
H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

D2.1

Report on Security and Privacy Metrics

WP2 – Guidelines and Procedure for

System and Software Security and

Legal Compliance

Due date of deliverable: 31/03/2021

Actual submission date: 30/03/2021

Responsible partner: POL

Editor: Luca Ardito

 E-mail address: luca.ardito@polito.it

28/03/2021

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Framework

Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-HOME Project is supported by funding under the Horizon 2020 Framework

program of the European Commission SU-ICT-02-2020 GA 952652

SIFIS-HOME
Secure Interoperable Full-Stack Internet of Things for Smart

Home

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Authors: Luca Ardito (POL), Luca Barbato (LUM), Marco Ciurcina (POL), Giacomo Conti

(POL), Andrea Saracino (CNR), Michele Valsesia (POL)

Approved by: Marco Tiloca (RISE), Domenico De Guglielmo (MIND)

Revision History

Version Date Name Partner Section

Affected

Comments
0.1 18/12/2020 Tentative ToC and contents POL, LUM, CNR All

0.2 12/01/2021 Added software quality

metrics

POL Section 2

0.3 26/01/2021 Added security metrics CNR Section 3

0.4 26/01/2021 Added tools for gathering

quality metrics

LUM Section 2

0.5 28/02/2021 Added privacy metrics POL Section 3

1.0 02/03/2021 Ready for internal review POL, LUM, CNR All

1.1 18/03/2021 Changes after internal

review

POL, LUM, CNR All

1.2 29/03/2021 Ready for submission CNR All

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Executive Summary

This document reports the theoretical and practical aspects of measuring the quality and security of

source code produced in the SIFIS-Home project or by third-party developers developing apps expected

to run on the SIFIS-Home framework.

The document is intended to provide a baseline for the definition of secure coding guidelines, which

will be reported in D2.2 and D2.4. We will review here the main techniques and formalisms to evaluate

the quality and reliability for general software, discussing how these measures are relevant for

applications developed for the SIFIS-Home framework, presenting at first general quality metrics and

then focusing on security and privacy-related indexes, as they are defined in the literature.

A subset of these metrics will also be used by the mechanisms to evaluate the quality and security of

SIFIS-Home applications provided by third-party developers through the tools for evaluating the

software defined in D2.3 and D2.5.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Table of contents

Executive Summary ... 3

1 Introduction ... 5

2 Software Quality Assessment ... 8

 Functional Requirements ... 8
2.1.1 Documentation ... 8

2.1.2 Behavior ... 8

 Non-functional Requirements .. 9
2.2.1 Static Code Analysis .. 10

2.2.2 Dynamic Code Analysis .. 11

2.2.3 Code Coverage ... 13

2.2.4 Code Clarity ... 14

3 Security and Privacy Assessment Metrics .. 19

 Code Security Metrics .. 19
3.1.1 Stall Ratio... 20

3.1.2 Coupling Corruption Propagation .. 20

3.1.3 Critical Element Ratio .. 20

 Object Oriented Specific Security Metrics .. 20
3.2.1 Information Flow and Data Accessibility .. 20

3.2.2 Unhandled exceptions .. 23

 Vulnerability Assessment .. 23
3.3.1 Common Weakness Enumeration (CWE) ... 23

3.3.2 Common Vulnerability Scoring System (CVSS) .. 23

3.3.3 Common Misuse Scoring System (CMSS).. 24

 Privacy Assessment Metrics .. 24

4 Conclusion .. 26

5 References ... 26

Annex A: Glossary ... 29

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 5 of 30

1 Introduction

Software Engineering has always been devoted to the issue of program quality, which, by definition, is

seen as the extent to which a product meets a certain number of expectations concerning both its

operation and its internal structure.

A more precise definition of code quality has been illustrated by [Kothapalli 2011]: the source code’s

ability to meet the stated and implied requirements for a given software project.

Software measurement is a process that assesses the manifestation of the size, quantity, amount, or

dimension of particular attributes of a software product.

In the literature, parameters have been established against which software quality can be measured or

defined. These are divided into two broad categories: external parameters, which refer to how end-users

perceive the program, and internal parameters, which refer to how developers perceive software quality.

Internal parameters can be classified as follows:

• Testability: a software is defined as testable if its correctness and reliability properties are easily

verifiable, i.e., if it effortlessly reveals its failures.

• Maintainability: the ability of a program to be modified. These modifications include

corrections or adaptations of the system to changes in requirements, environments, and

specifications. It includes the properties of:

o Repairability: ease of eliminating defects and

o Evolvability, ease of modifying the program to adapt it to a new environment or improve

its quality.

• Reusability: the ability to reuse a piece of software in creating another program, in the case of

minor modifications.

• Portability: the ability of the system to run on different hardware and software platforms. This

parameter is facilitated by modular design.

• Readability: a software is defined as readable if there is an ease in understanding the reading

of the code and its organization and implementation.

• Modularity: useful to measure how many modules that compose a software artifact. Modules

are portions of source code containing instructions written to be reused multiple times in the

same program.

External parameters can be classified as follows [McConnell 2004]:

• Correctness: The degree to which a system is free from faults in its specification, design, and

implementation.

• Usability: The ease with which users can learn and use a system.

• Efficiency Minimal use of system resources, including memory and execution time.

• Reliability: A system’s ability to perform its required functions under stated conditions

whenever required having a long mean time between failures.

• Integrity: The degree to which a system prevents unauthorized or improper access to its

programs and data. The idea of integrity includes restricting unauthorized user accesses and

ensuring that data is accessed properly—that is, that tables with parallel data are modified in

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 6 of 30

parallel, that date fields contain only valid dates, and so on.

• Adaptability: The extent to which a system can be used, without modification, in applications

or environments other than those for which it was specifically designed.

• Accuracy: The degree to which a system, as built, is free from error, especially with respect to

quantitative outputs. Accuracy differs from correctness; it is a determination of how well a

system does the job it’s built for rather than whether it was built correctly.

• Robustness: The degree to which a system continues to function in the presence of invalid

inputs or stressful environmental conditions.

Figure 1 Software Parameters

In this work, the interest is focused on internal parameters since the final goal is strictly related to the

developers’ point of view and not to the users’.

The external parameters are strongly related to the internal parameters:

• Correctness, Reliability, Accuracy, Integrity and Robustness are correlated to Testability,

Maintainability and Readability.

• Adaptability and Usability are correlated to Modularity and Portability.

One of first the factors that can compromise a program comprehension is code readability. When a

source code is hard to read, it is not easy to understand its flow and side effects. Poorly written code

leads developers to introduce new bugs when fixing old bugs or adding new features. Readability

measures the effort of the developer to access the information contained in the code. In contrast,

understandability measures the complexity of such information [Nayrolles 2018]. However, code

maintainability is the most critical part of software development. Being highly maintainable is the key

to reducing approximately 75% of most systems’ life cycle costs [Welker 2001].

The IEEE Standard Glossary of Software Engineering Terminology defines software maintainability as

the ease with which a software system or component can be modified to correct errors, improve

performance or other attributes, or adapt to a changing environment.

Furthermore, according to the ISO standard IEC 9126, software follows the evolution of the

organization, meaning that the program must adapt to all the boundary characteristics present in its

development (environment, requirements, functionality).

Also, according to the ISO standard IEC 9126, the maintainability of the code has some attributes that

allow its description entirely:

• Analyzability: ability to perform diagnosis on the software and identify the causes of errors and

malfunctions.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 7 of 30

• Changeability: ability to allow the development of changes to the original software.

Implementation includes changes to code, design, and documentation.

• Stability: ability to avoid unwanted effects as a result of changes to the software.

• Testability: the ability to enable verification and validation of modified software, in other

words, to perform testing.

• Maintainability compliance: ability to adhere to standards and conventions related to

maintainability.

Software Engineering has dealt extensively with finding applicable models to measure the

maintainability of software source code during its lifecycle. Through these models, it is possible to

measure the source code’s maintainability after any change to the code, checking whether the

maintainability improves or worsens.

Over the years, it has been shown that measuring and improving code maintainability is very useful for

managing technical debt; a definition used to describe all the complications that arise during the

development of a software project [Cunningham 1992] . Besides, another more recent study has shown

that analysis and measurement of source code maintainability are still the main methods used for the

management of technical debt [Ernst 2015].

