

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

D2.3

 First Version of Developer Tools

WP2 – Guidelines and Procedure for System and

Software Security and Legal Compliance

Due date of deliverable: 30/09/2022

Actual submission date: 30/09/2022

Responsible partner: POL

Editor: Luca Ardito

E-mail address: luca.ardito@polito.it

29/09/2022

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Framework

Programme

Dissemination

Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-HOME Project is supported by funding under the Horizon 2020 Framework

Program of the European Commission SU-ICT-02-2020 GA 952652

SIFIS-HOME
Secure Interoperable Full-Stack Internet of Things for Smart

Home

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Authors: Luca Ardito (POL), Luca Barbato (LUM), Marco Ciurcina (POL), Maurizio Morisio

(POL), Marco Torchiano (POL), Marco Rasori (CNR), Michele Valsesia (POL)

Reviewers: Andrea Saracino (CNR), Valerio Frascolla (INT)

Revision History

Version Date Name Partner Section Affected Comments

0.1 12/05/2022 Tentative ToC and contents POL, LUM, CNR All

0.2 09/06/2022 Software Analysis in SIFIS-

Home

POL Section 2

0.3 16/06/2022 Added Ontology CNR Section 4

0.4 30/06/2022 Adding working example LUM Section 5

0.5 08/07/2022 Software Lifecycle Tools

Description

POL Section 3

0.6 29/07/2022 Document Review POL, LUM, CNR All

0.7 23/08/2022 Reviewed Subsections CNR Section 4

0.8 09/09/2022 Added executive summary POL Executive Summary

0.9 19/09/2022 Document proofread before

internal review

POL All

1.0 29/09/2022 Modifications after internal

review

POL All

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 3 of 37

Executive Summary

This document is a companion to the release of the 'developer tools' code, developed in the context of

Work Package (WP) 2, which is available on the SIFIS-Home project GitHub repository

https://github.com/sifis-home. All the source code is released under the MIT licence and has

documentation directly from the repository.

This document provides the reader with detailed information about the released code and the API

labelling and provides some results obtained from using it.

D2.3 is a preliminary release; therefore, there may be bugs, inaccuracies, or not yet complete

functionality.

The final version is planned for M30 (end of March 2023) with the release of D2.5.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 4 of 37

Table of contents

Executive Summary ... 3

1 Introduction ... 5

2 Software Lifecycle Tools .. 6

 sifis-generate .. 6
2.1.1 Creating projects .. 8

 Testing projects .. 10
2.2.1 Unit and Integration tests ... 10

2.2.2 Code Coverage ... 10

 Evaluating Code Quality .. 12
2.3.1 Additional quality checks .. 15

2.3.2 Evaluating Software Quality .. 16

 Memory fault analysis .. 16
2.4.1 C/C++... 17

2.4.2 Rust .. 17

 Weighted Code Coverage .. 18

 Project Deployment .. 20

3 API Labelling Tools ... 22

 The SIFIS-Home Hazards Ontology .. 22

 Ontology Translation into Different Programming Languages ... 24

 Labelling for Application Developers .. 26

 Labelling for Users ... 27

4 A Complete Working Example .. 31

 WoT Implementation in Rust ... 31

 Tools in Action ... 32
4.2.1 datta .. 33

5 Conclusions and Future Works ... 35

6 References ... 36

Glossary ... 37

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 5 of 37

1 Introduction

In software development, static and dynamic analysis tools enable diagnostics at various levels during

implementation, testing, integration, and later stages, like the development of patches and update

management. Static and dynamic analysis tools also play an important role in increasing software

security, as they can spot in advance attacks that exploit defects and malfunctions in a programme. By

guaranteeing the quality of development, automatic analysis tools increase the efficiency of code and

user satisfaction but also help reduce software vulnerability. By using one of such tools, it is possible to

streamline processes, lower debugging costs, and achieve more secure, functional, usable, available,

efficient, and maintainable software.

Our focus is on making sure that the software that is used in connected devices for homes is trustworthy,

and that means, on the one hand, providing tools to help the developers avoid known pitfalls and

problems. Having analysis tools allows third parties to assess the quality of their software.

In the following table, we list the status of the released code. In the following chapters, we provide

further information about its use.

Table 1. Status of released code.

Project name Status

wot-td 90% to Release 0.2

wot-serve 90% to Release 0.2

wot-discovery 50% to Release 0.2

sifis-generate Release 0.5

weighted-code-coverage Ready for Release 0.2

complex-code-spotter Ready for Release 0.1

datta Release 0.1

libsifis-rs Proof of Concept

The SIFIS-Home Hazards Ontology 90% to Release 1.0.3

https://github.com/sifis-home/wot-td
https://github.com/sifis-home/wot-serve
https://github.com/sifis-home/wot-discovery
https://github.com/sifis-home/sifis-generate
https://github.com/sifis-home/weighted-code-coverage
https://github.com/sifis-home/complex-code-spotter
https://github.com/sifis-home/datta
https://github.com/sifis-home/libsifis-rs
https://github.com/sifis-home/hazards-ontology

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 6 of 37

2 Software Lifecycle Tools

Making software could follow various workflows, depending on the organization writing it.

Yet when we interviewed our project partners, few declared that they use CI systems in their projects,

usually pointing out that while they all recognize its value, it is often too time-consuming to set CI up.

It is resource intensive to run CI for every commit.

In SIFIS-Home, we selected the best practices that should be followed and prepared a list of suggested

open-source tools that could be used.

We developed new tools when nothing would fit our specific needs and contributed to already

established projects.

Among the tools we made two try to make more time efficient building and running a CI system:

1 sifis-generate: A project creation tool that automatically scaffolds a project equipped with

an initial CI flow matching our suggested practices.

