tasks can be effectively performed by using the ACE framework for authentication and authorization 

[SEI21] introduced in Section 3.8. In particular, [TIL21b] is a standardization proposal which defines how the 

ACE framework can be used to: i) enforce access control policies at the Group Manager, for candidate members 

wishing to join an OSCORE group; ii) enforce management of group keying material at the Group Manager, 

including key provisioning to joining nodes. 

 

A Java implementation of the above services from RISE is available at [ACE-DEV], as integrated in a Java 

implementation of the overall ACE framework and available for use in the SIFIS-Home project. 

 

Intuitively, the following mapping occurs between Group OSCORE entities and ACE entities: 

 

• A joining node acts as ACE client, thus requesting an Access Token from an Authorization Server, in 

order to prove to be authorized to join an OSCORE group with particular roles. 

• The Group Manager acts as ACE Resource Server (RS), and is in a secure association with the AS. That 

is, the Group Manager consumes Access Tokens issued by the AS, and accordingly admits joining nodes 

to become members of its own OSCORE groups. 

 

Building on the ACE workflow summarized in Section 3.8.2, the following steps occur. The security of the 

exchange between the joining node and the Group Manager is simply as per the particular security profile of 

ACE, e.g. [PAL21a][GER21], possibly indicated by the AS or pre-configured at the involved parties. 

 

1. The joining node contacts the AS and asks for an Access Token to join one or more OSCORE groups at 

a Group Manager. When doing so, the joining node indicates the names of the OSCORE groups it intends 



 

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D3.2 

 

Page 63 of 85 

  

to join, as well as the role(s) it wishes to have in each of those groups. Possible roles are: 

a. Requester: the node will be interested in sending CoAP requests in the group. 

b. Responder: the node will be interested in sending CoAP responses in the group. 

c. Monitor: the node, while interested in receiving CoAP requests in the group, will never respond to 

those and will never send CoAP requests of its own. 

2. The joining node obtains the Access Token and uploads it at the Group Manager, which validates it and 

stores it. 

3. The joining node sends a joining request to the Group Manager, targeting the group-membership resource 

associated with the OSCORE group. The joining node specifies in the joining request: 

a. The name of the exact OSCORE group it wants to join, and the particular role(s) it wants to take in 

the group. 

b. Its own public key, corresponding to its own private key to use in the group. 

c. A Proof-of-Possession (PoP) of its own private key, in order to prove possession of such key to the 

Group Manager. The PoP input is a challenge that both the joining node and the Group Manager can 

build, possibly using information exchanged during the Access Token upload at step 2. If the 

OSCORE group does not use only the pairwise mode, the PoP evidence is a digital signature. If the 

OSCORE group uses only the pairwise mode, the PoP evidence is a MAC computed with a 

symmetric key derived from a static-static Diffie-Hellman secret, which is in turn derived from the 

joining node’s and the Group Manager’s asymmetric keys. 

d. Optionally, an indication of interest to retrieve the public keys of other group members. 

e. Optionally, the URL of a local control resource where the Group Manager can send requests to, 

concerning administrative operations for that group. 

4. After validating the joining request, the Group Manager authorizes the joining node to access the 

OSCORE group, and provides it with the following information: 

a. The group keying material to communicate in the group by using Group OSCORE. This especially 

includes the Master Secret, the Context ID, and a Sender ID uniquely assigned to the joining node. 

b. The Group Manager’s public key, together with a PoP evidence of its own private key and a nonce 

used as PoP input to compute the PoP evidence. The PoP evidence is computed according to the 

same approach used by the joining node to compute its own PoP evidence included in the Join 

Request. 

c. If requested, the public keys of the other group members. 

d. Optionally, the list of communication policies adopted in the group. 

 

 

Later as an active group member, a node can further interact with the Group Manager, according to a dedicated 

RESTful interface. In particular, a current group member can perform the following operations at the Group 

Manager, by targeting the group-membership resource, or some of its dedicated sub-resources, associated with 

the OSCORE group at hand. 

 

• Request for the current group keying material. 

• Request for a new Sender ID, e.g., in case of exhausted Sender Sequence Number space. 

• Request for the public key of the Group Manager. 

• Request for the public keys of the current group members, or of a selected subset. 

• Request for the set of “stale” Sender IDs previously associated with group members and recently 

relinquished, i.e., due to a requested change or to having left the group. 

• Request for the current communication policies in the OSCORE group. 

• Request for the current version of the group keying material. 

• Request for the current status of the OSCORE group, i.e., active or inactive. If the group status is set to 

inactive, current group members should refrain from communicating, while new members will not be 
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allowed to join. 

