

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

D2.5

 Final Version of Developer Tools

WP2 – Guidelines and Procedure for System and

Software Security and Legal Compliance

Due date of deliverable: 31/03/2023

Actual submission date: 31/03/2023

Responsible partner: POL

Editor: Luca Ardito

E-mail address: luca.ardito@polito.it

30/03/2023

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Framework

Programme

Dissemination

Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-HOME Project is supported by funding under the Horizon 2020 Framework

Program of the European Commission SU-ICT-02-2020 GA 952652

SIFIS-HOME
Secure Interoperable Full-Stack Internet of Things for Smart

Home

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Authors: Luca Ardito (POL), Luca Barbato (LUM), Marco Ciurcina (POL), Maurizio Morisio

(POL), Marco Torchiano (POL), Marco Rasori (CNR), Michele Valsesia (POL)

Reviewers: Andrea Saracino (CNR), Valerio Frascolla (INT)

Revision History

Version Date Name Partner Section Affected Comments

0.1 24/02/2023 Tentative ToC and contents POL, LUM, CNR All

0.2 11/03/2023 Software Lifecicle Tools

description

POL, LUM Section 2

0.3 13/03/2023 API Labelling CNR, LUM Section 3

0.4 17/03/2023 WoT Example LUM Section 4

0.5 20/03/2023 Conclusions POL Section 5

0.6 23/03/2023 Final proofread POL All

1.0 30/03/2023 Final Release POL All

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 3 of 42

Executive Summary

This document is the companion to the final release of the 'developer tools' code, developed in the

context of Work Package (WP) 2, available on the SIFIS-Home project GitHub repository

https://github.com/sifis-home. All the source code is released under the MIT licence and has

documentation directly from the repository.

This document provides the reader with detailed information about the released code, the API labelling,

and an example of use.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 4 of 42

Table of contents

Executive Summary ... 3

1 Introduction ... 6

2 Software Lifecycle Tools .. 8

 Implemented tools .. 8

 sifis-generate .. 10
2.2.1 Creating projects .. 11

 Complex-code-spotter .. 13

 Weighted Code Coverage .. 17

 Third-party Contributions .. 18
2.5.1 Rust-code-analysis ... 18

2.5.2 Tree-sitter ... 19

2.5.3 Grcov.. 20

2.5.4 Insta .. 20

2.5.5 Cargo-fuzz.. 21

2.5.6 Cargo-valgrind ... 21

2.5.7 Cargo-careful ... 21

2.5.8 Clap .. 21

2.5.9 Arg-enum-proc-macro ... 21

2.5.10 REUSE ... 22

2.5.11 mdns-sd .. 22

2.5.12 webthing-arduino ... 22

2.5.13 webthings-rust .. 22

2.5.14 node-wot .. 22

2.5.15 cargo-c.. 22

2.5.16 maturin ... 22

2.5.17 datta .. 22

3 API Labelling Tools ... 23

 The SIFIS-Home Hazards Ontology .. 23

 Ontology Translation into Different Programming Languages ... 25

 Labelling for Application Developers .. 27

 Labelling for Users... 29

 Contract-based Security Methodology... 33

4 A Complete Working Example .. 35

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 5 of 42

 WoT Implementation in Rust ... 35

 Tools in Action... 36
4.2.1 datta .. 37

5 Conclusions and Future Works ... 40

6 References ... 41

Glossary ... 42

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 6 of 42

1 Introduction

In software development, finding the various issues that could affect code and binaries is extremely

important. Catching bad code or security vulnerabilities needs setting up a workflow running a series of

tools; each focused on detecting a specific problem that could arise while coding or producing the final

binary. This workflow has been explained in detail in deliverable D2.4, but it requires a developer to

make a remarkable effort to build that up, thus subtracting time to the fundamental code phase. For this

reason, we implemented a tool that accompanies a developer in building this workflow automatically

through the creation of an initial set-up that is different depending on the chosen programming language.

This set up also allows to retrieve information about code status in addition to metrics related to the

security of software. Tools that compose this workflow are very varied and we have contributed to their

development starting from our needs, but at the same time, fixing their issues or cleaning up their code

a bit. We have also implemented a new tool that extracts complex code snippets using metrics which

are able to compute code complexity. Another tool, instead, allows to detect which code parts are both

not covered by tests and complex, thus it implements the code coverage model explained in deliverable

D2.4. This helps a developer to add tests to the most critical zones. The main goal of these tools would

be that of streamlining processes, lower debugging costs, and achieve more secure, functional, usable,

available, efficient, and maintainable software.

In the context of the hazards related to the execution of risky operations, such as turning an oven on, we

developed some effective tools. As described in deliverable D2.4, the SIFIS-Home developer APIs are

associated with API labels which include information about the risks brought by each API. Such

information is shown to third-party developer as part of an autocompletion plug-in within their IDE.

All the API Labels of the APIs used within the application code contribute to the generation of the App

Label. To this aim, a tool called manifest which operates directly on the application binary, has been

developed. Another tool, called sifis-xacml extracts XACML requests from the App Label; this tool has

been developed as part of a workflow to enforce a Security by Contract methodology executed during

application installation performed by the user. Moreover, we defined an ontology to associate the

hazards with the properties of the Thing Descriptions, which have a one-to-one mapping with the SIFIS-

Home developer APIs. Since each device is different from another, the specific hazards and levels of

risk may vary per device basis.

As part of the process of testing our practices and tools we applied them while implementing our Web

of Things implementation in Rust, we used sifis-generate to generate the continuous integration

workflow, experimented with conventional commits and REUSE and used the weighted-code-

coverage and complex-code-spotter tools. As part of the assessment of dependencies process, we

found a weak/orphaned component and we decided to incubate it renaming it as datta.

In the following table, we list the status of the released tools, and in the following chapters we provide

further information about their usage.

Table 1. Status of released tools.