Software quality management is becoming a topic of absolute necessity as systems over the years are

evolving in complexity and size. Using effective programs or tools to maintain them is critical for

developers during the software lifecycle.

There are several types of tools in the literature that can be used to improve software quality [Krishnan

2007]:

• Static Analysis Tools: are useful for examining problems based on code analysis, such as the

use of uninitialized variables, the possibility of memory leaks, dereferencing of null pointers.

• UT Tools: allows performing Unit Testing of the source code.

• Memory Leak Detection Tools: detect possible memory leaks at runtime.

• Code Browsing/Reverse Engineering Tools: help with code understanding so that

improvements and troubleshooting can be applied appropriately.

• Profiling Tools: help understand and monitor performance aspects of the code.

• Coverage Tools: highlight which test cases cover parts of the code run to ensure test quality.

Software Quality is an aspect that has fundamental importance within the SIFIS-Home project together

with Security and Privacy.

The purpose of this document is providing the theoretical and practical aspects of measuring the quality

and security of source code produced in the SIFIS-Home project or by third-party developers developing

apps expected to run on the SIFIS-Home framework.

SIFIS-Home will provide developers with software verification and evaluation tools to assess and

communicate the overall quality of source code and produced applications to end-users in a user-friendly

way.

SIFIS-Home developer must also consider software-based security metrics that aim to detect

programming practices that might introduce, either by mistake or maliciously, dangerous behaviors or

exploitable vulnerabilities.

In addition to that, a SIFIS-Home developer needs to evaluate a set of regulations and related measures

to analyze privacy implications based on data management strategies.

Through these mechanisms, the SIFIS-Home project pushes developers to implement applications

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 8 of 30

according to their best security and quality criteria, building over time a reputation score aimed at

winning end-user trust.

2 Software Quality Assessment

Software Quality Assessment consists of several methodologies to evaluate the quality of various aspects

and behavior of software through an assessment model. An assessment model contains quality criteria

with straightforward methods to assess each quality criterion. The assessment method is often a

mathematical model which aggregates product metrics to quality factors [Yan 2019].

Deissenboeck et al. in [Deissenboeck 2011] presented a toolchain for supporting, creating, and editing

quality models and conducting automated quality assessments.

The software can be considered adequate if it satisfies its requirements.

The requirements can be grouped into functional requirements and non-functional requirements.

With functional requirements, we consider all the requirements specific to a given application.

With non-functional requirements we consider the primary attributes common in all software,

notwithstanding their specific behavior and design.

Most of the non-functional requirements can be evaluated by automatic means. Tools can be used to

produce reports and metrics with little to no human interaction.

A good deal of functional requirements cannot be automatically assessed and requires dedicated

professional insights to be confirmed. The approach of declaring capabilities and another form of

software contract allows some automatic assessment of the intended behavior.

The focus of the project WP2 is providing tools to automate the software assessment in order to

minimize the effort of maximizing the software quality.

We will better describe a series of tools adopted in this project in deliverable D2.3 and D2.5.

 Functional Requirements

Even if assessing functional requirements is generally a manual process that often requires domain

expertise, there are few opportunities for automation.

2.1.1 Documentation

It is not generally possible to ensure that the user documentation is in sync with the software itself

without having developers and Quality Assurance experts cross-checking manually.

The developer documentation, though, can have a partial automatic assessment. While human

intervention is needed to confirm that the documentation is in sync, it is easy to detect where the

documentation is missing completely and make so that new code with no documentation is not accepted.

2.1.2 Behavior

2.1.2.1 Testing

Unit and integration testing are a widespread alternative to the more formal and cumbersome design by

contract. Both allow some automatic verification of the software behavior.

In both cases, writing the tests requires a creative effort, but running the tests in a proper

Continuous Integration environment does not require further human effort.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 9 of 30

2.1.2.2 Sandboxing

Some platforms provide means to restrict the application to use the least amount of privileges; this is an

easy and practical means to ensure that the application cannot misbehave.

iOS capabilities and Android Manifest Permission are good examples; macOS Gatekeeper, on the other

hand, is a good case study on how badly set restrictions may cause more problems than the ones they

are supposed to solve.

 Non-functional Requirements

The most critical non-functional requirement is maintainability.

Software maintainability is defined as the ease of maintaining software during the delivery of its

releases. Maintainability is defined by the ISO 9126 standard as

The ability to identify and fix a fault within a software component [ISO9126 1991] and by the ISO/IEC

25010:2011 standard as degree of effectiveness and efficiency with which a product or system can be

modified by the intended maintainers [ISO/IEC2510 2011].

Maintainability is an integrated software measure that encompasses code characteristics, such as

readability, documentation quality, simplicity, and understandability of source code [Krishan 2002].

Maintainability is also a crucial factor in the economic success of software products. It is commonly

accepted in the literature that the most considerable cost associated with any software product over its

lifetime is the maintenance cost [Zhou 2007]. The maintenance cost is influenced by many different

factors, e.g., the necessity for code fixing, code enhancements, the addition of new features, poor code

quality, and the subsequent need for refactoring operations [Lekshmi 2020].

The aspects of maintainability we focus on are the following:

• Code analysis: defect detection through static and dynamic code analysis.

• Code coverage: test coverage measurement and maximization through profiling.

• Code understandability: assessed through objective metrics

The three aspects are complementary to each other:

• maximizing the test coverage improves the results of the dynamic code analysis

• the computation of most of the understandability objective metrics is few orders of magnitude

simpler than most of the static code analysis algorithms used to detect defects. Running the

latter in the subset of the codebase deemed hard to understand by the former can provide useful

results in a fraction of the time required to run the analysis over the full codebase corpus.

There are many valid models in the literature for measuring source code maintainability:

• The authors of [Aggarwal 2002] proposed a model based on three main characteristics: code

readability (RSC), documentation quality (DOQ), and software understandability (UOS). The

measures that are computed are transformed into fuzzy values, which will be processed and

retransformed by domain experts.

• [Antonellis 2007] started from the characteristics of the ISO/IEC 9126 standard to propose a

model for mapping object-oriented metrics in order to evaluate and measure the maintainability

of a software system. This method has been applied to an OSS-type software, demonstrating

the possibility to measure code maintainability through a systematic process.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 10 of 30

• SIG Maintainability Model (SIG-MM): this model involves linking system-level

maintainability characteristics with code-level measures in two steps. In the first pass, system-

level characteristics are mapped to source code-level properties. In the second, one or more

source code measures are determined for each property [Heitlager 2007].

• A probabilistic approach was adopted by [Bakota 2011] for high-level computing features by

integrating expert knowledge while addressing ambiguity. The value of code maintainability is

viewed as a probability distribution.

• SQUALE: this method is based on Indices, representing costs for evaluating various aspects of

source code quality. There are two different models in the method: the Quality Model used to

formulate and organize the non-functional requirements related to code quality, and the

Analysis Model which contains both the rules that are used to normalize the measures and

violations related to the code and the rules for aggregating the normalized values [Letouzey

2012].

• QUAMOCO: This approach involves the development of a meta-model for software quality

that starts from structuring quality-related concepts to defining the operational methods for

assessing its fulfillment in a specific environment. Also, an evaluation method is provided to

integrate with the previous meta-model. This approach is used for integrating the abstract

quality definitions provided in the quality taxonomies with concrete software quality

assessment and measurement techniques [Wagner 2012].

• [Bauer 2012] proposed an alternative approach to the others analyzed so far, which involves

using a framework that fits the needs of incremental quality and maintainability checks on the

source code. This allows the incremental and distributed computation of quality metrics useful

for software quality assessment and measurement, including both local and global metrics in

the calculations.

• Delta Maintainability Model (DMM): this model measures the maintainability of a code change

as a ratio of low-risk code to overall modified code. It also identifies source code risk factors

by reusing software metrics and risk profiles from the SIG-MM, applying new aggregation and

scoring for software delta metrics at the level of fine-grained code changes, such as commits

or pull requests, instead of aggregating at the system level [Di Biase 2019].

2.2.1 Static Code Analysis

Static code analysis analyzes the code of computer software. It is usually performed without executing

the relative program, in contrast with dynamic analysis, which is an analysis performed on programs

while they are in execution. [Egele 2008] [Wichmann 1995]

Static analysis is mainly adopted by the industry for quality assurance purposes [Wichmann 1995]. It is

typically used in safety-critical computer systems to locate potentially unsafe and insecure code

[Livshits 2006].