• Provide the Group Manager with a new own public key, which replaces the current one. 

• Leave the OSCORE group. 

 

During the group lifetime, the Group Manager can forcefully evict group members, as well as distribute new 

keying material (rekeying) to the current group members. The proposal at [TIL21b] considers a basic rekeying 

approach, where the Group Manager provides the new group keying material to each node individually, with one-

to-one messages targeting the control resource of each group member, as indicated at joining time. Alternatively, 

group members may observe [HAR15] the group-membership resource at the Group Manager, to automatically 

get notifications conveying the latest updated group keying material. 

 

The Group Manager may, however, rely on more efficient approaches available in the literature in order to 

distribute new keying material in the group, such as [WAL99][WON00][DIN11][DIN13][TIL16][TIL20]. 

 

Regardless of the specific approach used to rekey the group, the Group Manager contextually informs the current 

group members about nodes that have left the group (i.e., about their Sender IDs), thus allowing them to purge 

related information like associated Recipient Contexts and stored public keys. This in turn makes it possible to 

preserve the capability for current group members to confidently assert whether the sender of a received message 

is currently a member of the OSCORE group. 

 

 

6.1.1  Discovery of OSCORE Groups 

After deployment, a CoAP endpoint may be in possession of only a limited amount of operative information. In 

particular, the endpoint may have been programmed/provided with the names of an OSCORE group to join 

through the respective Group Manager (see Sections 4.1 and 6.1). However, the endpoint may not know in 

advance other information required to do that, especially the URL of the group-membership resource at the Group 

Manager to join the group. 

 

That is, the endpoint faces the problem of discovering the OSCORE group, i.e., of discovering the group-

membership resource at the Group Manager to join it. This practically means discovering the link to such 

resource. The standardization proposal at [TIL21d] describes how this can be achieved, by using an already well-

known approach to discover links to CoAP resources, i.e., the CoRE Resource Directory (RD) [AMS21a]. 

 

Intuitively, a CoAP server can register itself at the RD, and then register multiple entries, i.e., one for each of its 

own resources. Each registered entry includes a link to the corresponding resource, possibly together with target 

attributes describing the resource and the link itself. Later on, a CoAP client can perform a resource lookup at the 

RD, possibly by filter criteria, in order to retrieve links and target attributes related to registered resources. 

 

Thus, the approach described in [TIL21d] builds on the RD as follows: 

 

• The OSCORE Group Manager registers itself with the RD, and registers the links to the group-

membership resources corresponding to its own OSCORE groups. 

• A CoAP endpoint that wishes to join an OSCORE group, can perform a resource lookup at the RD, in 

order to retrieve the link to the right group-membership resource of the Group Manager, where to send a 

joining request (see Section 6.1). 

 

This approach displays the following side features and benefits. 

 

• The CoAP endpoint can query for the link to join OSCORE groups by using a number of different lookup 

criteria. This makes it possible to discover the OSCORE groups used by different applications sharing 

group resources, as separately registered with the RD. 
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• Target attributes of discovered links can be used to early provide additional information related to the 

OSCORE group at hand. This includes especially the list of algorithms used in the OSCORE group and 

the URL to the ACE Authorization Server associated with the Group Manager. Getting knowledge of 

this information early in time spares the CoAP endpoint to engage in later additional exchanges with the 

Group Manager, and to early understand if it supports the current configuration of the OSCORE group 

altogether. 

• The CoAP endpoint may observe [HAR15] the entries at the RD, thus getting automatic notifications 

about the link for a particular OSCORE group. This has two advantages. First, it automatically informs 

about possible changes in the link to the group-membership resource at the Group Manager, and about 

how the OSCORE group itself currently works (through the target attributes of the link). Second, it 

addresses a corner case where the CoAP endpoint is deployed before the OSCORE group has been 

created or even before the Group Manager has been deployed. In such cases, an automatic notification 

will reach the observer CoAP endpoint, once the OSCORE group is actually existing and available to be 

joined. 

 

 

  Configuration of OSCORE Groups using ACE 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Functional Requirements: F-54, F-55 

• Non-Functional Requirements: PE-28, PE-29, PE-31 

• Security Requirements: SE-30, SE-35, SE-36 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Authentication Manager” component of the “Secure Lifecycle Manager” module. 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

The OSCORE Group Manager (see Section 4.1.1) can provide an additional RESTful interface intended for an 

Administrator user, rather than for candidate and current members of an OSCORE group. This is defined in the 

recent standardization proposal [TIL21c]. 