2 complex-code-spotter and weighted-code-coverage: Analysis tools that help focus on the

most complex parts of a codebase, shaping the test suite to cover first the code with the

higher odds of hiding defects.

Both these tools have been written in Rust because of the advantages of this language, which,

considering our needs, can be listed as:

• Memory safety without the need of a garbage collection.

• Possibility to optimise software both in time and memory.

• Writing parallel code in an easier way.

• Package and deploy software in a few steps.

• Support the most known platforms, such as Linux, macOS and Windows and bare-metal targets

To better describe our tools, we have divided their features into different sections, so to have a better

understanding of the rationale we used to implement them.

 sifis-generate

sifis-generate primary purpose consists in reducing the conceptual effort requested by developers to set

up a CI pipeline.

It generates a whole new project from scratch if an automatized project generator is not available or too

complex to use. Otherwise, it adds a series of CI configuration files to an existing project. Figure 1

shows third-party components of the library and the ones associated to the cli. The contributions made

to the components in light violet have been performed in the scope of the SIFIS-Home project.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 7 of 37

Figure 1: sifis-generate cli and library with their third-party components

This tool has been designed to cover some of the most common and used programming languages, with

more emphasis on Rust for its advantages, as delineated above. Indeed, multiple changes applied to the

tool source code are related to the CI developed for the Rust package manager: cargo.

sifis-generate produces a series of files from default templates associated and intended for that language

by giving a programming language as input. Generated files can be of various kinds: source codes, build

systems and CI configuration files, shell scripts, and Dockerfiles. All of them constitute and define a

new project. Figure 2 illustrates a directory containing a new-generated project.

Figure 2: A simple C-demo project with its build configuration files

Continuous Integration, better known by its initials CI, is composed of a series of steps which can

perform lint, unit, and integration tests in addition to memory-hazards detection, all embodied with code

and software quality checks. Each step runs one or more tools to obtain the desired result. Figure 3

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 8 of 37

shows the series of steps which might be run in a GitHub job for a specific configuration.

Figure 3: GitHub Actions CI service with its jobs and steps

2.1.1 Creating projects

Different programming languages need different configuration files to build and test software.
Creating all these files could be cumbersome for a developer who must manually set up all of

them. However, the newest languages provide a series of tools to create building environments

automatically, but not all aspects are considered. For example, CI scripts are not produced at

all. We have created the sifis-generate tool to overcome this problem: it generates new projects

and CI scripts from scratch using templates.
Templates define the layout for a project and allow developers to insert data at runtime.

Each template contains all necessary files to build a project for a determined programming

language and CI and Docker scripts, which are used to run tests, deploy the software, and

perform further checks.

sifis-generate must be considered as a starting point for a developer who is going to implement

new software, so it defines default parameters and known patterns for each template.

As CI systems, GitHub Actions and GitLab CI/ Continuous Development (CD) have been taken
into consideration because of their pervasiveness in the open-source world. Instead, Docker has

been chosen as a solution to run software in an isolated environment.

Five templates have been defined, one for each programming language currently supported by

the tool. Any template contains, by default, a README file with a series of badges to show
some information about the quality of software in addition to the other details related to the new

project.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 9 of 37

C/C++

Meson is a new open-source build system meant to be extremely fast and, even more importantly, as

user-friendly as possible. This tool has become popular in many C/C++ projects for its simplicity, so

the decision to adopt it and generate its configuration files. In addition, a Dockerfile to build a Docker

image and GitHub and GitLab CI scripts have been added.

Python

The innovative packager and dependency management Poetry has been used to build and deploy Python

packages. GitHub and GitLab CI scripts have been provided even in this case.

Java

Apache Maven is a software project management and comprehension tool for Java. Configuration files

for this software have been produced in addition to a GitHub CI script.

Rust

Cargo is the official package manager for Rust. It already implements a command to generate all

building files: cargo new. This command also allows one to choose between a library or an executable

as output. A series of GitHub CI scripts have been defined for this language because of Web of Things

(WoT) Rust implementation demands. We have made available scripts for the most common

architectures, Linux, macOS and Windows, in addition to a specific one for the deployment phase. A

GitLab CI script has been also added. Figure 4 first shows the helper for sifis-generate and then the

command to create a CI for Rust.

Javascript

Yarn is a JavaScript package manager. As Cargo, it already implements a command to generate a new

project: yarn init. A GitHub and GitLab CI scripts are the only files defined for the JavaScript

language.

Figure 4: sifis-generate tool in action. At first, the usage of the tool is shown through the option --help; then, a Rust CI is created by

using the “cargo” template.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 10 of 37

 Testing projects

Software testing checks the product's quality and finds bugs or features not covered and requested by

the requirements, thus increasing the product's robustness.

The testing techniques are carried out to find bugs within the software and verify and certify that the

software meets the requirements of the developers and customers, even under different climatic and

electrical conditions.

Software testing can be performed either in parallel with the code development process or after the

process is complete. Depending on when the testing is carried out, different methodologies are used.

In the context of the SIFIS-Home project, it is recommended that tests be performed during the software

development phase through unit and integration tests, evaluating the percentage coverage that the

written tests have over the software size (code coverage).

2.2.1 Unit and Integration tests

Software must be tested to verify and validate whether its behaviour is correct. In SIFIS-Home, software

should implement at least unit tests and, optionally, integration tests.

A unit test verifies the functionality of a function or a subprocess, while an integration test analyses the

interaction between the modules which compose a software. Thus, the latter focuses on a more general

behaviour instead of a specific or local one.