Many industries have identified the use of static code analysis as a means of improving the quality of

increasingly sophisticated and complex software:

• Medical software

• Nuclear software

• Aviation software

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 11 of 30

• Automotive & Machines

Automatic tools usually perform this analysis, and the produced results are then supervised through

human intervention since the analysis may find false positives.

The semantics of a language strongly influences program analysis. The strength of the analysis may

well depend on subtle features of the language, so it is fundamental to define a programming language

in the most accurate way [Wichmann 1995]. Indeed, dynamic languages are more challenging to analyze

than languages that include, for example, strong typing and range constraints. Hence, the nature of the

input language needs to be taken into account in the static analysis specification to be undertaken.

The information obtained from the analysis of a code can be used just to highlight errors or define formal

methods to mathematically prove whether the behavior of a code matches its specification.

In the sections below, we will present a series of open source and closed source solutions currently used

in the academic and industrial worlds.

2.2.1.1 Open-Source Solutions

Open-source solutions can be particularly useful since they can be extended to support new platforms

without the original authors’ involvement, and they are not tied to a specific vendor. They may have a

quite varying level of maturity. Below we provide some examples:

• Clang Static Analyzer: It leverages the clang parsers to perform static analysis over the

languages supported by clang itself. It provides a detailed HTML report or provides the report

within the IDE.

• GCC -fanalyze: It produces extended diagnostic messages and some GraphViz-compatible

diagrams. As per GCC 10, it is in its infancy and under heavy development. Only C is currently

supported.

• Infer: Infer is a static analysis tool developed by Facebook and written in the Ocaml

programming language. It supports C, C++, objC, and Java. It offers integration with build-

systems and provides reports in textual/diagnostic form, HTML, and JSON.

2.2.1.2 Proprietary Solutions

Proprietary solutions tend to be more feature-rich and more polished, and they offer extended support

to their customers. It may be challenging to have them adopted and extended for specific needs. Below

we provide some examples:

• PVS-Studio: It is a set of tools to run the on-premise static analysis. It has integrations for build-

systems, IDEs, and Continuous Integration systems.

• Coverity Scan: It is an analysis as-service platform. It requires running a local scanner tool and

then uploading its payload to run the remote platform’s analysis. It supports out-of-box GitHub

and Travis-CI.

• LGTM: It is a code analysis platform similar to Coverity Scan. It has better integrations with

source hosting platforms such as GitHub. It offers a specific query language to dig deeper in the

codebases and find structural similarities.

2.2.2 Dynamic Code Analysis

https://clang.llvm.org/docs/ClangStaticAnalyzer.html
https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
http://fbinfer.com/
https://www.viva64.com/en/pvs-studio/
https://scan.coverity.com/
https://lgtm.com/

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 12 of 30

A Dynamic code analysis evaluates the code. In contrast, it is being executed, either by using specifically

instrumented builds or by running unmodified code through special runtimes.

Differently, from a static analysis that is more focused on a software system’s structural aspects, a

dynamic analysis is more interested in detecting the behavioral aspects of a system.

Furthermore, a dynamic analysis provides more precise measures of the internal attributes of software,

such as coupling, complexity, etc., based on the data collected during actual execution of the system,

which have direct impact on quality factors of a software such as reliability, testability, maintainability,

performance, and error-rates.

Below we present a simple comparative table to illustrate the differences between the metrics produced

by static and dynamic analysis [Kumar 2010].

Static Metrics Dynamic Metrics

Simpler to collect Difficult to obtain

Available at the early stages of software development Accessible very late in software

development lifecycle

Less accurate than dynamic metrics in measuring

qualitative attributes of software

Suitable for measuring quantitative as

well as qualitative attributes of software

Deal with the structural aspects of the software system Deal with the behavioral aspects of the

system also

Inefficient to deal with object-oriented features such as

inheritance, polymorphism, and dynamic binding

Dynamic metrics are capable of dealing

with all object-oriented features

Less precise than dynamic metrics for the real-life

systems

More precise than static metrics for the

real-life systems

Table 1 Static and dynamic metrics comparison

Below we present a series of tools that can be used to obtain some dynamic metrics about software:

• Valgrind: It allows running unmodified binaries. It dynamically recompiles the binary as it runs

on a simulation of the host CPU. The process tends to be slower than executing a custom binary

with the instrumentation logic built-in. It requires platform-specific support, making it

supporting new processors and operating systems more involving.

• DynamoRIO: It uses an approach similar to Valgrind, but it focuses on providing building blocks

instead of a toolkit of ready-to-use tools.

• AddressSanitizer and MemorySanitizer: Introduced in LLVM and ported to GCC, they are a

form of instrumentation and thus bound to a specific compiler and a set of helper libraries. They

offer better execution speed, and their integration with debuggers such as GDB or RR makes

them a good alternative to Valgrind.

• Miri: Miri is a specific tool to instrument and analyze the middle-level intermediate language

currently used by Rust. It instruments the code and runs it on a generic platform abstraction

https://www.valgrind.org/
https://github.com/DynamoRIO/dynamorio
https://github.com/google/sanitizers
https://clang.llvm.org/docs/AddressSanitizer.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://www.gnu.org/software/gdb/
https://rr-project.org/
https://github.com/rust-lang/miri/

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 13 of 30

2.2.3 Code Coverage

Coverage test is a measure used to describe the degree to which a program’s source code is executed

when a particular test suite runs. A program with high test coverage, measured as a percentage, has had

more of its source code executed during testing, suggesting it has a lower chance of containing

undetected software bugs than a program with low test coverage.

Basic coverage criteria:

• Function coverage

• Statement coverage

• Edge coverage

• Branch coverage

• Condition coverage (or predicate coverage)

Mutation and Fuzz Testing can be used for improving the effectiveness of software test cases and the

coverage.

In Mutation Testing, some source code statements are changed (mutated) to check if the test cases can

find errors in the source code. Mutation Testing aims to ensure the quality of test cases in terms of

robustness that it should fail the mutated source code. Mutation Testing can be applied to many domains,

including IoT. Parveen et al. [Parveen 2020] presented an automated framework that applies the

mutation testing paradigm in the domain of IoT (Internet of things) apps.

Fuzz Testing is a software testing technique of putting invalid or random data (called FUZZ) into a

software system to discover coding errors and security loopholes. The purpose of fuzz testing is inserting

data using automated or semi-automated techniques and testing the system for various exceptions like

system crashing or failure of built-in code. As described by Kumar et al. in [Kumar 2013] fuzzy

techniques aim to reduce the number of test cases so that it is possible to achieve more efficient and

accurate results. Fuzzy clustering is a class of algorithms for cluster analysis. The allocation of similar

test cases is done to clusters that would help find out redundancy incorporated by test cases.

Code coverage tools’ popularity and usage strictly depend on the language they support. Most code-

coverage approaches rely on the running code’s specific instrumentation; few rely on the normal debug

information and runtime capabilities.

Here we present some examples of the most common ones.

• JACOCO: JaCoCo provides technology for code coverage analysis in Java VM-based

environments. The focus is on providing a library for integration with various build and

development tools.

• Coverage: Coverage is a tool for measuring code coverage of Python programs. It monitors a

python program showing which parts of the code have been executed, then analyzes the source

to identify code that could have been executed but was not.

• gcov and llvm-cov: Compiler-specific tool to extract coverage information from binaries

compiled with the profiling harness (e.g. -fprofile-arcs -ftest-coverage).

• lcov: Aggregates the coverage information generated by the gcov family of tools and produces

reports in machine-parsable and human-readable formats.

• kcov: Relies on the DWARF debugging information and the platform-specific debug capabilities

(e.g. ptrace) to extract coverage information from non-instrumented binaries.

https://www.jacoco.org/
https://coverage.readthedocs.io/en/coverage-5.5/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://llvm.org/docs/CommandGuide/llvm-cov.html
https://github.com/linux-test-project/lcov
https://github.com/SimonKagstrom/kcov

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 14 of 30

• GCOVR and GRCOV: They collect and aggregate the coverage information provided by other

tools. Both tools retain compatibility with lcov but support additional input and output formats.