Project name Status

wot-td Release 0.3

wot-serve Release 0.3

wot-discovery Release 0.2

sifis-generate Release 0.5

weighted-code-coverage Release 0.2

https://github.com/sifis-home/wot-td
https://github.com/sifis-home/wot-serve
https://github.com/sifis-home/wot-discovery
https://github.com/sifis-home/sifis-generate
https://github.com/sifis-home/weighted-code-coverage

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 7 of 42

complex-code-spotter Release 0.1

datta Release 0.1

The SIFIS-Home Hazards Ontology Release 1.0.3

sifis-api Release 0.1

demo-things Release 0.1

wot-test Release 0.1.0

sifis-xacml Release 0.1.0

https://github.com/sifis-home/complex-code-spotter
https://github.com/sifis-home/datta
https://github.com/sifis-home/hazards-ontology
https://github.com/sifis-home/sifis-api
https://github.com/sifis-home/demo-things
https://github.com/sifis-home/wot-test
https://github.com/sifis-home/sifis-xacml

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 8 of 42

2 Software Lifecycle Tools

When we interviewed our project partners, they declared that our workflow, with its Continuous

Integration system, is often too time-consuming to be set manually in their projects. Since our main goal

consists in accompanying a developer during software development, thus reducing the effort of

performing checks as much as possible, we have developed tools to automatize the entire process and

some of its steps.

Among the tools, we have made to make our workflow more time efficient and less resources-hungry,

but also to provide some information about code status, we have implemented:

1 sifis-generate: A project creation tool that automatically sets up an initial project equipped

with our Continuous Integration workflow. Supported project types, and their features, have

been chosen depending on the programming languages used and requested by SIFIS-Home

partners.

2 complex-code-spotter: A tool that helps detecting the most complex parts of a codebase

through complex code metrics. A code with high complexity is difficult to maintain and

could hide unseen bugs.

3 weighted-code-coverage: A tool that implements various weighted code coverage

algorithms, the one described in D2.4, in addition to other ones taken from the Ruby world.

It can identify code parts which are both complex and without any code coverage, thus

allowing a developer to choose which code zones to put effort into and reducing the time to

write tests.

In addition to these new tools, we have contributed to some of the open-source projects integrated into

our workflow, implementing features and fixing bugs. Notably, we have not just limited ourselves to

them. Still, we have supported third-party libraries used by the workflow’s tool adding scripts to their

Continuous Integration systems to deploy binaries on different architectures and publish libraries into

the Rust package registry called crates.io. In the next sections, we will explain the meaning of these

contributions and how we have done that. Still, to name one, we have performed a conspicuous

refactoring of tests of a Mozilla project for static code analysis computation called rust-code-analysis.

 Implemented tools

All implemented tools have been written in Rust because of the advantages of this language, which,

considering our needs, can be listed as:

• Memory safety without the need of a garbage collection

• Eliminating many classes of bugs at compile-time

• Possibility to optimise software both in time and memory

• Useful methods to manage errors and print the relative messages in a comprehensible way

• Writing parallel code in an easier way

• Package and deploy software in a few steps

• Easily integrate with other programming languages

• Support the most known platforms, such as Linux, macOS, Windows and bare-metal targets

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 9 of 42

Along with the rustc compiler, Rust also provides a package manager called Cargo, which performs the

following tasks:

1. Download the dependencies of a program;

2. Call rustc to compile software dependencies. Each dependency is compiled in an independent

way from the other ones.

3. Call the linker to link together all the produced objects and obtain the final artifact.

Cargo can also define subcommands, which are external executables, directly callable from its

command line interface.

Another consistent feature of the Rust language is its good documentation that guarantees a better

software maintainability and an easier possibility for contributors to add features to the main code.

For what concerns interoperability, a Rust project can easily integrate with an existing codebase through

a C API/ABI, making it easy to use the language for creating new stand-alone components or rewrite

old ones.

As a glimpse into the world, according to the report on the security vulnerabilities published by the

Microsoft Security Response Centre (MSRC), about 70% of those vulnerabilities are memory safety

issues caused by developers who inadvertently insert memory corruption bugs into their C and C++

code.

Rather than investing in more tools for addressing those flaws, the use of a programming language that

prevents the introduction of memory safety issues into a feature work directly during its development

would help both the feature developers and the security engineers. In this way, the onus of software

security is removed from the feature developer and put in the hand of the language developer. These

observations have also helped choose Rust as a language for implementing our tools.

Each tool is composed by a library and a binary. The library contains all tool features as public APIs,

while the binary exposes them in a straightforward way through shell. This kind of structure allows to

interact with both in a modular way, thus the addition of new features to one side does not require any

change in the other. Furthermore, this model favours external developers to construct their own binary

starting from library’s API. Having two crates also helps in building them with different optimizations

in time and memory depending on the context to be considered.

We have designed sifis-generate after some interviews with our partners which have pointed out the

difficulty of implementing our workflow manually. As for complex-code-spotter instead, we have

noticed, through an analysis of our repositories, how hard it might be the comprehension of code at the

first impression, so a tool to identify the most complex code areas was a necessity. For what concerns

weighted-code-coverage, we needed a tool that was able to detect both uncovered and complex

functions to focus most of a developer effort in creating tests for those unsecure and hiding-bugs parts.

To better describe our tools, we have divided their descriptions into different sections, so to have a better

understanding of the rationale we have used to implement them. The contributions made to third-party

components of a crate are represented by light violet boxes in the following figures, and they will be

explained in a specific section of the document.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 10 of 42

 sifis-generate

sifis-generate primary purpose consists in reducing the conceptual effort requested by developers to set

up a project and the GitHub Actions workflow described in deliverable D2.4.

When an automatized project generator is either not available or too complex to use, sifis-generate

generates a whole new project from scratch, while in all other cases, it adds GitHub Actions scripts to

an existing project. GitHub Actions scripts contain our workflow adapted according to the programming

language and build system in use, so some layers might not be present or be different due to some

optimizations and context choices.

This tool must be considered as a starting point for a developer who wishes to implement new software,

so the simplest programming language patterns, notions and paradigms have been used for projects

definition. Its structure is visible in Figure 1 alongside with third-party library and cli components.

Figure 1: sifis-generate cli and library with their third-party components

sifis-generate generates project files starting from templates of various kinds: source codes, build

systems, YAML files, shell scripts, and Dockerfiles. Missing templates parts are then filled up at

runtime with the information passed in input by a developer, such as project name, license and build

systems arguments. Sometimes a project requires many inputs for filling up its templates, making the

command line interface cumbersome and difficult to use. To overcome this issue, we have defined a

toml file divided into sections, one for each supported project, with the goal of passing to templates all

necessary information in a straightforward and manageable way.

As an example, Figure 2 illustrates a directory containing a new-generated project.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 11 of 42

Figure 2: A simple C-demo project with its build configuration files

Figure 3 shows instead an example of configuration file

Figure 3: sifis-generate configuration file

2.2.1 Creating projects

We have defined five kinds of projects, one for each programming language used for implementing

SIFIS-Home components. By default, each project has a README containing badges, that show some

information about software quality, and other details such as license and an acknowledgment heading.