 

This interaction with the Group Manager also builds on the ACE framework for authentication and authorization 

[SEI21] (see Section 3.8), i.e., the Administrator acts as ACE client and the Group Manager acts as ACE Resource 

Server. That is, the Administrator has to obtain an Access Token from an authorization Server and uploads it at 

the Group Manager, in order to prove to be authorized to perform administrative operations through the admin 

interface. 

 

The admin interface at the Group Manager is organized as follows: 

 

• A single group-collection resource acts as root resource, and represents the collection of the configuration 

of all the existing OSCORE groups under the Group Manager. 

• Several group-configuration resources, one for each existing OSCORE group. A group-configuration 

resource contains the configuration of the corresponding OSCORE group, which is structured as follows: 

o The “configuration properties” describe how the OSCORE group works, i.e., the used 

cryptographic algorithms and related parameters. 

o The “status properties” describe additional information about the corresponding OSCORE 

group. This includes: the group name and description, the current group status and group policies, 

the URL to the corresponding group-membership resource to join the group (see Section 6.1), 
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and the URL to the ACE Authorization Server associated with the Group Manager. 

 

The Administrator can perform the following operations at the admin interface of the Group Manager, distinctly 

by interacting with the group-collection resource or one of the group-configuration resources. 

 

The available operations on the group-collection resource are: 

 

• Retrieval of the list of current group-configuration resources, i.e., a list of links to those, possibly by 

applying filter criteria. 

• Creation of a new OSCORE group, i.e., creation of a new configuration resource for that group. When 

doing so, an initial configuration content can be provided, otherwise the Group Manager considers default 

values. Practically, the Group Manager creates both a group-configuration resource and a group-

membership resource associated with the group. 

 

The available operations on a group-configuration resource are: 

 

• Complete retrieval of the current configuration of an OSCORE group. 

• Partial retrieval of the current configuration of an OSCORE group, by applying filter criteria. 

• Complete update (i.e., total overwriting) of the configuration of an OSCORE group. 

• Selective update of the configuration of an OSCORE group (i.e., only some parameters). 

• Deletion of an OSCORE group, i.e., deletion of the corresponding group-configuration resource and 

group-membership resource. 

 

 

  EDHOC – Key Establishment for OSCORE 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29, PE-36 

• Security Requirements: SE-30, SE-31, SE-35, SE-43, SE-47 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Key Manager” component of the “Secure Lifecycle Manager” module. 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

 

The Ephemeral Diffie-Hellman over COSE (EDHOC) [SEL21] protocol is a very compact and lightweight 

authentication protocol for performing a security handshake and establishing a cryptographic secret between two 

peers. In particular, EDHOC has as a main use case the establishment of a Security Context, that the two peers 

can use to protect their communication with OSCORE [SEL19] (see Section 3.7). 

  

EDHOC provides a number of high-level security properties, i.e., mutual authentication of the two peers, forward 

secrecy of the established security material, identity protection, and negotiation of the crypto algorithms to use 

during its execution (i.e., a cipher suite). This can be achieved through sustainable low power operations, thanks 

to the protocol design targeting a small overhead and associated processing.  

  

To this end, EDHOC relies on building blocks which in turn are lightweight IETF standards. These include CBOR 

[BOR20] for message and data encoding (see Section 3.5) and COSE [SCH17] for cryptography (see Section 
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3.5). While EDHOC is not bound to a particular protocol for message transport, the CoAP protocol [SHE14] (see 

Section 3.1) is a practically convenient choice for transporting EDHOC messages. Especially for devices already 

relying on a communication stack based on CoAP and OSCORE, this makes it possible to keep the additional 

code size due to EDHOC very low. 

  

Authentication of the two peers can be based on raw public keys (RPKs) or public key certificates, and it requires 

the application to provide input on how to verify that the endpoints to authenticate are trusted. The authentication 

credentials including public keys can be conveniently identified by reference also using COSE, thus preserving 

a low communication overhead during the EDHOC execution. Also, different types of authentication credentials 

are supported, e.g., CBOR Web Token (CWTs) / CWT Claims Sets (CCSs) [JON18], X.509 certificates [BOE08] 

and CBOR encoded X.509 (C509) certificates [MAT22]. 

 

Orthogonally to the above, EDHOC provides authentication according to two possible methods, with no need for 

both peers to use the same method during an EDHOC execution. The first method relies on public keys as signing 

keys, thus resulting in a digital signature as authentication evidence. The second method relies on a secret derived 

from static Diffie-Hellman public keys, which in turn is used to compute a MAC as authentication evidence. 

Clearly, the latter method yields EDHOC messages that are smaller in size. 