2.2.4 Code Clarity

Code Clarity is clearness or lucidity as to perception or understanding of a code, freedom from

indistinctness or ambiguity.1

The main goal consists of maximizing the amount of understanding conveyed in how a code is written,

which needs to be easy to read, understand, and modify. Achieving clarity is about so much more than

proper indentation. It requires code to be organized well, with careful planning and proper separation.

This concept impacts code maintainability also. Indeed, poorly written code can mean months of

development later, while well written code can mean merely minutes or hours of maintenance in the

future.

Code clarity can be evaluated through different standards and measures. As standards, we can consider

the rules related to naming conventions and those that attempt to regulate the use of white spaces, so

where comments, spaces, and braces should be put within a code.

Naming is important because it affects the readability of a code and the ease with which that code can

be understood when it needs to be reviewed. Naming conventions are not meant to help the compiler or

an interpreter. Indeed, a compiler or an interpreter has no trouble distinguishing names, no matter how

long, short they are. However, a good name could help humans to get through a code in an easier way.

If a compiler or an interpreter does not consider at all the adopted naming convention, it considers even

less the use of white spaces. There is a difference between the two, however. Formatting choices are

relatively easy to change using a specific tool. At the same time, it is much harder to change a program

to adhere to a different naming convention than the one the original programmer used, assuming, of

course, one was used in the first place.

The names adopted by functions and identifiers impact the code clarity. However, it would be hard to

capture this simple fact into a single rule or a simple naming convention that could be applied uniformly

to all source codes. It comes down to the programmer’s judgment whether a verb or a noun best captures

the intent of a function.

An observed pattern states that very long names are pretty rare, while short names are best used for

things that do not require much attention [Holzmann 2016].

For what concerns the approaches to evaluate the clarity of a code2, three of them have been created

over the time:

• Command-query separation

• Loose coupling

• High Cohesion

Except for the Command-query separation, the other ones can be applied only on object-oriented

languages since they mainly focus on classes. We will explore in the following deliverables whether

those kinds of approaches can also be applied to trait-based languages like Rust.

2.2.4.1 Command-query separation

Command-query separation provides a basis for safeguarding a code against unintended side effects

1 https://gorails.com/blog/why-you-should-focus-on-writing-code-with-clarity Last visited 22/01/2021
2 https://alistapart.com/article/coding-with-clarity/ Last visited 22/01/2021

https://gcovr.com/en/stable/
https://github.com/mozilla/grcov

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 15 of 30

when functions are called. Functions can be commands, which perform an action, and queries, which

answer a question. A function should not be both of them simultaneously.

Thus, a query function answers a specific question returning a determined value, without altering the

data state. Conversely, a command function runs a command which alters the data state, but it does not

return any value. For maximum clarity, a function should never both return a value and alter the data

state.

This kind of separation clearly reflects the intent and prevents errors. As functions and code bases

become large, command-query separation becomes much more important, as hunting for the function

definition to find out what it does is not an efficient use of time.

2.2.4.2 Loose Coupling

Coupling is a measure of how much one program unit relies on others. Too much coupling (or tight

coupling) is rigid and should be avoided, so a code needs to be flexible enough to cover a wide variety

of use cases.

Tight coupling consists of copying and pasting code, making minor changes to it, or rewriting code

because it has been changed somewhere else in the codebase. This behavior is most prevalent in a group

of functions and variables which could be better represented as a class. So when there are problems with

inter-dependencies among functions, it is probably appropriate to break functions into a new class.

It is common for a developer to have either to use an excessive amount of function parameters or to

create multiple copies of each function with the variables as hard-coded.

The problem above could be solved by using the loose coupling approach, which generally results in

much greater clarity. It consists of breaking up the functions and variables into a reusable class. This

results in fewer functions, with the variables stored only in one place, thus making updates much easier

to perform.

Nevertheless, the tight coupling can also be present when a specific class needs to be modified because

another one has changed. This usually happens when a class depends on methods or properties taken

from other classes. For example, in order to not break the code when new parameters are added to a

class, a loose coupling way could be passing the constructor parameters as an object with the receiving

object having fallback default values.

Good code should be built as a series of independent blocks which are easily connectable with one

another, rather than a series of intertwined pieces.

2.2.4.3 High Cohesion

Cohesion is a measure of how much the various program units belong together. A high level of cohesion

is good and adds clarity to code blocks. Instead, a low level of cohesion is bad and leads to much

confusion. Functions and methods in a code block should make sense together, in practice having a high

level of cohesion.

High cohesion means keeping related things together and “close” to each other. For example, this means

keeping database functions or functions related to a particular element in a same block or module. This

helps not only with understanding how such things are laid out and where to find them, but also with

preventing naming conflicts. If there are 30 functions, conflicting name chances are far greater than

when there are 30 methods split over four classes.

If two or three functions use the same variables, they belong together. For example, a series of functions

and variables that control a page element, like a slider, represents an excellent opportunity for high

cohesion. It is possible to bundle them up into an object.

Repeated code is a sure sign of low cohesion. Similar lines of code should be broken into functions, and

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 16 of 30

similar functions should be broken into classes. The rule of thumb here is that a line of code should

never be repeated twice. This is not always possible in practice, but it is always a good thing to think

about how to cut down on repetition.

Similarly, the same bit of data should not exist in more than one variable. If the same bit of data is

defined in multiple places, it is better to group it into a class. Alternatively, when references to the same

element need to be passed to multiple functions, that reference should probably be a property in a class

instance.

To further increase cohesion, objects can even be put inside other objects. Conversely, unrelated things

should not be together in the same class. If multiple methods in a class do not use properties, this can

be a sign of low or bad cohesion. Similarly, if methods cannot be reused in a few different situations, or

if a method is not used at all, this can also be a sign of low or bad cohesion.

High cohesion helps alleviate tight coupling, and tight coupling is a sign that greater cohesion is needed.

If the two ever come into conflict, though, choose cohesion. High cohesion is generally a greater help

to the developer than loose coupling, although both can usually be accomplished together.

2.2.4.4 Code Maintainability

Code maintainability comprehends a series of different metrics to evaluate many aspects related to the

maintainability of a code.

One of them is the verbosity and it is usually considered in terms of the number of code lines in a source

file:

• SLOC: Source Lines of Code. It returns the total number of lines in a file.

• PLOC: Physical Lines of Code. It returns the number of instructions and comment lines in a

file.

• LLOC: Logical Lines of Code. It returns the number of logical lines (statements) in a file.

• CLOC: Comment Lines of Code. It returns the number of comment lines in a file.

• BLANK: Blank Lines of Code. It returns the number of blank lines in a file.

The rationale behind using multiple measurements for the lines of code can be motivated by the need to

measure different facets of the size of code artifacts and the relevance and content of the lines of code.

The measurement of physical lines of code (PLOC) does not consider blank lines or comments,

however, the count depends on the physical format of the statements and programming style since

multiple PLOC can concur to form a single logical statement of the source code. PLOC are sensitive to

logically irrelevant formatting and style conventions, while LLOC are less sensitive to these aspects

[Nguyen 2007].

In addition to that, the CLOC and BLANK measurements allow a finer analysis of the amount of

documentation (in terms of used APIs and explanation of complex parts of algorithms) and formatting

of a source file.

Another aspect is how a code is structured, so how the structure of a source code is analyzed in terms

of the properties and functions that compose the source files. To that end, three metrics have been

adopted:

• NOM: Number of Methods. It counts the number of methods in a file.

• NARGS: Number of Arguments. It counts the number of arguments of each method in a file.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 17 of 30

• NEXITS: Number of Exit Points. It counts the number of exit points of each method in a file.

Nargs and Nexits are intuitively linked with the easiness in reading and interpreting a source code: a

function with a high number of arguments can be more complex to analyze because of a higher number

of possible paths, while a function with many exits may include higher complexity in reading the code

for performing maintenance efforts.

To evaluate the complexity of a code, we have identified the following metrics:

• CC: McCabe’s Cyclomatic Complexity. It calculates the code complexity by examining the

control flow of a program.

• COGNITIVE: Cognitive Complexity. It is a measure which accurately reflects the relative

difficulty of understanding, and therefore of maintaining methods, classes, and applications

[Campbell 2018].

• Halstead: It calculates the Halstead suite. The Halstead Suite, a set of quantitative complexity

measures originally defined by Maurice Halstead, is one of the most popular static code metrics

available in the literature [Hariprasad 2017].