Below we briefly explain the build systems and package managers associated to each of the supported

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 12 of 42

projects whose we generate files for.

C/C++

Meson is a new open-source build system meant to be extremely fast and, even more importantly, as

user-friendly as possible. This tool has become popular in many C/C++ projects for its simplicity, so

the decision to adopt it and generate its configuration files.

Python

The innovative packager and dependency management Poetry has been used to build and deploy Python

packages.

Java

Apache Maven is a software project management and comprehension tool for Java.

Rust

Cargo is the official package manager for Rust. It already implements a command to generate all

building files: cargo new. This command also allows to choose between a library or an executable as

output. Figure 4 first shows the helper for sifis-generate and then the command to create GitHub Actions

scripts for the Rust language.

Javascript

Yarn is a JavaScript package manager. As Cargo, it already implements a command to generate a new

project: yarn init.

The execution flow of sifis-generate is the following: once a project has been chosen, selecting the

respective subcommand, the list of its templates, contained in the library as binaries data, are taken and

filled up with the information passed as input either in the form of cli options or retrieved from the

configuration file. Filled-in templates are then written in the respective output directories which are

created when not present on the system. Each subcommand code is contained in a different directory of

the repository, and all of them form the sifis-generate toolchain.

In Figure 6, the first sifis-generate execution prints the list of sifis-generate's subcommands, while the

second one executes the cargo subcommand, in charge of generating files and directories for the Rust

workflow. To visualize the debug information shown below, it is necessary to enable the –v option.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 13 of 42

Figure 4: sifis-generate tool in action. At first, the list of subcommands is shown through the --help option; then, a Rust continuous

integration workflow is created by using the “cargo” subcommand.

 Complex-code-spotter

Detecting pieces of complex code is the main goal of complex-code-spotter. Complex code might hide

some bugs and tends to be difficult to comprehend at first glance, so its extraction, in the form of snippet,

helps a developer to determine its real complexity and spot its position in the code.

This tool structure is visible in Figure 5 alongside with third-party library and cli components.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 14 of 42

Figure 5: complex-code-spotter cli and library with their third-party components

It requires only two mandatory arguments as input:

• The path to the source code, which is parsed in search of complex snippets.

• The output directory containing all code snippets which exceed the thresholds of the

implemented code complexity metrics.

A snippet is any piece of code identified by a rust-code-analysis space. A space is any scope which

contains a function, and this construct have been employed to have a more defined granularity because

it allows to retrieve both functions and closures, other than the complete file.

This tool supports the same programming languages defined in rust-code-analysis and makes use of this

crate’s APIs to compute code complexity metrics, next it extracts code snippets whether one or more

complexity metrics exceed a determined threshold, and finally saves these snippets into one of the

supported formats, which can be: markdown, html, and JSON.

The default configuration extracts code snippets for cyclomatic and cognitive metrics, with an empirical

threshold of 15, and defines markdown as the default output format.

Other optional arguments are:

• The kinds of code complexity metrics with their own thresholds.

• The number of computational threads.

• An option to visualize the operations performed by the tool.

It is also possible to filter input source files using I and X options. The input -I option is a glob filter that

considers only files with a determined file extension. The exclude -X option is a glob filter that excludes

only files with a determined file extension.

For example, to consider only Rust *.rs files:

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 15 of 42

complex-code-spotter -I "*.rs" /path/to/file/or/directory /output/path

To exclude only Rust *.rs files instead:

complex-code-spotter -X "*.rs" /path/to/file/or/directory /output/path

Both these options can be used more than once.

The execution flow of complex-code-spotter is the following: each source code is assigned to a thread

which at first computes complexity metrics and then extracts snippets.

The results computed by every thread are then sent to a collector thread which, as first step, creates the

structure of the output directory and then writes every snippet saved in memory into the output file

formatted as requested. In Figure 6, the list of arguments and options for complex-code-spotter.

Figure 6: complex-code-spotter interface

We have also added a cargo subcommand to extract snippets using cargo itself. Figure 7 shows the list

of arguments and options for this cargo subcommand.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 16 of 42

Figure 7: cargo subcommands

Below, we report a snippet with a cyclomatic complexity of 26 written in Rust language. We can note

that is difficult to comprehend this code at first glance because of its flow complexity.

loop {
 if let Some(subtype) = subtype.as_ref() {
 match subtype {
 Array(array) => {
 match (array.min_items, array.max_items) {
 (Some(min), Some(max)) if min > max => return
Err(Error::InvalidMinMax),
 _ => {}
 };

 if let Some(items) = array.items.as_deref() {
 stack.extend(items.iter());
 }
 }
 Number(number) => {
 match (number.minimum, number.maximum) {
 (Some(x), _) | (_, Some(x)) if x.is_nan() => return
Err(Error::NanMinMax),
 (Some(min), Some(max)) if min > max => return
Err(Error::InvalidMinMax),
 _ => {}
 }

 match number.multiple_of {
 Some(multiple_of) if multiple_of <= 0. => {
 return Err(Error::InvalidMultipleOf)
 }
 _ => {}
 }
 }
 } // match
 } // if let
} // loop

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 17 of 42

 Weighted Code Coverage

The weighted code coverage algorithm explained in deliverable D2.4 has been implemented in a tool

called weighted-code-coverage. In the same deliverable, we have integrated this tool inside our GitHub

Actions workflow to retrieve information about the parts of code which could be complex or not covered

by tests, or both.

It also contains two additional weighted code coverage algorithms from the Ruby language, called Skunk

and Crap.

This tool's structure is shown in Figure 8 alongside with third-party libraries and cli components.

Figure 8: weighted-code-coverage cli and library with their third-party components

It requires only two mandatory arguments as input:

• The path to the source code directory, needed to compute code complexity metrics.

• The JSON file produced by grcov that, for each source code file, contains information about

covered and uncovered lines.

It is possible to export the results of all four algorithms in two different formats: JSON and CSV. If an

output path has not been specified, results are printed on the terminal. We have chosen the JSON format

to upload the artifacts in our GitHub Actions workflow.

Other optional arguments are:

• The kinds of code complexity metrics with their thresholds.

• The number of computational threads.

• An option to visualize the operations performed by the tool.

The execution flow for weighted-code-coverage is the following: source code files are grouped in

chunks, and then each chunk is assigned to a thread that computes every algorithm for each file

contained in the chunk. The results computed by every thread are then sent to a collector thread which

merges all of them into a final output file.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 18 of 42

In addition to single files computation, the tool can be more granular and consider functions too. In this

way, it is possible to retrieve uncovered functions and those which contain a difficult code to

comprehend at first glance.