Each programming language defines a different testing environment. Some tools are simpler to use than

others and offer specific options to optimise the execution of the various tests. The most common SIFIS-

Home frameworks and package managers for testing have been tackled, explaining their general

structure and how developers can interact with them.

In Rust, a unit test is a simple function contained in the same source file of the function to verify, while

an integration test is more complex and is defined as a file inside a reference directory called tests.

Both unit and integration tests are characterised by the attribute #[test] over their definition, which is

used by cargo to create a series of small binaries for each test. Each binary runs in parallel since tests

are independent of the other, and this approach reduces the overall testing time.

Even in Meson, it is possible to create unit and integration tests inside a reference directory called tests,

but differently from cargo, though, a test needs to be defined as a binary directly by a developer inside

a meson.build configuration file. So, the transformation of a test in binary is not performed

automatically.

Instead, Yarn defines tests as scripts with a configuration file called project.json. It contains project

metadata in addition to specific arguments and options for the JavaScript interpreter. It is necessary to

launch the yarn test command to run tests.

Poetry makes use of pytest, a framework to write small and readable Python tests, to run unit and

integration tests, launching the following command: poetry run pytest

For what concerns Java, the Maven package manager runs all tests defined in a library with the mvn test

command. Group of tests are defined in the src/test package.

2.2.2 Code Coverage

Code coverage is a metric to determine how many lines of code have been covered by tests. The

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 11 of 37

percentage obtained from this metric represents a good indicator for software security since it permits

tracking the most common execution flows a program might follow during its usage.

The code coverage information is usually extracted by running instrumented builds and collecting their

outputs in an aggregated report.

Some build systems have built-in subcommands to provide the code coverage nearly out of the box:

Poetry with poetry run coverage or Meson with the -Db_coverage=true option to instrument the build

and then meson compile coverage-html to aggregate the information.

The coverage information aggregators can directly upload the information to a third-party website to

ease the processing and the analysis over time.

The most known sites for code coverage visualization are codecov and coveralls. Figure 5 shows the

coverage for the wot-td repository on coveralls.

Figure 5: Code coverage visualization for wot-td repository on Coveralls

We implemented the traffic lights mechanism explained in D2.2 as part of our CI system to avoid

reliance on those third-party services and provide a simpler quick check on the coverage health.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 12 of 37

Code coverage with a percentage value greater than 80% is associated to green light, between 60% and

80% to orange, lower than 60% to red. If a code has been labelled as red, CI stops and exits with an

error.

Among the various aggregation tools, we selected grcov, a tool developed by Mozilla in Rust, as the

default tool for our sifis-generate CI. We also contributed a template system to customise the html

reports (Figure 6).

Figure 6 HTML report

The user can either rely on the third-party service or use the combination of the html output and the

traffic-lights check to have the key features of coverage visualization and per build check.

 Evaluating Code Quality

Code quality is an important aspect of the maintainability of software. Not only the structure of a piece

of code should be considered, but also the libraries and the dependencies which contribute to reducing

code boilerplate, avoiding the reinvention of the wheel every time.

In SIFIS-Home, we have contributed to the development of a software by Mozilla called rust-code-

analysis, in short rca, which implements a series of Source Code Metrics for the most used

programming languages in the Firefox codebase. Those metrics focus on measuring the properties of a

source code, mapping them into numerical values. In addition, they allow identifying parts of the

software that need a refactor or structural changes.

This tool computes the metrics in parallel, distributing each file to the threads available on the system.

For each file, an AST has built through a third-part dependency called tree-sitter, which also provides

some functions to interact with its nodes. So, visiting the nodes of this tree, it is possible to identify the

token and the constructs of the analysed programming language and then compute the metrics starting

from there.

rust-code-analysis also contains the code complexity metrics necessary for:

• Extracting snippets of complex code from a project.

• Computing the four algorithms associated with the new code coverage concept described in

D2.2.

Detecting pieces of complex code is the main goal of complex-code-spotter, a new tool developed in

SIFIS-Home. Figure 7 shows third-party components of the library and the ones associated to the cli.

https://github.com/mozilla/rust-code-analysis
https://github.com/mozilla/rust-code-analysis

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 13 of 37

The contributions made to the components in light violet have been performed in the scope of the SIFIS-

Home project.

Figure 7: complex-code-spotter cli and library with their third-party components

It requires as input:

• The path to the source code, which is parsed in search of complex snippets.

• The output directory containing all code snippets which exceed the thresholds of the

implemented code complexity metrics.

A snippet is any piece of code identified by a rust-code-analysis space. This approach leads to a more

defined granularity because retrieving functions and closures other than whole files is possible. It

supports the same programming languages defined in rca.

Concerning its usage, this tool uses rca as a dependency for computing code complexity metrics,

extracts a code snippet when the value of a metric exceeds a determined threshold, and then saves those

snippets in one of the supported formats, which can be: markdown, html, and JSON.

The default configuration extracts code snippets for cyclomatic and cognitive metrics, with an empirical

threshold of 15, and defines markdown as the default output format.

Other optional arguments are:

• The kinds of code complexity metrics with their own thresholds.

• The number of computational threads.

• An option to visualize the operations performed by the tool.

It is also possible to filter input source files using I and X options. The input -I option is a glob filter that

considers only the files with a determined file extension. The exclude -X option is a glob filter that does

not consider only the files with a determined file extension.

For example, to consider only Rust *.rs files:

complex-code-spotter -I "*.rs" /path/to/file/or/directory /output/path

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 14 of 37

To exclude only Rust *.rs files instead:

complex-code-spotter -X "*.rs" /path/to/file/or/directory /output/path

Both these options can be used more than once.