The details about the computation of all operands and operators are described in the table below:

Symbol Description

𝜂1 Number of distinct operators

𝜂2 Number of distinct operands

𝑁1 Total number of occurrences of operators

𝑁2 Total number of occurrences of operands

Table 2 Halstead operators and operands

While this other table contains all the remaining metrics of the Halstead Suite computed from the

operators and operands presented above:

Measure Symbol Formula

Program length 𝑁 𝑁 = 𝑁1 + 𝑁2

Program vocabulary 𝜂 𝜂 = 𝜂1 + 𝜂2

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 18 of 30

Volume 𝑉 𝑉 = 𝑁 ∗ 𝑙𝑜𝑔2(𝜂)

Difficulty 𝐷 𝐷 = 𝜂1/2 ∗ 𝑁2/𝜂2

Program Level 𝐿 𝐿 = 1/𝐷

Effort 𝐸 𝐸 = 𝐷 ∗ 𝑉

Estimated Program Length 𝐻 𝐻 = 𝜂1 ∗ 𝑙𝑜𝑔2(𝜂1) + 𝜂2 ∗ 𝑙𝑜𝑔2(𝜂2)

Time required to program (in seconds) 𝑇 𝑇 = 𝐸/18

Number of delivered bugs 𝐵 𝐵 = 𝐸2/3/3000

Purity Ratio 𝑃𝑅 𝑃𝑅 = 𝐻/𝑁

Table 3 Halstead formulas

Finally, we overview a metric to provide a single index of maintainability for software.

• Maintainability Index (MI): It is a composite metric to measure the maintainability of a source

code [Oman 1992]. It is calculated both on files and functions.

Three distinct variants of this metric are considered. The original formula [Oman 1992], the one defined

by the Software Engineering Institute (SEI) and promoted in the C4 Software Technology Reference

Guide [Bray 1997], and finally the variant implemented for the Visual Studio IDE [Microsoft 2011].

The SEI formula adds to the original formula a specific treatment for the comments in the source code

(i.e., the CLOC metric). Research is deemed more appropriate, given that the comments present in a

source code can be considered correct and appropriate [Welker 2001].

Instead, the last formula resettles the MI value in the 0-100 range, without considering the distinction

between CLOC and SLOC operated by the SEI formula [Molnar 2017].

The respective formulas are reported in the table below.

Variant Formula

Original 171.0 − 5.2 ∗ 𝑙𝑛(𝑉) − 0.23 ∗ 𝐶𝐶 − 16.2 ∗ 𝑙𝑛(𝑆𝐿𝑂𝐶)

SEI 171.0 − 5.2 ∗ 𝑙𝑜𝑔2(𝑉) − 0.23 ∗ 𝐶𝐶 − 16.2 ∗ 𝑙𝑜𝑔2(𝑆𝐿𝑂𝐶) + 50.0

∗ 𝑠𝑖𝑛(√2.4 ∗ (𝐶𝐿𝑂𝐶/𝑆𝐿𝑂𝐶))

VS max(0, (171 − 5.2 ∗ 𝑙𝑛(𝑉) − 0.23 ∗ 𝐶𝐶 − 16.2 ∗ 𝑙𝑛(𝑆𝐿𝑂𝐶)) ∗ 100/171)

Table 4 MI formulas

The measured MI interpretation varies according to the adopted formula to compute it, below the ranges

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 19 of 30

for each of them.

Variant Low Maintainability Medium Maintainability High Maintainability

Original 𝑀𝐼 < 65 65 < 𝑀𝐼 < 85 𝑀𝐼 > 85

SEI 𝑀𝐼 < 65 65 < 𝑀𝐼 < 85 𝑀𝐼 > 85

VS 𝑀𝐼 < 10 10 < 𝑀𝐼 < 20 𝑀𝐼 > 20

Table 5 MI interpretations

For the original and the SEI formulas of the MI, a value over 85 indicates an easily maintainable code.

A value between 65 and 85 indicates average maintainability for the analyzed code. In contrast, a value

under 65 indicates hardly maintainable code. The original and SEI formulas can also assume negative

values. With the Visual Studio formula, the thresholds for medium and high maintainability are moved

respectively to 10 and 20.

3 Security and Privacy Assessment Metrics

Unlike software quality assessment, security metrics are a far more recent field of study. The research

community has started proposing objective measures to identify those pieces of code showing critical

security issues. Many security metrics and standards have been proposed [Common 2017]. They are in

use to measure the security and resilience of IT and software systems. WP2 is focused on providing

metrics and tools to support SIFIS-Home aware app development, providing guidelines, and analyzing

the source code to assess the level of security and the lack of vulnerabilities, which might imply security

issues for the application, user, or the SIFIS-Home framework. In the following, this section reports an

analysis of software-based security metrics proposed in the literature, based on detecting programming

practices that might introduce, either by mistake or maliciously, dangerous behaviors or exploitable

vulnerabilities. Furthermore, a set of regulations and related measures are introduced to analyze privacy

implications based on data management strategies. The following metrics should not be taken as

standalone, should instead be coupled with the previously defined code quality metrics, and should be

used to have a more specific view on which issues might be brought by a low-quality source code.

 Code Security Metrics

As anticipated, a relatively large number of software quality attributes have been studied and measured,

as discussed in the previous section. On the other hand, security received relatively small attention

[Alshammari 2016] for what concerns the code. Security is mainly calculated at the system level.

However, this kind of evaluation performed at the system level is not sufficient for a system where

third-party software is installed at runtime. Such a model requires that instead, applications are evaluated

at the code level. To this end, the following metrics and indexes have been defined to identify code

structures and implementation language issues.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 20 of 30

3.1.1 Stall Ratio

The Stall Ratio [Chowdhury 2008] is defined as the number of non-progressing code statements present

in a block of code (e.g., in a loop statement), divided by the whole number of lines of code in that block

of code. Examples of non-progressing statements are neutral operations such as a=a+0, empty loops,

unused counters and tautologies (a==a). The rationale behind this metric’s definition is to avoid attacks

aimed at stalling a system in doing a long set of unnecessary operations, which might result, to a certain

extent, in a Denial Of Service attack. Producing high numbers of logs or continuously asking to issue a

connection to an external server are both examples of non-progressive operations, which might result

in a DoS, either for the device running the code or an external device.

3.1.2 Coupling Corruption Propagation

Coupling between methods is the concept that two or more methods are reliant on each other due to one

or more interwined elements. This could involve data sharing or decision-making in the child methods

using one of the caller call parameters. The effects of content/control coupling can quickly ripple into

other methods several levels down the call chain. Coupling corruption propagation is meant to measure

the total number of methods affected by an erroneous originating method. Given a parameter s for a

method f, the coupling corruption propagation [Chowdhury 2008] is defined as the number of children

methods of f based on the parameter s of the original invocation. Thus, supposing to have a number of

nested invocations, such as f(), which invokes g(), which invokes k(), if a variable a defined in f() is

passed as parameter to invoke g(), directly or indirectly, uses the same parameter to invoke h(), the level

of coupling corruption propagation is equal to 2, since a malicious alteration of a can potentially affect

both g() and h().

3.1.3 Critical Element Ratio

Critical element ratio measures the number of critical elements that are present in a specific block of

code. A critical element [Chowdhury 2008] is defined as an element of a class that is not instantiated

and is not used during the program execution, divided by the number of elements defined in a code

block. Depending on the source code language, such elements might be maliciously changed during the

program execution (buffer overflow) and might destabilize the whole execution. The critical element

called ratio metric measures the ratio of elements that malicious user inputs can possibly corrupt to the

total elements in a class or method. The more such user inputs enter the system, the more open the

system is to the user. The more the system is open to the users, the more is the risk of getting attacked

by malicious user inputs.

 Object Oriented Specific Security Metrics

3.2.1 Information Flow and Data Accessibility

Security accessibility metrics statically measure the potential flow of information from an accessibility

perspective for an individual object-oriented class [Alshammari 2009]. These metrics only consider

attributes and methods declared as classified since they are the ones that need to be kept secret. The

following measures, intended for object-oriented languages, are thus used to evaluate the data

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 21 of 30

accessibility given by the availability to developers of methods to access private class data, which if not

handled correctly might imply vulnerabilities and program misbehavior.