 

As to its core key establishment process, EDHOC makes use of known protocol constructions, such as the SIGMA 

protocol [SIGMA] as well as Extract-and-Expand [RFC5869]. In such a context, COSE further provides crypto 

agility and enables the use of future algorithms and credential types targeting IoT. 

 

In short, the two EDHOC peers are denoted as Initiator (i.e., the sender of the first EDHOC message) and 

Responder. After having successfully exchanged three EDHOC messages, both peers agree on a same 

cryptographic secret, which they can use to derive further, specific security material. After that, the Responder 

may send an optional fourth message to make the Initiator promptly achieve key confirmation, e.g., in scenarios 

where the Responder never sends protected application messages to the Initiator. 

 

If a transport protocol based on the Client-Server paradigm is used, it is typical for a client peer to act as Initiator, 

although the reverse approach where the server peer acts as initiator is also supported. Section 6.3.1 specifically 

considers the use of CoAP to transport EDHOC messages and describes an optimized EDHOC execution for the 

typical workflow where a CoAP client acts as Initiator. 

  

Figure 6.1 shows the EDHOC message exchange, abstracting from the specifically used cipher suite and transport 

protocol. Examples of message sizes for EDHOC is given in Section 1.3 of [SEL21]. More details on the design, 

features, properties and current status of the EDHOC protocol are provided in [VUC22]. 
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Figure 6.1 - Execution of the EDHOC protocol, including the optional fourth message 

 

 

An implementation of the EDHOC protocol from RISE for the Californium library [CALIFORNIUM] from the 

Eclipse Foundation is available at [EDHOC-DEV]. 

 

 

6.3.1  Profiling EDHOC for CoAP and OSCORE 

 

While generally transport-independent, EDHOC messages can be specifically transported as payload of CoAP 

messages. Also, while the establishment of a cryptographic secret can have general applicability, the main use 

case for EDHOC is the establishment of an OSCORE Security Context (see Section 3.7.1), as derived from the 

secret established through an EDHOC execution. 

 

An EDHOC execution requires the two peers to exchange three EDHOC messages. With reference to the CoAP 

protocol, the following assumes a CoAP client to take the role of EDHOC Initiator (thus sending the first EDHOC 

message) and a CoAP server to take the role of EDHOC Responder. 

 

As shown in Figure 6.2, the typical message flow consists in the CoAP client sending a request to an EDHOC 

resource hosted at the CoAP server, specifying EDHOC message_1 as payload. Then, the CoAP server replies 

with a response, specifying EDHOC message_2 as payload. Finally, the CoAP client sends one more request to 

the same EDHOC resource at the CoAP server, specifying EDHOC message_3 as payload. After that, the client 

and server have authenticated one another and agree on a cryptographic secret, from which they can derive an 

OSCORE Security Context. Then, the client and server can exchange further CoAP messages protected with 

OSCORE. 
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Figure 6.2 - Execution of the EDHOC protocol over CoAP 

 

 

There is ongoing research work for specifically “profiling” the use of EDHOC with CoAP and as a means to 

establish an OSCORE Security Context. This activity is also a current IETF standardization proposal [PAL21c], 

and can be broken down into the three following contributions. 

 

Optimized EDHOC execution. The message flow discussed above and shown in Figure 6.2 is actually eligible 

for an optimization. That is, the CoAP client has all the information to derive the OSCORE Security Context 

already after receiving EDHOC message_2, i.e., before sending EDHOC message_3 to the CoAP server. This 

means that, at that point in time, the client is able to produce not only the following EDHOC message_3, but also 

the subsequent OSCORE-protected application request. Clearly, it would be ideal to combine those two requests 

into a single one. 

 

This is practically achieved as defined in [PAL21c] and shown in Figure 6.3. Intuitively, after having processed 

EDHOC message_2 and established the OSCORE Security Context, the CoAP client sends a single combined 

EDHOC+OSCORE request to the CoAP server. 

 

In particular, such a request includes a new “EDHOC” CoAP option, which signals that the message is a 

combined request and that its payload conveys both EDHOC message_3 and the actual data intended for the 

application request. Except for EDHOC message_3 itself, the client protects this combined request using the 

established OSCORE Security Context. 

 

When receiving the combined request, the server notices the signaling EDHOC option and thus extracts EDHOC 

message_3 from the request payload. Then, the server performs the same operations as if it had received a stand-

alone EDHOC message_3. After that, the server has also completed the EDHOC execution and derived the 

OSCORE Security Context shared with the client. Thus, the server is able to use that OSCORE Security Context 

and successfully decrypt the received combined request to finally retrieve the intended application data. 
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By combining EDHOC message_3 with the first protected application request into a single message, this 

optimization allows for a minimum number of round trips necessary to setup the OSCORE Security Context and 

complete an OSCORE transaction, e.g., when an IoT device is deployed in a network and configured for the first 

time. This optimized workflow can be used only if the CoAP client acts as EDHOC initiator, which is however 

the typical and default case. 