The main workflow of complex-code-spotter is the following: each source code file is assigned to one

of the threads available on the system, which computes the complexity metrics for that file and then

extracts the relative snippets.

The results produced by each thread are then sent to a collector thread which, as the first step, creates

the structure of the output directory and then writes every snippet of a file from memory into the output

format file. In Figure 8, the list of arguments and options for complex-code-spotter.

Figure 8: complex-code-spotter interface

We have also added a cargo subcommand to extract snippets using cargo itself. Figure 9 shows the list

of arguments and options for cargo subcommand.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 15 of 37

Figure 9: cargo subcommands

Below a complex code snippet with a cyclomatic complexity of 26 written in Rust code.

loop {
 if let Some(subtype) = subtype.as_ref() {
 match subtype {
 Array(array) => {
 match (array.min_items, array.max_items) {
 (Some(min), Some(max)) if min > max => return
Err(Error::InvalidMinMax),
 _ => {}
 };

 if let Some(items) = array.items.as_deref() {
 stack.extend(items.iter());
 }
 }
 Number(number) => {
 match (number.minimum, number.maximum) {
 (Some(x), _) | (_, Some(x)) if x.is_nan() => return
Err(Error::NanMinMax),
 (Some(min), Some(max)) if min > max => return
Err(Error::InvalidMinMax),
 _ => {}
 }

 match number.multiple_of {
 Some(multiple_of) if multiple_of <= 0. => {
 return Err(Error::InvalidMultipleOf)
 }
 _ => {}
 }
 }
 } // match
 } // if let
} // loop

2.3.1 Additional quality checks

Specifying dependencies during software development and not using them afterwards is a typical pattern

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 16 of 37

that could lead to confusion for new contributors to the code. To solve this problem for Rust, we have

defined a CI step which detects unused crates running a command with the nightly toolchain of the

language:

cargo +nightly udeps –all-targets

The all-targets option runs this check for tests and benchmarks crates too.

A developer might require specific and acceptable license terms for the dependencies of the software.

To check whether these requirements have been satisfied, we have added a Rust tool called cargo deny

to our CI:

cargo deny check licenses

it exits with an error when a dependency license is not contained in the ones specified for the codebase.

This tool can also deny (or allow) specific crates, as well as detect and handle multiple versions of the

same crate with:

cargo deny check bans

Running the cargo audit command can identify some dependencies containing security vulnerabilities.

It searches for crate vulnerabilities inside a database; if one or more crates are affected, it returns an

error. This software also offers the possibility to update or replace dangerous dependency requirements

using this command:

cargo audit fix

2.3.2 Evaluating Software Quality

Software quality evaluation consists of a series of checks performed at runtime. One example is the

code coverage metric explained in previous sections, which needs to know execution flows to determine

the percentage of covered lines. So, if a test does not undertake a specific flow, some lines might not be

covered.

Code coverage can be applied to any programming language, but there are some languages, mainly

compiled ones, which could incur memory management and threading bugs, so their behaviour should

be profiled in detail at runtime.

 Memory fault analysis

Dynamic analysis (or dynamic code analysis) methods analyse the software running. The dynamic

analysis techniques aim to find errors in a program while executing (instead of examining the code

itself) and can identify:

• Lack of code coverage.

• Memory allocation and leaks errors.

• Fault localization according to failing and passing test cases.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 17 of 37

• Concurrency errors (race conditions, exceptions, resource & memory leaks, and security attack

vulnerabilities).

• Performance bottlenecks and security vulnerabilities.

2.4.1 C/C++

For C/C++ we run a fast memory error detector, a runtime library part of the clang and GCC suites

called AddressSanitizer, better known as asan. It detects out-of-bounds accesses to heap, stack and

globals, use-after-free, double-free, invalid-free, and more generics memory leaks. This kind of

verification is preeminent for security reasons since an attacker could exploit a memory hazard to insert

a malevolent piece of code inside the software. The meson command to produce an asan-instrumented

build is:

meson setup --buildtype release -Db_sanitize=address -Db_lundef=false .build-
directory-asan

which builds up the binary, runs it in search of memory problems and then saves the results, if there are

any, in a directory called .build-directory-asan.

After that, the AddressSanitizer runs tests and inspects them through this command:

meson test -C .build-directory-asan

However, some platforms are not yet supported by AddressSanitizer, so different tools need to be run:

Valgrind and Memcheck.

Valgrind is a suite of analysis tools that rely on a CPU emulator to run instrumented binaries and insert

profiling/instrumentation information on the fly. It provides a plethora of tools not limited to fault

analysis (memory access, thread usage) but also profiling ones (memory allocation, cache usage, per

function execution time, etc.).

meson test --wrap='valgrind --leak-check=full --error-exitcode=1' <test>

Instead, Memcheck has a higher overhead compared to asan and should be used mainly when asan does

not support the architecture, or an in-depth analysis is required.

2.4.2 Rust

The Rust language compiler can instrument the code with AddressSanitiser passing the compilation flag

through the RUSTFLAGS environment variable:

export RUSTFLAGS=-Zsanitizer=address
cargo test

For the platforms that do not support AddressSanitizer yet, we rely on the cargo valgrind subcommand,

which invokes valgrind memcheck under the hood.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 18 of 37

cargo valgrind run -- --command_and_options_to_be_analysed

Miri is an experimental interpreter of the Rust Mid-level Intermediate Language (MIR). It is used to

detect Undefined Behaviours (UB).

Currently, it covers the following aspects:

• Out-of-bounds memory accesses and use-after-free.

• Invalid use of uninitialized data.

• Violation of intrinsic preconditions.

• Not sufficiently aligned memory accesses and references.