Currently, weighted-code-coverage analyses only Rust files, but it might be expanded to other

programming languages. Figure 9 shows the list of arguments and options for weighted-code-coverage.

Figure 9: A portion of weighted-code-coverage command line interface

 Third-party Contributions

As part of the activities carried out within WP2, we have contributed to some open-source projects with

the purpose of implementing features, fixing bugs, and refactoring code, so that to produce a new

software version which could be easily integrated into our workflow or used as third-party dependencies

in our tools. Some features required to develop external libraries as well.

Sometimes we have also filed issues on repositories to signal bugs or ask some clarifications about a

certain matter.

In the next sections, we explain each of such software contributions we have accomplished during the

SIFIS-Home project.

2.5.1 Rust-code-analysis

A Rust Mozilla-tool that computes a series of metrics from source codes. It covers all programming

languages present in Firefox codebase. These metrics help a developer identifying the parts of code that

need a refactor or structural changes. It has been created to attach more information to patches sent to

mozilla-central mailing list.

This tool computes metrics in parallel, distributing each file to the threads available on the system. For

each file, an Abstract Syntax Tree (AST) is built from a third-party dependency called tree-sitter, which

also provides some functions to interact with its nodes. So, through a tree search algorithm, it is possible

to identify tokens and constructs of the considered programming language and then compute metrics

starting from there.

The contributions we made to this tool are the following:

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 19 of 42

• Refactored the general code to make it more comprehensible. We split the initial library into

different modules, such as metrics, AST computation, and general methods which extract

information related to programming languages. We also refactored command line and web

server code updating their dependencies and their general structure.

• Added more metrics and unit tests to verify whether their results are valid. We also created unit

tests for metrics already present in the codebase.

• Completely replaced integration tests with snapshots tests. A snapshot test, or approval test, is a

test that asserts values against a reference value: the snapshot. Old integration tests do not allow

to compare all metrics values, and they were difficult to update when a new language grammar

was introduced or upgraded. The snapshot crate, called insta, provides a series of commands to

simplify and automatize the replacement of snapshots, contained in an external repository and

downloaded during test execution. We have tested rust-code-analysis on three large repositories

written in different programming languages: serde for Rust, DeepSpeech for C/C++ and pdf.js

for JavaScript.

• Improved continuous integration system, based on Taskcluster, adding tasks that run tests on

Windows, check whether cli does not crash when executed on huge mozilla-central repository

before the deployment phase, deploy Linux and Windows rust-code-analysis binaries through a

GitHub release.

• Helped developers in reviewing pull requests made by external contributors. We are still helping

in maintaining rust-code-analysis repository.

2.5.2 Tree-sitter

Tree-sitter is a parser generator tool and an incremental parsing library. It can build a concrete syntax

tree for a source file and efficiently update the syntax tree as the source file is edited. This library has

been used in rust-code-analysis to create the Abstract Syntax Tree.

For each programming language, it provides a grammar which parses the code and produces the

associated concrete syntax tree. Rust grammars were not published with the same version on crates.io,

the Rust package registry, because it was difficult to publish them manually every time using the cargo

publish command. For this reason, we have created a GitHub Actions script that automatically publishes

grammars on crates.io when a new tag is added.

We have added this script to eight grammars:

• tree-sitter-java

• tree-sitter-kotlin

• tree-sitter-typescript

• tree-sitter-javascript

• tree-sitter-python

• tree-sitter-rust

• tree-sitter-c

• tree-sitter-cpp

We have also filed some issues about erroneous code parsing or crashes in grammars.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 20 of 42

Figure 10: GitHub Action script to publish a tree-sitter grammar on crates.io package registry

2.5.3 Grcov

This tool collects and aggregates code coverage information for multiple source files. We have

employed this tool in our workflow and explained its usage in deliverable D2.4.

We have implemented, using the Bulma front-end framework, a more consultable report generated by

the information extracted by this tool. It visualizes, for each source code file, the percentage and the

number of covered lines in addition to the percentage and number of covered functions lines. It also

displays the number of branches and the relative coverage percentage. A branch is one of the possible

executions paths the code can take after a decision statement, such as an if statement. Figure 11 shows

an example of this HTML report.

Figure 11 Grcov HTML report

We have also filed an issue about wrong Windows paths which makes the program crash and improved

the overall testing system by introducing snapshot testing using insta.

2.5.4 Insta

Insta is a snapshot testing harness that integrates with the standard cargo test system. While using it to

address some grcov testing shortcomings, we also found some minor issues that were reported and

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 21 of 42

quickly fixed by upstream.

2.5.5 Cargo-fuzz

This tool is a cargo subcommand that runs libFuzzer under the hood, a library that feeds fuzzed inputs

to a software via a specific fuzzing entry point, then it tracks which areas of the code are reached and

generates mutations on input data corpus to maximize code coverage.

We have added a GitHub Actions script to automatically deploy cargo-fuzz on Linux, MacOS and

Windows architectures once a new tagged-release is created. We have done this contribution to avoid

building this tool from scratch in our GitHub Actions workflow, thus reducing computational time a

little.

2.5.6 Cargo-valgrind

Another cargo subcommand that runs valgrind memcheck under the hood. Valgrind memcheck is a

memory error detector that can detect security vulnerabilities such as accessing memory after it has been

freed, using undefined values, i.e., values that have not been initialised or that have been derived from

other undefined values, and memory leaks.

We have added a GitHub Actions script to automatically deploy cargo-valgrind on Linux, MacOS and

Windows architectures once a new tagged-release is created. We have done this contribution to avoid

building this tool from scratch in our GitHub Actions workflow with the aim of reducing the overall

computational time a little.

2.5.7 Cargo-careful

This cargo subcommand detects certain kinds of undefined behaviours and performs sanity checks while

executing a software.

Even for this tool, we have added a GitHub Actions script to automatically deploy cargo-careful on

Linux, MacOS and Windows architectures once a new tagged-release is created. We have done this

contribution to avoid building this tool from scratch in our GitHub Actions workflow with the aim of

reducing computational time a little. At the time of writing this document, the pull request is still pending

and with only a summary review.

2.5.8 Clap

It is the most known Command Line Argument Parser for Rust language. It can create a command-line

parser both declaratively and procedurally.