 

The optimized workflow has been implemented by RISE and integrated in its Java implementation of EDHOC 

[EDHOC-DEV] for the Californium library [CALIFORNIUM] from the Eclipse Foundation, as available for use 

in the SIFIS-Home project. 

 

 

 
 

Figure 6.3 - Optimized execution of the EDHOC protocol over CoAP 

 

 

Conversion of EDHOC identifiers to OSCORE identifiers. Using EDHOC to establish an OSCORE Security 

Context involves two types of identifiers. On one hand, EDHOC relies on connection identifiers, that are chosen 

during the EDHOC execution and that the two peers can use to relate one EDHOC message to other messages 

sent during the same EDHOC execution. On the other hand, OSCORE relies on the Sender/Recipient IDs 

associated with the two peers sharing an OSCORE Security Context (see Section 3.7.1). 

 

The EDHOC specification [SEL21] defines a method for converting the EDHOC connection identifiers used in 

an EDHOC execution to corresponding OSCORE Sender/Recipient IDs. The latter ones are used by the two peers 

when protecting their communication using the OSCORE Security Context established thanks to EDHOC. In 

particular, this method maps either of two equivalent EDHOC connection identifiers into a same OSCORE 

Sender/Recipient ID. 

 

Instead, this profiling contribution defines the reverse identifier mapping, i.e., how an OSCORE Sender/Recipient 

ID is deterministically converted to exactly one of the two corresponding equivalent EDHOC connection 

identifiers. This approach is necessary to use in case the optimized workflow discussed above is supported by the 
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CoAP server and thus possibly used during an EDHOC execution. More generally, even when not strictly 

necessary to use, this approach is preferable. In fact, it always converts an OSCORE Sender/Recipient ID to 

exactly the EDHOC connection identifier with the smallest size among the two corresponding equivalent ones. 

 

The optimized conversion of OSCORE Sender/Recipient IDs to EDHOC connection identifiers has been 

implemented by RISE and integrated in its Java implementation of EDHOC [EDHOC-DEV] for the Californium 

library [CALIFORNIUM] from the Eclipse Foundation, as available for use in the SIFIS-Home project. 

 

 

Web linking to facilitate discovery of EDHOC resources. As explained above, an EDHOC execution involves 

the interaction with an EDHOC resource at a server. One or multiple EDHOC resources at the same server can 

be associated with an “applicability statement”. This includes a number of information elements describing how 

EDHOC can be run with the server, when interacting with any of the associated EDHOC resources. 

 

At the same time, there are means for a CoAP client to discover the link to an EDHOC resource, e.g., directly 

from the server by accessing the resource /.well-known/core at the server, or indirectly by using the CoRE 

Resource Directory [AMS21a]. In either case, the client receives a discovery response in CoRE link-format 

[SHE12], specifying, among others, the links to the EDHOC resources at the server. 

 

This profiling contribution defines a number of parameters, each of which corresponds to different information 

elements possibly present in an EDHOC applicability statement. In particular, these parameters can be used as 

target attributes accompanying a discovered link to an EDHOC resource, consistently with the CoRE link-format. 

 

Thus, a CoAP client that discovers the link to an EDHOC resource can at the same time learn about the 

applicability statement associated with that resource, as described by the specified target attributes. This in turn 

provides the client with an early knowledge of how to run EDHOC with the server, which also prevents potential 

negotiations or trial-and-error exchanges to occur during the EDHOC execution, with evident benefits in terms 

of performance and completion time. 
 

 

  Key Usage Limits and Lightweight Key Update for OSCORE 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29 

• Security Requirements: SE-30, SE-31, SE-43, SE-46, SE-47 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Key Manager” component of the “Secure Lifecycle Manager” module. 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

As described in Section 3.7, the OSCORE security protocol uses AEAD algorithms to encrypt and integrity-

protect exchanged messages. In particular, two peers using OSCORE rely on the Sender/Recipient keys included 

in their shared OSCORE Security Context, in order to protect the messages exchanged with one another. 

 

However, AEAD algorithms intrinsically display limits in the secure usage of keys. That is, an adversary starts 

having a statistical “advantage” in breaking the security properties of the used AEAD cipher in case: i) a key is 

used for encryption operations more than a certain number of times; or ii) a key is used for decryption operations 

after a certain number of failed decryptions with that key has occurred. A theoretical framework for computing 

these limits is available at [GÜN21]. In addition, a key may simply expire as naturally comes to the end of its 

validity time. 
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In order to address the issues above, two OSCORE peers have to renew their Sender/Recipient keys when 

approaching the associated usage limit or expiration time. While there are some different approaches for two 

peers to establish a new OSCORE Security Context, those have some disadvantages, or are inconvenient for 

updating an already established Security Context. 