• Violation of some basic type invariants (a boolean which is not 0 or 1, for example, or an invalid

enum discriminant).

The possibility of detecting memory leaks is one of the upcoming features currently under development

in Miri. Once it reaches an adequate level of maturity, it might replace Memcheck.

In our CI, we have set up some of these options, creating a default configuration which covers:

• A lot of extra UB checks relating to raw pointer aliasing rules.

• A stricter alignment checks.

• Validity rules for integer and float values, like forced initialisations.

By default, Miri runs a binary in an isolation environment not to be affected by any
architectures-dependent instructions. Still, it is always possible to disable this behaviour,

allowing software to access resources such as environment variables, file systems, and

randomness.

 Weighted Code Coverage

Running lots of tests to achieve an adequate code coverage can be time and resource-intensive,

even more so if the tests are built multiple times for instrumenting them according to different

purposes (e.g., code coverage and fault analysis).

In D 2.2, we have introduced two algorithms that combine code complexity and code coverage

into a new metric called weighted code coverage, which aims to suggest to the developer which
areas require extra care, and which are less likely to hide bugs.

Those algorithms have been implemented in the weighted-code-coverage software that also

contains two additional algorithms from the Ruby language, called Skunk and Crap, based on a

weighted code coverage concept. Figure 10 shows third-party components of the library and the ones

associated to the cli. The contributions made to the components in light violet have been performed in

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 19 of 37

the scope of the SIFIS-Home project.

Figure 10: weighted-code-coverage cli and library with their third-party components

The tool requires only two mandatory arguments as input:

• The path to the source code's directory to compute code complexity metrics.

• The JSON file produced by grcov that contains covered and uncovered lines of

information for each file.

It is possible to export the results of all four algorithms in two different formats: JSON and

CSV. If an output path has not been specified, results are printed on the terminal.

Other optional arguments are:

• The kinds of code complexity metrics with their thresholds.

• The number of computational threads.

• An option to visualize the operations performed by the tool.

The execution flow is the following: source code files are grouped in chunks, and then each
chunk is assigned to a thread that computes all four algorithms on each chunk file. The results

produced by each thread are then sent to a collector thread which merges all of them into the

output file.

In addition to computation for single files, the tool can be more granular and consider functions

too. In this way, it is possible to retrieve which functions are uncovered, and which ones contain

a code difficult to comprehend at first glance.

Currently, weighted-code-coverage analyses only Rust files, but it might be expanded to other

programming languages in the future. Figure 11 shows the list of arguments and options for

weighted-code-coverage.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 20 of 37

Figure 11: A portion of weighted-code-coverage command line interface

 Project Deployment

Software lifecycle tools are deployed as binaries on GitHub to distribute effortlessly among the

supported architectures, in our case, Linux, macOS and Windows.

The deployment procedure is performed by a CI script added to sifis-generate. This script runs in

parallel a task for each architecture with the purpose of building and packaging binaries. Subsequently,

another task starts up and collects all produced packages, uploading them on GitHub. The task sequence

is triggered whenever a new tag is added. Figure 12 shows the deployment procedure in action, with the

relative produced artifacts.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 21 of 37

Figure 12: Deployment of sifis-generate

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 22 of 37

3 API Labelling Tools

The tools we show in this section use the concepts of API Label and App Label described in Section 3

of D2.2 (Preliminary Developer Guidelines). The term "tag" used in D2.2 is replaced herewith by the

term "hazard".

We recall that an API Label is associated with a SIFIS-Home developer API to describe possible risks

deriving from its execution. The API Label consists of a list of hazards, each identifying a risk.

On the other hand, the App Label is a label associated with an application written by a third-party

developer; it is derived from the combination of the API Labels related to the SIFIS-Home developer

APIs invoked by the application's source code.

The list of hazards presented in D2.2 has been formally defined in an ontology introduced in the

following section.

 The SIFIS-Home Hazards Ontology

An ontology called SIFIS-Home Hazards Ontology (SHO) has been created to formally define the

hazards we identified for the smart home environment. Notably, the SHO can be used to extend the

representation of WoT's smart devices, called Thing Descriptions (TDs).

A TD is a JSON-LD representation of a connected device called Thing. The TD ideally provides all the

information to control the device in a structured way.

Every possible interaction is mapped through 3 categories: Properties, Actions, and Events. A client

consuming the description can set or read a Property, subscribe/unsubscribe for future Events or issue

a complex order and then wait for it to happen (Action).

Since the TD is a JSON-LD, it is possible to extend it and add semantic meaning to every element of it;

the SHO is used to bind the risk information to every interaction described.

For example, a Property of an oven's TD could be "on". Of course, turning an oven on may pose some

risks, especially if this function is called remotely and the home is unattended. Within a TD, such risks

can be expressed precisely by mapping the related hazards to the "On" state, i.e., when the "on" property

value is "true".

"property" : {
 "on" : {
 "@type" : "OnOffProperty",
 "type" : "boolean",
 "hazards" : [
 {
 "@id": "sho:ElectricEnergyConsumption",
 title": "Electric energy consumption",
 description" : "The execution enables a device that consumes electricity",
 "riskScore" : 5,
 "type" : "boolean",
 "const" : true
 },
 {

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 23 of 37

 "@id": "sho:FireHazard",
 "title": "Fire hazard",
 "description" : "The execution might cause fire",
 "riskScore" : 8,
 type" : "boolean",
 "const" : true
 }
]
 }
}

Figure 13 shows a graphical representation of the SHO by means of a force-directed graph layout.