We extended its functionality to support a use case we incurred in our tools: the possibility to merge

two different sources of information at the same time. In our case, it happens when a command line

argument needs to replace an argument defined in a preset that could be a default or passed as a

command line input as well.

2.5.9 Arg-enum-proc-macro

We have developed this tiny crate to provide a mean to integrate our libraries, that do not need to use

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 22 of 42

Clap, with our tools command lines that make use of Clap in declarative mode.

2.5.10 REUSE

Free Software Foundation Europe has defined a specification, called REUSE, to provide a set of

recommendations to make licensing projects easier. REUSE implemented a tool that analyzes each file

in a repository to verify whether a license is contained inside that file or written in an external file with

the same filename. It also provides a GitHub Actions action to perform this task.

We have contributed to this tool by opening an issue on its main GitHub repository asking to produce

better error messages in case of missing or not correct licenses.

2.5.11 mdns-sd

The Web of Thing Discovery specification uses mDNS/DNS-SD to advertise Things existence. We

selected the mdns-sd crate to add mDNS/DNS-SD support in wot-serve and wot-discovery and

contributed some bugfixes and support for DNS subtypes.

2.5.12 webthing-arduino

Webthings.io provides an arduino-compatible implementation of Web of Things Servient. We

contributed with code patches to have the implementation compatible with the W3C Thing Description

1.0.

2.5.13 webthings-rust

We also contributed with fixes and specification updates to the Rust implementation before the decision

of building our own complete stack, as explained later in this document.

2.5.14 node-wot

We routinely cooperate with the node-wot community to make sure wot-rust and node-wot

implementations interoperate acceptably.

2.5.15 cargo-c

Use mainly to showcase how the rust code may be easily used via a C-API, patches and improvements

provided.

2.5.16 maturin

Similar to cargo-c, it makes easy to consume rust code, but via Python. We reported some issues as it

was evaluated.

2.5.17 datta

An implementation rfc6570. Used in wot-serve and as showcase of the developer handbook as detailed

in 4.2.1.

https://www.rfc-editor.org/rfc/rfc6570

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 23 of 42

3 API Labelling Tools

The tools we show in this section use the concepts of API Label and App Label described in Section 3

of deliverable D2.4.

We recall that an API Label is associated with a SIFIS-Home developer API to describe possible risks

deriving from its execution. The API Label consists of a list of hazards, each identifying a risk.

On the other hand, the App Label is a label associated with an application written by a third-party

developer; it is derived from the combination of the API Labels related to the SIFIS-Home developer

APIs invoked by the application's source code.

The list of hazards presented in deliverable D2.4 has been formally defined in an ontology introduced

in the following section.

 The SIFIS-Home Hazards Ontology

An ontology called SIFIS-Home Hazards Ontology (SHO) has been created to formally define the

hazards we identified for the smart home environment. Notably, the SHO can be used to extend the

representation of WoT's smart devices, called Thing Descriptions (TDs).

A TD is a JSON-LD representation of a connected device called Thing. The TD ideally provides all the

information to control the device in a structured way. Every possible interaction is mapped through

three categories: Properties, Actions, and Events. A client consuming the description can set or read a

Property, subscribe/unsubscribe for future Events or issue a complex order and then wait for it to happen

(Action).

Since the TD is a JSON-LD, it is possible to extend it and add semantic meaning to every element of it;

the SHO is used to bind the risk information to every interaction described. For example, a Property of

an oven's TD could be "on". Of course, turning an oven on may pose some risks, especially if this

function is called remotely and the home is unattended. Within a TD, such risks can be expressed

precisely by mapping the related hazards to the "On" state, i.e., when the "on" property value is "true".

"property" : {
 "on" : {
 "@type" : "OnOffProperty",
 "type" : "boolean",
 "hazards" : [
 {
 "@id": "sho:ElectricEnergyConsumption",
 title": "Electric energy consumption",
 description" : "The execution enables a device that consumes
electricity",
 "risk_score" : 5,
 "type" : "boolean",
 "const" : true
 },
 {
 "@id": "sho:FireHazard",
 "title": "Fire hazard",
 "description" : "The execution might cause fire",

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 24 of 42

 "risk_score" : 8,
 type" : "boolean",
 "const" : true
 }
]
 }
}

Figure 12 shows a graphical representation of the SHO by means of a force-directed graph layout.

Figure 12: Visualization of the SIFIS-Home Hazards Ontology

The SHO defines the classes Hazard and Category, and it uses the external class Interaction Affordance

(defined in the Thing Description Ontology [TD, 2022]) to link to the WoT world. In particular, the

object property hasHazard connects the Interaction Affordance class to the Hazard class with a one-to-

many relationship, meaning that a Property, an Action, or an Event can be associated with one or more

objects of class Hazard.

The Hazard class is characterized by the data properties "name" and "description" of type string, and,

optionally, "risk score" of type level, defined as an integer in the range from 0 to 10; Also, the Hazard

class is connected to the Category class through an object property named hasCategory, indicating that

a hazard belongs to some category.

The Category class is characterized by the data properties "name" and "description" of type string.

Moreover, the ontology defines three Named Individuals for the Category class:

• Safety: category identifying hazards that may lead to physical harm to people and/or assets.

• Privacy: category identifying hazards that may compromise privacy.

• Financial: category identifying hazards that lead to an expense.

Currently, the ontology defines also 24 Named Individuals for the Hazard class. As an example, we

report in Figure 13 the complete description of a hazard named ElectricEnergyConsumption.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 25 of 42

Figure 13: Example of hazard defined as Named Individual within the SHO.

The screenshot above has been taken from the SIFIS-Home Hazards Ontology specification webpage

(SHO, 2022), where the whole ontology is described and can be downloaded in various serialized

formats, among which JSON-LD.

 Ontology Translation into Different Programming Languages

A serialized version of the SIFIS-Home Hazards Ontology has to be translated into specific

programming languages to be used for programming purposes. This is needed in many cases, such as

for creating the API Labels and the App Label and deserializing Thing Descriptions.

To this aim, we created a tool called generate-sifis-hazards which reads the SHO's JSON-LD serialized

file and translates it into a programming-language-specific file containing the structures to represent the

ontology. Currently, the only programming language supported is Rust.

This tool fills a given template, different for each programming language, with information extracted

from the ontology, generating in the output the programming-language-specific file, which allows to

interact with hazards and get their data. A template is composed of a series of APIs and structures

representing concepts and information contained in an ontology, so the same goes for the output file

produced by the tool.