 

There is ongoing research work to better understand and more efficiently address the issues above with particular 

reference to OSCORE. This activity is also a current IETF standardization proposal [HÖG21], and can be broken 

down into two contributions. 

 

Recommended limits of key usage. Although still taking the analysis at [GÜN21] as a starting point, the work 

documented in [HÖG21] has been defining ideal key usage limits to adopt when AEAD algorithms are used 

specifically in OSCORE. For different possible AEAD algorithms, this specialized analysis has been defining 

ideal triples of values (q, v, l) that can be considered by two OSCORE peers as limits to comply with. In particular, 

‘q’ indicates the maximum number of acceptable encryptions with a same key; ‘v’ indicates the maximum amount 

of permitted failed decryptions with a same key; and ‘l’ indicates the maximum size of data protected at each 

encryption, expressed in cipher blocks. The challenge is about defining the limits above in such a way that, by 

complying with them, it is ensured that an adversary does not gain any significant statistical advantage towards 

breaking the security properties of the used AEAD algorithm. 

 

Key update procedure (KUDOS). As discussed above, approaching the key usage limits requires two OSCORE 

peers to renew their Security Context and related keying material. However, current methods have disadvantages 

or are not really efficient for updating an already existing Security Context. Therefore, the work documented in 

[HÖG21] is defining a new and efficient key update procedure for OSCORE, namely KUDOS. This is loosely 

based on the procedure defined in Appendix B.2 of [SEL19], while overcoming its drawbacks and providing 

several advantages. 

 

In particular, KUDOS allows two OSCORE peers to update their current OSCORE Security Context in a 

lightweight and efficient way and displays the following desirable properties. 

 

• KUDOS can be initiated by either of the two OSCORE peers. 

• Once completed the execution of KUDOS, the new OSCORE Security Context enjoys Forward Secrecy. 

• The new OSCORE Security Context preserves the same ID Context value of the old OSCORE Security 

Context. Such value does not change during the execution of KUDOS. 

• KUDOS is secure to use also in case either of the two peers reboots during its execution. 

• KUDOS is completed in only one round-trip, after which both peers share the new OSCORE Security 

Context. After that, the two peers achieve mutual proof-of-possession in the immediately following 

message exchange, which is protected with the new OSCORE Security Context. 

 

A KUDOS message is signaled to be processed as such by means of the CoAP OSCORE option. To this end, the 

OSCORE option is extended to use a newly defined flag bit ‘d’. When such a flag bit is present and set, the 

message in question is specifically a KUDOS message, and its OSCORE option additionally transports a new 

field ‘id detail’. 

 

From a high-level point of view, KUDOS consists in the two peers exchanging two random values R1 and R2, 

that together compose a nonce N. The two values R1 and R2 are transported in the ‘id detail’ field of the OSCORE 

option of KUDOS messages. 

 

Then, the two peers can use the nonce N to practically derive a new OSCORE Master Secret and OSCORE 
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Master Salt, from which a completed OSCORE Security Context can be in turned derived. The exact use of the 

nonce N can rely on two different approaches, depending on whether the two peers established their “original” 

OSCORE Security Context by means of the EDHOC key establishment protocol [SEL21] or not. In the former 

case, the nonce N is conveniently provided to the EDHOC-KeyUpdate() method available in EDHOC 

implementations. In the latter case, the nonce N is used with the standard HKDF-Expand() method [KRA10]. 

The two alternatives are conveniently abstracted by the KUDOS interface method updateCtx(). 

 

Figure 6.4 shows the KUDOS execution, considering the client-initiated workflow. 

 

 

 
 

 
 

Figure 6.4 - Client-initiated KUDOS workflow 
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 OSCORE and EDHOC in the OMA LwM2M Management Framework 

 

The solutions and methods presented in this section pertain to the following requirements defined in [D1.2]: 

• Non-Functional Requirements: PE-28, PE-29 

• Security Requirements: SE-19, SE-30, SE-31, SE-35, SE-43 

 

The solutions and methods presented in this section pertain to the following components defined in [D1.3]: 

• The “Key Manager” component of the “Secure Lifecycle Manager” module. 

• The “Secure Message Exchange Manager” component of the “Secure Communication Layer” module. 

• The “Content Distribution Manager” component of the “Secure Communication Layer” module. 