Figure 13: Visualization of the SIFIS-Home Hazards Ontology

The SHO defines the classes Hazard and Category, and it uses the external class Interaction Affordance

(defined in the Thing Description Ontology [TD, 2022]) to link to the WoT world. In particular, the

object property hasHazard connects the Interaction Affordance class to the Hazard class with a one-to-

many relationship, meaning that a Property, an Action, or an Event can be associated with one or more

objects of class Hazard.

The Hazard class is characterized by the data properties "name" and "description" of type string, and,

optionally, "risk score" of type level, defined as an integer in the range from 0 to 10; Also, the Hazard

class is connected to the Category class through an object property named hasCategory, indicating that

a hazard belongs to some category.

The Category class is characterized by the data properties "name" and "description" of type string.

Moreover, the ontology defines three Named Individuals for the Category class:

• Safety: category identifying hazards that may lead to physical harm to people and/or assets.

• Privacy: category identifying hazards that may compromise privacy.

• Financial: category identifying hazards that lead to an expense.

Currently, the ontology defines also 22 Named Individuals for the Hazard class. As an example, we

report in Figure 14 the complete description of a hazard named ElectricEnergyConsumption.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 24 of 37

Figure 14: Example of hazard defined as Named Individual within the SHO.

The screenshot above has been taken from the SIFIS-Home Hazards Ontology specification webpage

(SHO, 2022), where the whole ontology is described and can be downloaded in various serialized

formats, among which JSON-LD.

 Ontology Translation into Different Programming Languages

A serialized version of the SIFIS-Home Hazards Ontology has to be translated into specific

programming languages to be used for programming purposes. It is needed in many cases, such as for

creating the API Labels and the App Label and deserializing Thing Descriptions.

To this aim, we created a tool called generate-sifis-hazards which reads the SHO's JSON-LD serialized

file and translates it into a programming-language-specific file containing the structures to represent the

ontology. Currently, the only programming language supported is Rust.

This tool fills a given template, different for each programming language, with information extracted

from the ontology, generating in the output the programming-language-specific file, which allows to

interact with hazards and get their data. A template is composed of a series of APIs and structures

representing concepts and information contained in an ontology, so the same goes for the output file

produced by the tool.

The generate-sifis-hazards is run from the command-line interface, as shown in Figure 15, and its

inputs are:

• <ONTOLOGY_PATH>: the path to the input JSON-LD file containing the ontology.

• <TEMPLATE>: the template to be used, which determines the programming language the ontology

will be translated into.

• <OUTPUT_PATH>: the path where the output programming-language-specific file will be stored.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 25 of 37

Figure 15: generate-sifis-hazards command line interface

Below we show a portion of the output produced by generate-sifis-hazards representing a Rust

enumerator, including all the hazards extracted from the ontology.

/// Hazards type.
pub enum Hazard {
 /// The execution may release toxic gases
 AirPoisoning,
 /// The execution may cause oxygen deficiency by gaseous substances
 Asphyxia,
 /// The execution authorises the app to record and save a video with audio on
persistent storage
 AudioVideoRecordAndStore,
 /// The execution authorises the app to obtain a video stream with audio
 AudioVideoStream,
 /// The execution enables a device that consumes electricity
 ElectricEnergyConsumption,
 /// The execution may cause an explosion
 Explosion,
 /// The execution may cause fire
 FireHazard,
 /// The execution enables a device that consumes gas
 GasConsumption,
 /// The execution authorises the app to get and save information about the
app's energy impact on the device the app runs on
 LogEnergyConsumption,
 /// The execution authorises the app to get and save information about the
app's duration of use
 LogUsageTime,
 /// The execution authorises the app to use payment information and make a
periodic payment
 PaySubscriptionFee,
 /// The execution may cause an interruption in the supply of electricity
 PowerOutage,
 /// The execution may lead to exposure to high voltages
 PowerSurge,
 /// The execution authorises the app to get and save user inputs
 RecordIssuedCommands,
 /// The execution authorises the app to get and save information about the
user's preferences
 RecordUserPreferences,

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 26 of 37

 /// The execution authorises the app to use payment information and make a
payment transaction
 SpendMoney,
 /// The execution may lead to rotten food
 SpoiledFood,
 /// The execution authorises the app to read the display output and take
screenshots of it
 TakeDeviceScreenshots,
 /// The execution authorises the app to use a camera and take photos
 TakePictures,
 /// The execution disables a protection mechanism and unauthorised
individuals may physically enter home
 UnauthorisedPhysicalAccess,
 /// The execution enables a device that consumes water
 WaterConsumption,
 /// The execution allows water usage which may lead to flood
 WaterFlooding,
}

 Labelling for Application Developers

Third-party application developers are provided with a high-level API (SIFIS-Home Developer API)

that abstracts away the Web of Thing details and forces some constraints on what can be represented:

• The device must provide only the set of interaction affordances linked to their category (e.g., a

Lamp must provide an OnOff property)

• The devices are exposed using concrete classes with self-explanatory methods (e.g., Lamp has

a turn_light_on method)

The SIFIS-Home Developer APIs provide a means to search for devices filtering it according to the risk

level and the kind of hazards. A SIFIS-Home Developer API expresses in its documentation the inherent

risks, i.e., the API Label.

/// Turns a light on.
///
/// # Hazards
///
/// * Fire hazard\
/// The execution may cause fire
pub fn turn_light_on(&mut self, brightness: Percentage, color: Rgb) -> Result<()>
{ ... }

Since API Labels are code comments, they can be represented as popup notes that appear as part of an

autocomplete feature in a development tool. This task is nowadays performed by an implementation of

a Language Server Protocol.