The generate-sifis-hazards is run from the command-line interface, as shown in Figure 14, and its

inputs are:

• <ONTOLOGY_PATH>: the path to the input JSON-LD file containing the ontology.

• <TEMPLATE>: the template to be used, which determines the programming language the ontology

will be translated into.

• <OUTPUT_PATH>: the path where the output programming-language-specific file will be stored.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 26 of 42

Figure 14: generate-sifis-hazards command line interface

Below we show a portion of the output produced by generate-sifis-hazards representing a Rust

enumerator, including all the hazards extracted from the ontology.

/// Hazards type.
pub enum Hazard {
 /// The execution may release toxic gases
 AirPoisoning,
 /// The execution may cause oxygen deficiency by gaseous substances
 Asphyxia,
 /// The execution authorises the app to record and save a video with audio on
persistent storage
 AudioVideoRecordAndStore,
 /// The execution authorises the app to obtain a video stream with audio
 AudioVideoStream,
 /// The execution allows usage of devices that may cause burns
 Burn,
 /// The execution enables a device that consumes electricity
 ElectricEnergyConsumption,
 /// The execution may cause an explosion
 Explosion,
 /// The execution may cause fire
 FireHazard,
 /// The execution enables a device that consumes gas
 GasConsumption,
 /// The execution authorises the app to get and save information about the
app's energy impact on the device the app runs on
 LogEnergyConsumption,
 /// The execution authorises the app to get and save information about the
app's duration of use
 LogUsageTime,
 /// The execution authorises the app to use payment information and make a
periodic payment
 PaySubscriptionFee,
 /// The execution may cause an interruption in the supply of electricity
 PowerOutage,
 /// The execution may lead to exposure to high voltages
 PowerSurge,
 /// The execution authorises the app to get and save user inputs
 RecordIssuedCommands,
 /// The execution authorises the app to get and save information about the

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 27 of 42

user's preferences
 RecordUserPreferences,
 /// The execution allows usage of devices that may cause scalds
 Scald,
 /// The execution authorises the app to use payment information and make a
payment transaction
 SpendMoney,
 /// The execution may lead to rotten food
 SpoiledFood,
 /// The execution authorises the app to read the display output and take
screenshots of it
 TakeDeviceScreenshots,
 /// The execution authorises the app to use a camera and take photos
 TakePictures,
 /// The execution disables a protection mechanism and unauthorised
individuals may physically enter home
 UnauthorisedPhysicalAccess,
 /// The execution enables a device that consumes water
 WaterConsumption,
 /// The execution allows water usage which may lead to flood
 WaterFlooding,
}

The generated structures are then packaged into a crate so they can be reused by the Developer API

implementation and other components that reason about Hazards.

 Labelling for Application Developers

Third-party application developers are provided with a high-level API (SIFIS-Home Developer API)

that abstracts away the device-specific protocols and forces some constraints on what can be

represented:

• The device must provide only the set of interaction affordances linked to their category (e.g., a

Lamp must provide an OnOff property)

• The devices are exposed using concrete classes with self-explanatory methods (e.g., Lamp has

a turn_lamp_on method)

• The high-level API is mapped to a flat RPC that is all a SIFIS-Home-aware Application can use

to communicate outside its container/sandbox.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 28 of 42

Figure 15 rustdoc-generated documentation

The RPC uses messages with a regular formatting: {verb}_{object}_{property}

• Verb is either {get} to read or {set} to write. Shortcut verbs for the widespread properties can

also be used, e.g., turning on/off is mapped to a turn_lamp_on and turn_lamp_off.

• Object is the specific kind of device/resource, e.g., {lamp} or {sink}.

• Property is a property of the object that is accessed, e.g., {brightness} or {flow}.

Figure 16 Example implementation of the rpc using tarpc

Since API Labels are also embedded in the method comments, they can be represented as popup notes

that appear as part of an autocomplete feature in a development tool. This task is nowadays performed

by an implementation of a Language Server Protocol.

Autocomplete, go-to definition or documentation on hover features are usually implemented similarly

for each development tool providing different APIs for the same goal. A Language Server Protocol has

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 29 of 42

been invented to reduce this attitude by defining a standardized protocol to interact with these

development tools through inter-process communication. The protocol delineates a series of guidelines

to build a server that can be reused in multiple development tools, providing the features described

above and supporting various programming languages with minimal effort. Many development tools

implement this protocol, particularly code editors like VS Code, Emacs and Vim.

In SIFIS-Home, an overview of a typical implementation session conducted by a third-party developer

has been performed using rust-analyzer, a Language Server Protocol implementation for the Rust

language, and VS Code as a code editor. Figure 17 shows the autocompletion plug-in in action within

VS Code.

Figure 17: The language server protocol plugins in action in different editors. It allows autocompletion of SIFIS-Home Developer APIs

and shows the description of a SIFIS-Home Developer API and its related hazards.

 Labelling for Users

The usefulness of security labels regarding users becomes clear when we reason about applications users

wishes to install onto their smart devices. Indeed, every third-party application includes an App Label,

which is used to notify users of all the risky operations carried by the app.

Besides informing the end user about app’s behaviour and possible risks, the App Label seamlessly

integrates with user-defined policies. This means that if the user attempts to install an app which

includes some risks that go against some user-defined policies currently in place, the user is notified of

it, and it is asked whether it wants to proceed with the installation or abort it. In the former case, the

application is installed, but, based on their labels, the execution of APIs that would violate the rules

defined by the user are automatically denied at runtime.

To extract every hazard contained in an application, and thus to create the App Label, a tool called

manifest has been developed in Rust. Figure 18 shows its usage and options printed at the command-

line interface. The manifest tool analyses the binary format of an application (multiple binary formats,

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 30 of 42

e.g., ELF and Mach-O, are supported) to find all the SIFIS-Home Developer APIs contained in it and

subsequently discover which are the hazards and behaviours paired with each retrieved API. The tool

needs only two input parameters: the application binary path and the Library API labels path.

Figure 18: manifest command line interface

In particular, the Library API labels path is a JSON file formed by an array of API Labels, including all

the SIFIS-Home Developer APIs contained in a specific version of a SIFIS-Home library. Each API

Label within this file is defined according to the API Label Schema introduced in Section 3.5.1.1 of

deliverable D2.4. Note that since new APIs can be added or removed over time, this file is likely to be

different for each version of the SIFIS-Home library.

Below, the content of a Library API labels file is shown. Within the file, an API Label is included for

each SIFIS-Home Developer API. In this oversimplified example, the number of all the SIFIS-Home

Developer APIs defined within the SIFIS-Home library is two.