 

The OMA standard “Lightweight Machine-to-Machine” (LwM2M) provides a control and management 

framework for IoT devices [OMA-CORE]. The framework builds on an architectural model including a LwM2M 

client, a Bootstrap Server, as well as a LwM2M Server acting as Device Manager. 

 

In principle, an IoT device acting as LwM2M Client first “bootstraps” at the Bootstrap Server over a (typically 

pre-established) secure association. As a result of the bootstrapping process, the LwM2M Client receives also 

parameters and security material to use for securely “registering” at the LwM2M Server. Once completed the 

registration process, the LwM2M Client and Server can securely communicate with one another, typically for 

retrieving information from or issuing commands to the LwM2M Client. To this end, the standard provides a data 

model with an extensible set of “LwM2M Objects”, together with different available encoding. 

 

Besides the architectural model, workflow and LwM2M Objects, the standard defines a number of transport 

bindings for practically and securely exchanging LwM2M messages among the parties involved [OMA-TP]. In 

particular, the CoAP protocol (see Section 3.1) is typically used for message delivery. Also, communications can 

be secured in different ways, e.g., end-to-end by using the OSCORE security protocol (see Section 3.7). 

 

 
 

Figure 6.5 - LwM2M protocol stack 

 

 

When OSCORE is used, the workflow described above can be further detailed as follows. 

 

• The LwM2M Client and the Bootstrap Server has a pre-established OSCORE Security Context CTX1 

(see Section 3.7.1). Hence, they use it to protect messages exchanged during the bootstrapping process. 

• During the bootstrapping process, the Bootstrap Server provides the LwM2M Client with parameters to 

derive a second Security Context CTX2, to be used from then on when communicating with the LwM2M 

Server. 

• The Bootstrap Server provides also the LwM2M Server with the same parameters for deriving CTX2. 

This provisioning typically happens on a dedicated, secure management channel, and further details are 

out of the scope of the standard. 
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• The LwM2M Client performs the registration process with the LwM2M Server. During the registration 

process, the two peers use CTX2 in order to protect exchanged messages with OSCORE. 

• Following the registration process, the L2M2M Client and Server can engage in further message 

exchanges, again protected with OSCORE by using the Security Context CTX2. 

 

This approach for establishing the Security Context CTX2 has the following limitations, due to the used key 

establishment approach as a secure provisioning performed by the Bootstrap Server. 

 

• The keying material in the derived Security Context CTX2 does not enjoy forward secrecy. That is, it 

might generally happen that the long-term secrets that the LwM2M Client and Server rely on during the 

key establishment phase get compromised. For the LwM2M Client, such a secret is the OSCORE Master 

Secret in CTX1 used with the Bootstrap Server. For the LwM2M Server it can be, e.g., the private key 

of the LwM2M Server as used in a previous secure channel establishment with the Bootstrap Server. If 

such secrets get compromised, an adversary would be able to also derive CTX2 and thus get access to 

(past) communications protected with CTX2. 

 

• The details about how the LwM2M Client and Server have to use OSCORE according to CTX2 are 

basically dictated by the Bootstrap Server, e.g., by following a pre-configured local policy. That is, the 

LwM2M Client and Server are the parties intended to use CTX2, but yet play no role in determining and 

negotiating which particular cryptographic algorithms to use when communicating with OSCORE. 

 

With the goal of overcoming the limitations above, work has been ongoing to integrate the EDHOC key 

establishment protocol [SEL21] (see Section 6.3) within the LwM2M framework, in support to its OSCORE-

based workflow. As discussed above, the original approach relies on the Bootstrap Server to provide both the 

LwM2M Client and Server with information to derive the OSCORE Security Context CTX2. Instead, the 

alternative approach would rely on the Bootstrap Server providing both the LwM2M Client and Server with 

information on how to run EDHOC, as a preliminary step before the registration process takes place. 

 

This also requires defining a new LwM2M Object for providing such information to the LwM2M Client during 

the bootstrapping process. The follow-up EDHOC execution between LwM2M Client and Server allows them to 

mutually authenticate through their credentials, directly negotiate parameters affecting the later OSCORE-based 

communication, and most importantly derive the OSCORE Security Context CTX2 with forward secrecy. Note 

that the approach described in Section 6.3.1 can also be used, in order to attain a single CoAP message combining 

the last EDHOC message and the registration message, both from the LwM2M client. Also, one may want to use 

EDHOC from the start, i.e., between the LwM2M Client and Bootstrap Server to establish the Security Context 

CTX1, rather than having it pre-configured and without forward secrecy. 