3.2.1.1 Classified Instances Data Accessibility (CIDA)

This metric measures the direct accessibility of classified instance attributes of a particular class. It helps

to protect the classified internal representations of a class, i.e., instance attributes, from direct access. It

is defined as “The ratio of the number of classified instance public attributes to the number of classified

attributes in a class.” Therefore, it is calculated by dividing the number of public classified instance

attributes in a class to its total number of classified attributes. This gives us the ratio of classified instance

attributes which have direct access from outside the class. Higher values indicate higher accessibility to

these classified attributes and hence a larger ‘attack surface.’ This means a higher possibility for

confidential data to be exposed to unauthorized parties. Aiming for lower values of this metric adheres

to the security principle of reducing the attack surface.

3.2.1.2 Classified Class Data Accessibility (CCDA)

This metric measures the direct accessibility of classified class attributes of a particular class. This

metric aims to protect the classified internal representations of a class. i.e., class attributes, from direct

access. It is defined as follows: “The ratio of the number of classified class public attributes to the

number of classified attributes in a class.” This metric is calculated by dividing the number of public

classified class attributes of a given class by its total number of classified attributes. The result shows

the ratio of classified class attributes which are directly accessible from outside its class. Higher values

mean that confidential data of that class has a higher chance of being exposed to unauthorized parties.

This metric contributes towards measuring the attack surface size of a given program’s classified class

attributes. Thus, lower values of this metric enforce the security principle of reducing the attack surface.

3.2.1.3 Classified Operation Accessibility (COA)

This metric is the ratio of the accessibility of public classified methods of a particular class. It is defined

as: “The ratio of the number of classified public methods to the number of classified methods in a class.”

It is calculated by dividing the number of classified methods which are declared as public in a given

class by its total number of classified methods. This value also indicates the size of the attack surface

of a given class. It aims to protect the internal operations of a class which interact with classified

attributes from direct access. Lower values of this metric would reduce potential information flow of

classified data which could be caused by calling public methods. This metric measures the potential

attack surface size exposed by classified methods.

3.2.1.4 Classified Mutator Attribute Interactions (CMAI)

This metric measures the interactions of mutators (constructor, setters, getters) with classified attributes

in a class. We define this metric as: “The ratio of the number of mutators which may interact with

classified attributes to the possible maximum number of mutators which could interact with classified

attributes.” To calculate this metric, it is at first needed to find out in how many places in the

design/program classified attributes could be mutated. Then, this number is divided by the total number

of possible ways of mutating these classified attributes. The result is a ratio which can be used to indicate

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 22 of 30

the potential interactions between mutators and classified attributes. Higher interaction means stronger

cohesion between mutators and classified attributes within a given class, and consequently more

privileges are given to mutators on classified attributes. Conversely, lower values indicate weaker

cohesion between mutators and classified attributes which means a lower chance of classified

information flow from mutators. With regard to the security principles, a lower value allows fewer

privileges over confidential data and therefore adheres to the least privilege principle.

3.2.1.5 Classified Accessor Attribute Interactions (CAAI)

This metric measures the interactions of accessors with classified attributes in a class. We define this

metric as: “The ratio of the number of accessors which may interact with classified attributes to the

possible maximum number of accessors which could have access to classified attributes.” This metric

is calculated in a similar way to the CMAI metric by first finding out in how many parts of the

design/program classified attributes could be accessed. Then, this number is divided by the total number

of possible ways of accessing these classified attributes. This results in a ratio which directly shows the

potential interactions between accessors and classified attributes. Higher interaction means stronger

cohesion between accessors and classified attributes within a given class. Similar to mutators, weak

cohesion is desirable to reduce any potential flow of classified data caused by accessors. Weak cohesion

also indicates fewer privileges are given to accessors over classified attributes. This would reduce the

chance of potential flow of classified data to adversaries. Moreover, lowering the value of this metric

would lower privileges of accessors over classified attributes and thus satisfy the security principle of

least privilege.

3.2.1.6 Classified Attributes Interaction Weight (CAIW)

This metric is defined to measure the interactions with classified attributes by all methods of a given

class. The metric is defined as: “The ratio of the number of all methods which may interact with

classified attributes to the total number of all methods which could have access to all attributes.” This

metric is calculated by finding the number of methods of a given class which may interact with classified

attributes and dividing this number by the total number of potential interactions with all attributes in

that class. The importance of this metric is that it shows how many potential class interactions are

dependent on classified attributes. This is another metric which measures the privileges of class methods

over classified data. However, this metric differs from the previous ones as it shows the overall

privileges by a class’ methods over classified attributes. The higher the value of this metric for a given

class the more privileges are given to this class’ methods over classified attributes, and therefore the

less that class adheres to the security principle of least privilege.

3.2.1.7 Classified Methods Weight (CMW)

This metric is defined to measure the weight of methods in a class which potentially interact with any

classified attributes in a particular class. We define this metric as: “The ratio of the number of classified

methods to the total number of methods in a given class.” From this definition, we can calculate this

metric by initially summing the number of methods which may interact in any form with classified

attributes in a class. Then, this number is divided by the total number of methods in that class. This

metric can directly measure the attack surface size of a given class based on its operations over

confidential data. This differs from the previous attack surface metrics as it doesn’t focus on

accessibility but instead it focuses on the interaction weight of classified methods. Higher values of this

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 23 of 30

metric indicates that more classified operations are offered by the given class. This leads to a higher

chance of information flow of classified data by calling the class’s methods and violations of the security

principle of reducing the attack surface.

3.2.2 Unhandled exceptions

Programs fail mainly for two reasons: logic errors in the code and exception failures. Exception failures

occur when a program is prevented by unexpected circumstances from providing its specified service

[Aggarwal 2017]. The following measures have thus been defined to measure the quality of exception

handling in a specific class:

• The Number of Catch Blocks per Class (NCBS) is defined as the ratio of catch blocks in a class

to the total number of possible catch blocks in a class. This ratio measures thus the percentage

of handled exception on the total number of possible exceptions for a catch block. A low value

of this index generally implies a poor work related to exception handling, where many

conditions have not been considered and might thus represent an exploitable vulnerability.

• The Exception Handling Factor (EHF) is formally defined as the ratio of number of exception

classes to the total number of possible exception classes in software, where the number of

exception classes is the count of exceptions covered in a system. The exception class is passed

as an argument to the catch construct as type of argument arg. This type of argument specifies

types of exception classes.

These two metrics are semantically similar to the critical element ratio described in the previous

subsection, representing the lack of error handling in object-oriented languages using exceptions as a

construct.

 Vulnerability Assessment

In the following, we report a list of measures and indexes to assess the potential threat brought by

software, based on the presence of known vulnerabilities, due to usage of deprecated libraries or

insecure software.

3.3.1 Common Weakness Enumeration (CWE)

CWE [Mellado 2010] provides a set of unified and measurable software weaknesses which facilitate a

practical discussion, description, selection and use of software security services and tools, thus

permitting these weaknesses to be discovered in the source code or in operational systems and

facilitating a better understanding and management of those software weaknesses related to architecture

and design. The severity of weaknesses can be scored using Common Weakness Scoring System

(CWSS) and Common Weakness Risk Analysis Framework (CWRAF). CWSS enables organizations

to score the severity of software coding errors found in their software applications to mitigate

weaknesses in applications they are currently using and influence future purchases. In contrast, CWRAF

enables organizations to apply CWSS to those CWEs that are most relevant to their specific businesses,

missions, and deployed technologies.

3.3.2 Common Vulnerability Scoring System (CVSS)

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 24 of 30

CVSS is currently in the custody of the Forum for International Response Teams (FIRST). Among the

benefits offered by the CVSS are Standardized punctuation of vulnerabilities, contextualized score, and

open scoring system. The CVSS provides all the details concerning the parameters used to compute

each score, thus permitting organizations to understand both the reasoning behind a score and the

significance of differences between different scores. The scores assigned by the CVSS are derived from

the following three groups of metrics:

• Base: This group represents the properties of a vulnerability that do not alter over time,

specifically: the complexity of access, access vector, and the degree to which the system’s

confidentiality, integrity, and availability are compromised.

• Temporal: This group measures the properties of a vulnerability that alter over time, such as

the existence of patches or code which could be exploited.

• Environmental: This group measures the properties of a vulnerability that are representative of

the environment in which the IT is used, such as the prevalence of affected systems and

potential losses.