{
 "version": "0.1",
 "api_labels": [
 {
 "api_name": "turn_lamp_on",
 "api_description": "Turns on a lamp.",
 "behavior_label": [
 {
 "device_type": "lamp",
 "action": "turn_on"
 }
],
 "security_label": {
 "safety": [
 {
 "name": "FireHazard",
 "description": "The execution may cause fire.",
 "risk_score": 2
 }
],
 "privacy": [
 {
 "name": "LogEnergyConsumption",
 "description": "The execution allows the app to register information
about energy consumption."
 }
],

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 31 of 42

 "financial": [
 {
 "name": "ElectricEnergyConsumption",
 "description": "The execution enables the device to consume further
electricity.",
 "risk_score": 5
 }
]
 }
 },
 {
 "api_name": "turn_oven_on",
 "api_description": "Turns on an oven at the last selected temperature.",
 "behavior_label": [
 {
 "device_type": "oven",
 "action": "turn_on"
 }
],
 "security_label": {
 "safety": [
 {
 "name": "FireHazard",
 "description": "The execution may cause fire."
 },
 {
 "name": "AudioVideoStream",
 "description": "The execution authorises the app to obtain a video
stream with audio."
 },
 {
 "name": "PowerOutage",
 "description": "High instantaneous power. The execution may cause
power outage.",
 "risk_score": 8
 }
],
 "privacy": [
 {
 "name": "LogEnergyConsumption",
 "description": "The execution allows the app to register information
about energy consumption."
 }
],
 "financial": [
 {
 "name": "ElectricEnergyConsumption",
 "description": "The execution enables the device to consume further
electricity.",
 "risk_score": 8
 }
]
 }

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 32 of 42

 }
]
}

The manifest tool produces in output a JSON file composed of the array of the API labels related to the

SIFIS-Home developer APIs invoked within the application code. Below is an example of an App Label

extracted from a binary.

{
 "app_name": "app_name",
 "app_description": "app_description",
 "sifis_version": "0.1",
 "api_labels": [
 {
 "api_name": "turn_lamp_on",
 "api_description": "Turns on a lamp.",
 "behavior_label": [
 {
 "device_type": "lamp",
 "action": "turn_on"
 }
],
 "security_label": {
 "safety": [
 {
 "name": "FireHazard",
 "description": "The execution may cause fire.",
 "risk_score": 2
 }
],
 "privacy": [
 {
 "name": "LogEnergyConsumption",
 "description": "The execution allows the app to register information
about energy consumption."
 }
],
 "financial": [
 {
 "name": "ElectricEnergyConsumption",
 "description": "The execution enables the device to consume further
electricity.",
 "risk_score": 5
 }
]
 }
 }
]
}

As any other software developed in WP2, even this one is subject to the CI checks described in Section

2, in addition to a script for deployment and release.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 33 of 42

 Contract-based Security Methodology

The App Label is deterministically derived from the application code and contains behavioural and

security-related information, based on the specific SIFIS-Home developer APIs invoked within the

application code. At installation time, the App Label is used to verify whether the application violates

some user-defined policies. If this is the case, the user is informed of the reason why the application is

not compliant with his policies, and he is asked whether to abort the installation or proceed with it

anyway.

This approach for application policy evaluation and enforcement falls in the set of the Contract-based

security methodologies and is derived as an optimization of the Security-by-Contract approach. In

particular, an application A is linked to a contract C –in our case, the App Label– describing the

behaviour of the application. The level of behaviour representation comes from the set of invoked SIFIS-

Home developer APIs and their related risks. On the other hand, the policy P is written in XACML and

provided by the user. The evaluation is performed at deploy time, converting the App Label (contract)

in an XACML request which is then evaluated against an Access Control policy. The compliance

between the application behaviour and contract A╞ C is ensured by the automated derivation of the API

sets from the source code or binary, i.e., by the manifest tool, while the contract-policy matching C╞ P

is performed through the policy enforcement engine, which is an XACML policy evaluation engine.

To convert the App Label in XACML requests, we created a tool called sifis-xacml, which takes the

App Label as input and returns a set of XACML requests. This tool runs on the Application Manager

component and is part of the chain of events triggered by the user pressing the Install button on the

Marketplace. The generated XACML requests are then individually submitted to the policy enforcement

engine, to be evaluated against user-defined policies. An evaluation of Permit means that the

corresponding request is allowed, and therefore it does not go against any user-defined policy. On the

contrary, an evaluation of Deny means that a user-defined policy does not allow the requested behaviour

or the execution of an operation carrying some risk.

More in detail, an XACML request is extracted from each API Label included in the App Label and

contains information about the API behaviour as well as the hazards associated with such an API.

For example, the API label of the turn_lamp_on() API, included in the App Label shown in Section

3.4, would result in the generation of one XACML request to be submitted to the policy enforcement

engine. The resulting XACML request contains the attribute "subject-id" with value "marketplace", the

attribute "resource-id" with value "app_name", the attribute "action-id" with value "install", and the

resource-related attributes "device_type" and "action" with value "lamp" and "turn on", respectively.

Moreover, it contains the attributes related to the hazards. In particular, the request contains the

environment-related attribute "hazard" with possibly multiple values; in this case, the values are

"FireHazard", "LogEnergyConsumption", and "ElectricEnergyConsumption".

The policies used at installation time are called "Installation Policies" and are specifically designed to

be evaluated at installation time. The <Target> to which they apply includes the attribute "subject-id"

with value "marketplace" and the attribute "action-id" with value "install". Sticking with the previous

example, an installation policy stating "Do not install applications that turn lamps on" would include a

rule with effect Deny, containing a condition defined as a Boolean AND between the resource-related

attributes "device_type" and "action" with value "lamp" and "turn_on", respectively.

The evaluation of previous request and installation policy produces an evaluation of Deny, and this

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 34 of 42

determines the non-compliance of the contract with the policy. When this happens –after the evaluation

of all the XACML requests is complete– the user is informed of the reason for the non-compliance, and

he can decide either to abort the installation or to install the application regardless of the non-

compliance. Suppose the user decides to install the application anyway. In that case, a monitor is

attached to the specific API that caused the non-compliance, and such a monitor will prevent its

execution. Therefore, policy enforcement will be performed at runtime.

Figure 19 shows the flow of the procedure just described.