 

Finally, this approach can “scale up” with the Bootstrap Server providing the LwM2M Client with information 

to run EDHOC not only with the LwM2M Server, but also with an Application Server external to the LwM2M 

domain. That is, the LwM2M Client would still use the Security Context CTX2 to protect communications with 

the LwM2M Server, while a different Security Context CTX3 to protect communications with the Application 

Server, with both Security Contexts established by executing EDHOC with the respective peers. 

 

While the LwM2M Client might in principle communicate with an external Application Server on any available 

network path, it is reasonable for realistic deployments to force this to occur through the LwM2M Server acting 

as a CoAP forward-proxy. This ensures that the LwM2M Server continues communicating with the LwM2M 

Client using OSCORE, and thus can identify the exact LwM2M Client before forwarding a message out of the 

LwM2M domain. However, this requires that an OSCORE-protected message from the LwM2M Client and 

targeting the Application Server is also further OSCORE-protected for the LwM2M server, in a multi-layer 
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fashion. While this kind of nested OSCORE protection is not admitted in the original OSCORE specification, the 

approach described in Section 4.5 is a candidate to enable this feature in this and other relevant use cases. 

 

 

7 Conclusion 

 

This document is the second deliverable from WP3 "Network and System Security", and has provided a 

preliminary description of the network & system security solutions designed and developed in the SIFIS-Home 

project. The presented content reflects the outcome of the WP3 activities carried out during the first half of the 

project, i.e., up until March 2022. 

  

The presented security solutions have been grouped under the three following activity areas: i) Secure and Robust 

(Group) Communication; ii) Access and Usage Control for Server Resources; and iii) Establishment and 

Management of Keying Material. In particular, they have been explicitly related to the pertaining requirements 

documented in deliverable D1.2 "Final Architecture Requirements Report", as well as to the pertaining 

architecture components documented in deliverable D1.3 "Initial Component, Architecture, and 

Intercommunication Design". Where applicable, the description of a security solution pointed also to our open-

source implementation, and to our related standardization proposals in the international body IETF. 

  

During the second half of the SIFIS-Home project, we will progress the design and development of the security 

solutions from WP3 described in this document. Furthermore, a selection of such security solutions will be 

considered for integration in the demonstrators developed in WP5 "Integration, Testing and Demonstration", as 

well as in the project pilot developed in WP6 "Smart Home Pilot Use Case". Finally, we will continue the ongoing 

standardization work concerning the security solutions from WP3, with particular reference to the already 

targeted international body IETF. 

  

A final description of the security solutions designed and developed in WP3 will be provided in deliverable D3.3 

"Final report on Network and System Security Solutions". This will be released in June 2023, and it will update 

and obsolete the present document, thus acting as final comprehensive description of WP3 activities. 
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Annex A: Glossary 
 

Acronym Definition 

ACE Authentication and Authorization for Constrained Environments 

AEAD Authenticated Encryption with Associated Data 

AM Attribute Manager 

AS Authorization Server 

BS Bootstrap Server 

CBOR Concise Binary Object Representation 

CH Context Handler 

CoAP Constrained Application Protocol 

CoRE Constrained RESTful Environments 

COSE CBOR Object Signing and Encryption 

CPU Central Processing Unit 

DoS Denial of Service 

DDoS Distributed Denial of Service 

DTLS Datagram Transport Layer Security 

EDHOC Ephemeral Diffie-Hellman Over COSE 

GM Group Manager 

HTTP Hyper Text Transfer Protocol 

IETF Internet Engineering Task Force 

IoT Internet of Things 

IP Internet Protocol 

JSON Javascript Object Notation 

KDC Key Distribution Center 

KUDOS Key Update for OSCORE 

LAKE Lightweight Authenticated Key Establishment 

LwM2M Lightweight Machine-to-Machine 

M2M Machine-to-Machine (communications) 

MiTM Man in The Middle 

OMA Open Mobile Alliance 

OSCORE Object Security for Constrained RESTful Environments 

PSK Pre-Shared Key 

PAP Policy Administration Point 

PDP Policy Decision Point 

PEP Policy Enforcement Point 

PIP Policy Information Point 

RBAC Rule Based Access Control 

REST Representational State Transfer 

RD Resource Directory 

RPK Raw Public Key 

RS Resource Server 

SIFIS-Home Secure Interoperable Full Stack Internet of Things for Smart Home 

SM Session Manager 

  SMACK   Short Message Authentication ChecK 
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SW Software 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

UCON Usage Control 

UCP Usage Control Policy 

UCS Usage Control System 

UDP User Datagram Protocol 

VM Virtual Machine 

WG Working Group 

WP Work Package 

XACML eXtensible Access Control Markup Language 

 