Autocomplete, go-to definition or documentation on hover features are usually implemented similarly

for each development tool providing different APIs for the same goal. A Language Server Protocol has

been invented to reduce this attitude by defining a standardized protocol to interact with these

development tools through inter-process communication. The protocol delineates a series of guidelines

to build a server that can be reused in multiple development tools, providing the features described

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 27 of 37

above and supporting various programming languages with minimal effort. Many development tools

implement this protocol, particularly code editors like VS Code, Emacs and Vim.

In SIFIS-Home, an overview of a typical implementation session conducted by a third-party developer

has been performed using rust-analyzer, a Language Server Protocol implementation for the Rust

language, and VS Code as a code editor. Figure 16 shows the autocompletion plug-in in action within

VS Code.

Figure 16: The VS Code plug-in in action. It allows autocompletion of SIFIS-Home Developer APIs and shows the description of a

SIFIS-Home Developer API and its related hazards.

 Labelling for Users

The usefulness of security labels regarding users becomes clear when we reason about applications users

wishes to install onto their smart devices. Indeed, every third-party application includes an App Label,

which is used to notify users of all possible hazards that may arise during execution. Before an

application is installed, a series of application permissions are presented to the user, who can choose

which hazards are permitted and which ones are prohibited.

When a permission is denied, the SIFIS-Home Developer APIs associated with that hazard are disabled

and calling those methods would either request a user interaction, silently fail, or terminate the

application depending on the execution context.

To extract every hazard contained in an application, and thus to create the App Label, a tool called

manifest has been developed in Rust. Figure 17 shows its usage and options printed at the command-

line interface. The manifest tool analyses the binary format of an application to find all SIFIS-Home

Developer APIs contained in it and subsequently discover which are the hazards paired with each

retrieved API. The tool needs only two input parameters: the application binary path and the Library

API labels path.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 28 of 37

Figure 17: manifest command line interface

In particular, the Library API labels path is a JSON file formed by an array of API Labels, including all

the SIFIS-Home Developer APIs contained in a specific version of a SIFIS-Home library. Each API

Label within this file is defined according to the API Label Schema introduced in Section 3.5.1.1 of

D2.2. Note that since new APIs can be added or removed over time, this file is likely to be different for

each version of the SIFIS-Home library.

Below, the content of a Library API labels file is shown. Within the file, an API Label is included for

each SIFIS-Home Developer API. In this oversimplified example, the number of all the SIFIS-Home

Developer APIs defined within the SIFIS-Home library is two.

{
 "version": "0.1",
 "api_labels": [
 {
 "api_name": "turn_light_on",
 "description": "Turns on a lamp.",
 "security_label": {
 "safety": [
 {
 "name": "FIRE_HAZARD",
 "description": "The execution may cause fire."
 }
],
 "privacy": [
 {
 "name": "LOG_ENERGY_CONSUMPTION",
 "description": "The execution allows the app to register information
about energy consumption."
 }
],
 "financial": [
 {
 "name": "ELECTRIC_ENERGY_CONSUMPTION",
 "description": "The execution enables the device to consume further
electricity.",
 "risk_score": 0.8
 }
]
 }
 },
 {

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 29 of 37

 "api_name": "turn_oven_on",
 "description": "Turns on an oven at the last selected temperature.",
 "security_label": {
 "safety": [
 {
 "name": "FIRE_HAZARD",
 "description": "The execution may cause fire."
 },
 {
 "name": "AUDIO_VIDEO_STREAM",
 "description": "The execution authorises the app to obtain a video
stream with audio."
 },
 {
 "name": "POWER_OUTAGE",
 "description": "High instantaneous power. The execution may cause
power outage.",
 "risk_score": 0.8
 }
],
 "privacy": [
 {
 "name": "LOG_ENERGY_CONSUMPTION",
 "description": "The execution allows the app to register information
about energy consumption."
 }
],
 "financial": [
 {
 "name": "ELECTRIC_ENERGY_CONSUMPTION",
 "description": "The execution enables the device to consume further
electricity.",
 "risk_score": 0.8
 }
]
 }
 }
]
}

The tool produces in output a JSON file composed of the array of hazards which might be raised by the

analysed application. Below is an example of an App Label extracted from a binary.

{
 "name": "app_name",
 "description": "app_description",
 "sifis_version": "0.1",
 "api_hazards": [
 {
 "api_name": "turn_light_on",
 "description": "Turns on a lamp.",
 "security_label": {
 "safety": [

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 30 of 37

 {
 "name": "FIRE_HAZARD",
 "description": "The execution may cause fire.",
 "risk_score": null
 }
],
 "privacy": [
 {
 "name": "LOG_ENERGY_CONSUMPTION",
 "description": "The execution allows the app to register information
about energy consumption.",
 "risk_score": null
 }
],
 "financial": [
 {
 "name": "ELECTRIC_ENERGY_CONSUMPTION",
 "description": "The execution enables the device to consume further
electricity.",
 "risk_score": 0.8
 }
]
 }
 }
]
}

As any other software developed in WP2, even this one is subject to the CI checks described in Section

2, in addition to a script for deployment and release.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 31 of 37

4 A Complete Working Example

We focused on WoT and started working with the Webthings.io community, extending their webthings-

rust and webthings-arduino implementations by writing an initial proof of concept of Thing extended

with the SIFIS-Home Hazards ontology.

From this initial experience, we developed a set of separate crates to support the incoming WoT 1.1

standard. We also interacted with the more extensive W3C Web Of Thing community to keep track of

the spec evolution and provide feedback on a few issues we found along the way.

 WoT Implementation in Rust

Figure 18: dependency diagram for the SIFIS-Home Rust framework

We use WoT as a foundation layer and build on top of it an implementation of the SIFIS-Home

framework.