Figure 19 Security by Contract workflow.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 35 of 42

4 A Complete Working Example

We focused on WoT and started working with the Webthings.io community, extending their webthings-

rust and webthings-arduino implementations by writing an initial proof of concept of Thing extended

with the SIFIS-Home Hazards ontology.

From this initial experience, we developed a set of separate crates to support the WoT 1.1 standard and

the next WoT 2.0. As result of our W3C Web of Thing community interaction, now a consortium partner

joined the W3C as member, directly contributing to the specification.

 WoT Implementation in Rust

Figure 20: dependency diagram for the SIFIS-Home Rust framework

We use WoT as a foundation layer and build on top of it an implementation of the SIFIS-Home

framework.

We split the WoT implementation into the following crates:

• wot-td that works on serializing, deserializing and extending the Thing Description in a type-

safe way.

• wot-serve provides the building blocks to implement Servients, initially supporting building

HTTP servients via the web application framework axum and advertising its existence via

multicast mDNS/DNS-SD.

• wot-discovery that provides the components to discover Things in the local network and build

a directory.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 36 of 42

Using them, we will reimplement our SIFIS-Home Hazards ontology as an Extension to the Thing

Description and build on top of it the high-level SIFIS-Home API described. The full dependency graph

is shown in Figure 20.

In preparation for the testing activities in WP5 and WP6 we prepared a set of simulated devices in the

demo-things repository using wot-serve and a proof of concept of behavioral tester in wot-test, porting

the Webthings.io python example tester to Rust and expanding it further.

Figure 21 Simulated lamp using the Webthings.io Schemas

Figure 22 Tester for the lamp above

As the standardization work at the W3C proceeds we will update the codebase to match the latest

specification and provide an implementation of our standardization proposals.

 Tools in Action

We used sifis-generate to create all the WoT projects, and we refined its Rust template from the

experience of using it in this scenario.

We tried to keep the code coverage above 85%, aiming to stay well above 90% and ensure every pull

request landing is clean of clippy lints (as described in deliverable D2.4). All the dependencies do not

bring problems thanks to cargo audit and ensure that our implementation is spec-compliant as much as

possible.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 37 of 42

When we had to introduce uritemplate as a dependency, it triggered a good number of warnings, as

shown in Figure 23.

Figure 23: cargo-audit output for uritemplate

4.2.1 datta

To implement a part of wot-serve, we had to implement a mapping between the uritemplates used in the

WoT Forms and the axum Paths.

The uritemplate would fit our needs, but it has not been updated for six years, with short-winded tries

to update it by other parties, and as shown above, it is showing its age.

4.2.1.1 Shortcomings

• Pre-2018 codebase.

• Plenty lints from the default rust linter clippy trigger.

• Missing CI.

• Stale dependencies:

o Regex and thread_local faults were caught by cargo audit.

o Since we wanted to test how our sifis-generated CI behaved, we had Miri catch at least

one problem while running the test suite.

4.2.1.2 Mitigation

• Since the original developer is not responsive and the crate is left in full neglect, we created a

https://www.rfc-editor.org/rfc/rfc6570
https://www.w3.org/TR/wot-thing-description11/#form-uriVariables
https://docs.rs/axum/latest/axum/extract/struct.Path.html
https://crates.io/crates/uritemplate
https://rust-lang.github.io/rust-clippy/
https://github.com/rust-lang/miri

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 38 of 42

full fork of it.

• We made sure to update it to the Rust edition 2021.

• We addressed all the lints clippy found.

• We updated the dependencies, so the cargo audit report is clear.

• We set up the CI using the sifis-generate, as shown in Figure 24.

Figure 24: CI for datta

4.2.1.3 Updates and Release

We extended datta API to fit the wot-serve needs, updated documentation and released it with a new

name, as shown in Figure 25.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 39 of 42

Figure 25: crates.io for datta (https://crates.io/crates/datta)

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 40 of 42

5 Conclusions and Future Works

This deliverable presents a comprehensive set of tools and methodologies designed to facilitate the

development of secure, efficient, and maintainable IoT software within the SIFIS-Home project. This

document and the accompanying code and documentation provide developers with the necessary

resources to apply the developer guidelines for creating secure, privacy-aware, policy-based IoT source

code introduced in D2.4.

Throughout this deliverable, we have introduced a range of software lifecycle tools, including sifis-

generate, complex-code-spotter, and weighted code coverage. We have also detailed our contributions

to the open-source projects we included in implementing our workflows described in D2.4. In addition

to software lifecycle tools, this document has presented API labelling tools and methodologies, such as

the SIFIS-Home Hazards Ontology and contract-based security methodology, to ensure a secure and

controlled environment for IoT applications.

As the complete working example demonstrates, the developer tools have been successfully applied in

a real-world setting.

Moving forward, we envision several areas of potential improvement and expansion for the developer

tools:

• Integration of additional programming languages and platforms to further extend the

applicability of the tools and methodologies.

• Enhancement of the API labelling tools to provide more granular and customizable hazard

assessments, accommodating a wider range of IoT devices and use cases.

• Extension of the SIFIS-Home Hazards Ontology to encompass a broader range of potential

hazards and associated mitigation strategies.

• Expansion of the educational resources and documentation to facilitate the adoption and

implementation of the developer tools by a wider audience, including more comprehensive

tutorials, sample projects, and case studies.

In conclusion, the developer tools presented in this deliverable mark a significant contribution in the

SIFIS-Home project, providing a strong foundation for the secure and efficient development of IoT

software.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 41 of 42

6 References

[TD, 2022] Thing Description (TD) Ontology. URL: https://www.w3.org/2019/wot/td

[SHO, 2022] The SIFIS-Home Hazards Ontology Specification. URL: https://purl.org/sifis/hazards

https://www.w3.org/2019/wot/td

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.5

Version 1.0 Page 42 of 42

Glossary

Acronym Definition

ABI Application Binary Interface

API Application Programming Interface

AST Abstract Syntax Tree

CI Continuous Integration

DNS Domain Name System

DNS-SD DNS-based Service Discovery

CSV Comma Separated Values

GCC GNU Compiler Collection

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

mDNS Multicast DNS

MIT Massachusetts Institute of Technology

MSRC Microsoft Security Response Centre

RPC Remote Procedure Call

SHO SIFIS-Home Hazards Ontology

SIFIS-Home Secure Interoperable Full-Stack Internet of Things for Smart Home

TD Thing Description

WoT Web of Things

WP Work Package

XACML eXtensible Access Control Markup Language

YAML YAML Ain't Markup Language