The CVSS uses simple formulas along with the groups of metrics shown above to produce the final

score associated with the vulnerability. The base metrics are used to derive a score from 0.0 to 10.0 as

described in [Mellado 2010]. The CVSS was designed so that it would be understandable to the general

public and permit any organization to prioritize the order in which it wishes to tackle computing

vulnerabilities that affect it, regardless of the technology used by that organization in its computing

systems. The overall CVSS for a specific software or system can be calculated by using freely available

dedicated tools, like the one provided by FIRST itself.

3.3.3 Common Misuse Scoring System (CMSS)

CMSS [Mellado 2010] is an open scoring scheme standardized to measure the severity of software

element misuse vulnerabilities. Software elements misuse vulnerabilities are those vulnerabilities in

which the software elements provide a means to compromise the system’s security. CMSS is derived

from CVSS. The scores assigned by the CMSS are derived from three groups of metrics: base, temporal

and environmental. The base metrics are used to evaluate the intrinsic exploitability of the vulnerability

and the impact on confidentiality, integrity, and availability. The temporal measures measure the aspects

of variation in time of the severity of the vulnerabilities, such as the preponderance of existing exploits.

The environmental metrics measure those aspects of vulnerability related to the organization’s specific

vulnerability, such as the local implementation of countermeasures. The CMSS also includes a formula

that combines these measures to provide a score for the severity of each vulnerability.

 Privacy Assessment Metrics

Compliance with laws and regulations on privacy is most of all an issue of qualitative assessment of the

adequacy of personal data processing. This is made clear by the rules of the GDPR.

According to art. 24 of the General Data Protection Regulation (EU) 2016/679 (hereinafter “GDPR”),

the data controller (who determines the purposes and the means of the processing of personal data) is

responsible for the correct processing of personal data. It has to implement appropriate technical and

organizational measures (including appropriate data protection policies) to ensure and to be able to

demonstrate that processing is performed in accordance with GDPR.

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 25 of 30

Moreover, articles 25 (Data protection by design and by default), 32 (Security of processing), and 35

(Data protection impact assessment) provide for assessment obligation on the data controller; art. 32

provides for assessment obligation on the processor (who processes personal data on behalf of the

controller)3.

From these rules, a common path to be followed arises. In assessing compliance, the controller must

take into account: 1. the state of the art of technical and organizational measures, 2. the cost of

implementation of technical and organizational measures, 3. the nature of the processing, 4. the scope

of the processing, 5. the context of the processing, 6. the purposes of the processing, 7. the risks of

varying likelihood and severity for rights and freedoms of natural persons posed by the processing. This

list clarifies that GDPR compliance for IoT devices and the software installed on them implies a

qualitative self-assessment to be performed by the controllers (and the processors).

Different methodologies to perform such assessments have been, and continue to be, proposed.

As a way of example, the DECODE project4 adopted a series of privacy design strategies to comply

with the obligation provided by art. 25 of GDPR to perform privacy by design and by default assessment

(at the time of the determination of the means for processing and at the time of the processing itself)

[Ciurcina 2017]:

1. Minimise

2. Separate

3. Abstract

4. Hide

5. Inform

6. Control

7. Enforce

8. Demonstrate.

The obligation to perform the data protection impact assessment (PIA) provided by art. 35 of GDPR

implies a more accurate assessment than the assessment to be performed, according to art. 25 and 32 of

the GDPR, and also it is provided only in special cases.

For example, CNIL (the French Privacy Supervising Authority) published5, a method available in 3

documents to allow compliance with the obligation to perform the PIA.

The PIA methodology of CNIL, described in the first document [PIA Metodology 2018], allows to:

1. define and describe the context of the processing of personal data under consideration.

2. analyze the controls guaranteeing compliance with the fundamental principles: the

proportionality and necessity of processing, and the protection of data subjects’ rights.

3. assess privacy risks associated with data security and ensure they are properly treated.

4. formally document the validation of the PIA in view of the previous facts to hand or decide to

revise the previous steps.

A document with templates to perform the Privacy Impact Assessments is also available on CNIL’s

3 It is worth mentioning that the IoT devices’ seller is interested in supporting the controllers and the

processors to perform the privacy assessments (to make it easier for customers that are controllers and

processors to buy more easily its IoT devices). This makes available information to perform the

assessments easily (including, if possible, a preconfigured assessment to be adapted by the controller)

is an excellent way to achieve this.
4 See https://decodeproject.eu/
5 See https://www.cnil.fr/en/cnil-publishes-update-its-pia-guides

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 26 of 30

official website [PIA Template 2018].

Finally, a document with a knowledge base is also available [PIA Knowledge 2018].

CNIL also published a specific version of its PIA method applied to IoT devices [PIA IoT 2018]. CNIL

also made available free software to perform the PIA2.

Performing GDPR privacy assessments can be supported by quantitative measures, including security

measures.

Some approaches to complement security impact assessment and PIA in order to achieve an iterative

and unified risk assessment process on-the-fly considering the interdependence of cybersecurity and

privacy are starting to be proposed in the literature [Gouvas 2021].

It is, therefore, reasonable to expect that some of the security metrics to be produced by the SIFIS-Home

project could be useful for the PIA and other privacy assessments to be performed by the controllers

and the processors.

4 Conclusion

This document has treated the theoretical and practical aspects of measuring the quality and security of

source codes produced in the SIFIS-Home project.

In Section 2, we have described the techniques to assess software quality through the use of static and

dynamic methods. To do so, we have presented and listed the most common metrics present in the

literature. This section has also introduced a set of modern and most used tools, both closed and open

source, which perform this kind of analysis. Section 3 reports a high-level overview of methodologies

to evaluate security aspects in source code to identify code blocks that might pose exploitable

vulnerabilities.

5 References

[Common 2017] 2017. Common criteria for information technology security evaluation.

Retrieved from https://www.commoncriteriaportal.org/cc/

[PIA Metodology 2018] 2018. Privacy impact assessment (PIA). methodology. Retrieved from

https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-1-en-

methodology.pdf

[PIA Templates 2018] 2018. Privacy impact assessment (PIA). templates. Retrieved from

https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-2-en-

templates.pdf

[PIA Knowledge 2018] 2018. Privacy impact assessment (PIA). Knowledge bases. Retrieved

from https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-3-en-

knowledgebases.pdf

[PIA IoT 2018] 2018. Privacy impact assessment (PIA). Application to IoT devices.

Retrieved from https://www.cnil.fr/sites/default/files/atoms/files/cnil-

pia-piaf-connectedobjects-en.pdf

[Campbell 2018] Campbell G. A. 2018. Cognitive complexity. A new way of measuring

understandability. (2018).

[Aggarwal, 2002] K. K. Aggarwal, Y. Singh, and J. K. Chhabra. 2002. An integrated

measure of software maintainability. In Annual reliability and

maintainability symposium. 2002 proceedings (cat. no.02CH37318),

235–241.

https://www.commoncriteriaportal.org/cc/
https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-1-en-methodology.pdf
https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-1-en-methodology.pdf
https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-2-en-templates.pdf
https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-2-en-templates.pdf
https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-3-en-knowledgebases.pdf
https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-3-en-knowledgebases.pdf
https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-piaf-connectedobjects-en.pdf
https://www.cnil.fr/sites/default/files/atoms/files/cnil-pia-piaf-connectedobjects-en.pdf

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 27 of 30

[Aggarwal 2017] K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra.

2007. Software design metrics for object-oriented software. Journal of

Object Technology 6, 1 (January 2007), 121–138.

DOI:https://doi.org/10.5381/jot.2007.6.1.a4

[Krishan 2002] Krishan K Aggarwal, Yogesh Singh, and Jitender Kumar Chhabra. 2002.

An integrated measure of software maintainability. In Annual reliability

and maintainability symposium. 2002 proceedings (cat. No.

02CH37318), IEEE, 235–241.

[Alshammari 2009] B. Alshammari, C. Fidge, and Diane Corney. 2009. Security metrics for

object-oriented class designs. 2009 Ninth International Conference on

Quality Software (2009), 11–20.

[Alshammari 2016] B. Alshammari, C. Fidge, and Diane Corney. 2016. Developing secure

systems: A comparative study of existing methodologies.