We split the WoT implementation into the following crates:

• wot-td that works on serializing, deserializing and extending the Thing Description in a type-

safe way.

• wot-serve provides the building blocks to implement Servients, initially supporting building

HTTP servients via axum and advertising its existence via multicast dns-sd.

• wot-discovery that provides the components to discover Things in the local network and build

a directory.

Using them, we will reimplement our SIFIS-Home Hazards ontology as an Extension to the Thing

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 32 of 37

Description and build on top of it the high-level SIFIS-Home API described. The full dependency graph

is shown in Figure 18.

During the initial development, we contributed to the following crates, besides the ones mentioned in

Sections 2.4 and 2.5:

• cargo-c to make available the rust crates to other languages so that the sifis crate will be

available as libsifis for the C/C++ consumers.

• mdns-sd used inside wot-discovery and wot-serve to advertise and discover Things.

• derive_bounded to reduce the boilerplate in the wot-td implementation.

• datta an implementation rfc6570 (https://www.rfc-editor.org/rfc/rfc6570).

 Tools in Action

We used sifis-generate to create all the WoT projects, and we refined its Rust template from the

experience of using it in this scenario.

We tried to keep the code coverage above 85%, aiming to stay well above 90% and ensure every pull

request landing is clean of clippy lints (as described in D2.2). All the dependencies do not bring

problems thanks to cargo audit and ensure that our implementation is spec-compliant as much as

possible.

When we had to introduce uritemplate as a dependency, it triggered a good number of warnings, as

shown in Figure 19.

Figure 19: cargo-audit output for uritemplate

https://www.rfc-editor.org/rfc/rfc6570

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 33 of 37

4.2.1 datta

To implement a part of wot-serve, we had to implement a mapping between the uritemplates used in the

WoT Forms and the axum Paths.

The uritemplate would fit our needs, but it is not updated since six years ago with short-winded tries to

update it by other parties, and as shown above, it is showing its age.

4.2.1.1 Shortcomings

• Pre-2018 codebase.

• Plenty of clippy triggers.

• Missing CI.

• Stale dependencies:

o Regex and thread_local faults were caught by cargo audit.

o Since we wanted to test how our sifis-generated CI behaved, we had Miri catch at least

one problem while running the test suite.

4.2.1.2 Mitigation

• Since the original developer is not responsive and the crate is left in full neglect, we created a

full fork of it.

• We made sure to update it to the Rust edition 2021.

• We addressed all the lints clippy found.

• We updated the dependencies, so the cargo audit report is clear.

• We set up the CI using the sifis-generate, as shown in Figure 20.

Figure 20: CI for datta

https://www.rfc-editor.org/rfc/rfc6570
https://www.w3.org/TR/wot-thing-description11/#form-uriVariables
https://docs.rs/axum/latest/axum/extract/struct.Path.html
https://crates.io/crates/uritemplate
https://rust-lang.github.io/rust-clippy/
https://github.com/rust-lang/miri

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 34 of 37

4.2.1.3 Updates and Release

We extended datta API to fit the wot-serve needs, updated documentation and released it with a new

name, as shown in Figure 21.

Figure 21: crates.io for datta (https://crates.io/crates/datta)

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 35 of 37

5 Conclusions and Future Works

In this document, we described the tool released by WP2 at M24. We also provided the reader with

additional information regarding the context in which these tools operate and some practical examples.

All the described tools are released under the MIT license.

This document will also serve as an input for the next deliverable called D2.5 and planned to be

delivered at M30, which will describe the development devoted to:

• Improving the tools described in this document.

• Implementing and releasing the dashboard for Agents that develop SIFIS-Home technologies

described in D2.6 section 7.1.

• Implementing and releasing the license Conflict Mapper that will show possible conflicts among

the software licenses of the software reused in the source code development process.

• Implementing and releasing the software bridges between the SIFIS-Home DHT and the WoT

implementation and continuously refining its components in collaboration with WP5.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 36 of 37

6 References

[TD, 2022] Thing Description (TD) Ontology. URL: https://www.w3.org/2019/wot/td

[SHO, 2022] The SIFIS-Home Hazards Ontology Specification. URL: https://purl.org/sifis/hazards

https://www.w3.org/2019/wot/td

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.3

Version 1.0 Page 37 of 37

Glossary

Acronym Definition

API Application Programming Interface

CI Continuous Integration

CPU Central Processing Unit

GCC GNU Compiler Collection

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

SHO SIFIS-Home Hazards Ontology

SIFIS-Home Secure Interoperable Full-Stack Internet of Things for Smart Home

TD Thing Description

WoT Web of Things

WP Work Package

	Executive Summary
	1 Introduction
	2 Software Lifecycle Tools
	2.1 sifis-generate
	2.1.1 Creating projects

	2.2 Testing projects
	2.2.1 Unit and Integration tests
	2.2.2 Code Coverage

	2.3 Evaluating Code Quality
	2.3.1 Additional quality checks
	2.3.2 Evaluating Software Quality

	2.4 Memory fault analysis
	2.4.1 C/C++
	2.4.2 Rust

	2.5 Weighted Code Coverage
	2.6 Project Deployment

	3 API Labelling Tools
	3.1 The SIFIS-Home Hazards Ontology
	3.2 Ontology Translation into Different Programming Languages
	3.3 Labelling for Application Developers
	3.4 Labelling for Users

	4 A Complete Working Example
	4.1 WoT Implementation in Rust
	4.2 Tools in Action
	4.2.1 datta
	4.2.1.1 Shortcomings
	4.2.1.2 Mitigation
	4.2.1.3 Updates and Release

	5 Conclusions and Future Works
	6 References
	Glossary