[Antonellis 2007] Panagiotis Antonellis, Antoniou Dimitris, Yiannis Kanellopoulos,

Christos Makris, Evangelos Theodoridis, Christos Tjortjis, and Nikos

Tsirakis. 2007. A data mining methodology for evaluating maintainability

according to ISO/IEC-9126 software engineering–product quality

standard. 1–11.

[Bakota 2011] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy. 2011.

A probabilistic software quality model. In 2011 27th IEEE international

conference on software maintenance (ICSM), 243–252.

[Bauer 2012] V. Bauer, L. Heinemann, B. Hummel, E. Juergens, and M. Conradt. 2012.

A framework for incremental quality analysis of large software systems.

In 2012 28th IEEE international conference on software maintenance

(ICSM), 537–546.

[Bray 1997] Michael Bray, Kimberly Brune, David A Fisher, John Foreman, and Mark

Gerken. 1997. C4 software technology reference guide-a prototype.

Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[Chowdhury 2008] Istehad Chowdhury, Brian Chan, and Mohammad Zulkernine. 2008.

Security metrics for source code structures. In Proceedings of the fourth

international workshop on software engineering for secure systems

(SESS ’08), Association for Computing Machinery, New York, NY,

USA, 57–64. DOI:https://doi.org/10.1145/1370905.1370913

[Ciurcina 2017] Marco Ciurcina, Shehar Bano, Eleonora Bassi. 2017. Privacy design

strategies for the DECODE architecture. Retrieved from

https://decodeproject.eu/publications/privacy-design-strategies-decode-

architecture

[Cunningham 1992] Ward Cunningham. 1992. The WyCash portfolio management system. In

Addendum to the proceedings on object-oriented programming systems,

languages, and applications (addendum) (OOPSLA ’92), Association for

Computing Machinery, 29--30.

[Deissenboeck 2011] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer, K. Lochmann,

and S. Wagner. 2011. The quamoco tool chain for quality modeling and

assessment. In 2011 33rd international conference on software

engineering (ICSE), 1007–1009.

DOI:https://doi.org/10.1145/1985793.1985977

[Di Biase 2019] M. Di Biase, A. Rastogi, M. Bruntink, and A. van Deursen. 2019. The

delta maintainability model: Measuring maintainability of fine-grained

code changes. In 2019 IEEE/ACM international conference on technical

https://doi.org/10.5381/jot.2007.6.1.a4
https://doi.org/10.1145/1370905.1370913
https://decodeproject.eu/publications/privacy-design-strategies-decode-architecture
https://decodeproject.eu/publications/privacy-design-strategies-decode-architecture
https://doi.org/10.1145/1985793.1985977

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 28 of 30

debt (TechDebt), 113–122.

[Egele 2008] Kirda Egele Scholte and Kruegel. 2008. A survey on automated dynamic

malware-analysis techniques and tools. (2008).

[Ernst 2015] Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian

Gorton. 2015. Measure it? Manage it? Ignore it? Software practitioners

and technical debt. In Proceedings of the 2015 10th joint meeting on

foundations of software engineering (ESEC/FSE 2015), Association for

Computing Machinery, 50--60.

[Hariprasad 2017] T Hariprasad, G Vidhyagaran, K Seenu, and Chandrasegar Thirumalai.

2017. Software complexity analysis using halstead metrics. In 2017

international conference on trends in electronics and informatics (ICEI),

IEEE, 1109–1113.

[Heitlager 2007] I. Heitlager, T. Kuipers, and J. Visser. 2007. A practical model for

measuring maintainability. In 6th international conference on the quality

of information and communications technology (QUATIC 2007), 30–39.

[Holzmann 2016] G. J. Holzmann. 2016. Code clarity. IEEE Software 33, 02 (March 2016),

22–25. DOI:https://doi.org/10.1109/MS.2016.44

[ISO9126 1991] ISO. 1991. ISO 9126 software quality characteristics.

[ISO/IEC2510 2011] ISO/IEC. 2011. ISO/IEC 25010:2011 systems and software engineering

— systems and software quality requirements and evaluation (SQuaRE)

— system and software quality models.

[Kothapalli 2011] Chaitanya Kothapalli, S. G. Ganesh, Himanshu K. Singh, D. V. Radhika,

T. Rajaram, K. Ravikanth, Shrinath Gupta, and Kiron Rao. 2011.

Continual monitoring of code quality. In Proceedings of the 4th india

software engineering conference (ISEC ’11), Association for Computing

Machinery, 175--184.

[Krishnan 2007] R Krishnan, S Murali Krishna, and Nishil Bharill. 2007. Code quality

tools: Learning from our experience. SIGSOFT Softw. Eng. Notes 32, 4

(2007), 5–es.

[Kumar 2010] Gupta Kumar Chhabra J. 2010. A survey of dynamic software metrics.

(2010), 1016–1029. DOI:https://doi.org/10.1007/s11390-010-9384-3

[Kumar 2013] Gaurav Kumar and Pradeep Kumar Bhatia. 2013. Software testing

optimization through test suite reduction using fuzzy clustering. CSI

Transactions on ICT 1, 3 (2013), 253–260.

DOI:https://doi.org/10.1007/s40012-013-0023-3

[Letouzey 2012] J. Letouzey. 2012. The SQALE method for evaluating technical debt. In

2012 third international workshop on managing technical debt (MTD),

31–36.

[Livshits 2006] Livshits. 2006. Improving software security with precise static and

runtime analysis. (2006).

[McConnell 2004] Steve McConnell. 2004. Code complete, second edition. Microsoft Press,

USA.

[Mellado 2010] Daniel Mellado, Eduardo Fernández-Medina, and Mario Piattini. 2010. A

comparison of software design security metrics. In Proceedings of the

fourth european conference on software architecture: Companion

volume (ECSA ’10), Association for Computing Machinery, New York,

NY, USA, 236–242. DOI:https://doi.org/10.1145/1842752.1842797

[Microsoft 2011] Microsoft. 2011. Code Metrics – Maintainability Index.

[Molnar 2017] Arthur Molnar and Simona Motogna. 2017. Discovering maintainability

https://doi.org/10.1109/MS.2016.44
https://doi.org/10.1007/s11390-010-9384-3
https://doi.org/10.1007/s40012-013-0023-3
https://doi.org/10.1145/1842752.1842797

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 29 of 30

changes in large software systems. In Proceedings of the 27th

international workshop on software measurement and 12th international

conference on software process and product measurement, 88–93.

[Lekshmi 2020] Lekshmi S Nair and J Swaminathan. 2020. Towards reduction of software

maintenance cost through assignment of critical functionality scores. In

2020 5th international conference on communication and electronics

systems (ICCES), IEEE, 199–204.

[Nayrolles 2018] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. 2018. CLEVER:

Combining code metrics with clone detection for just-in-time fault

prevention and resolution in large industrial projects. In Proceedings of

the 8th working conference on mining software repositories (MSR ’11),

Association for Computing Machinery, New York, NY, USA, 73–82.

DOI:https://doi.org/10.1145/3196398.3196438

[Nguyen 2007] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. 2007.

A SLOC counting standard. In Cocomo ii forum, Citeseer, 1–16.

[Oman 1992] Paul Oman and Jack Hagemeister. 1992. Metrics for assessing a software

system’s maintainability. In Proceedings conference on software

maintenance 1992, IEEE Computer Society, 337–338.

[Gouvas 2021] S. A.; Gouvas Papamartzivanos D.; Menesidou. 2021. A perfect match:

Converging and automating privacy & security impact assessment on-

the-fly. Future Internet 13, 30 (2021).

DOI:https://doi.org/https://doi.org/10.3390/fi13020030

[Parveen 2020] S. Parveen and M. H. Alalfi. 2020. A mutation framework for evaluating

security analysis tools in IoT applications. In 2020 IEEE 27th

international conference on software analysis, evolution and

reengineering (SANER), 587–591.

DOI:https://doi.org/10.1109/SANER48275.2020.9054853

[Wagner 2012] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R.

Plösch, A. Seidi, A. Goeb, and J. Streit. 2012. The quamoco product

quality modelling and assessment approach. In 2012 34th international

conference on software engineering (ICSE), 1133–1142.

[Welker 2001] Kurt D Welker. 2001. The software maintainability index revisited.

CrossTalk 14, (2001), 18–21.

[Wichmann 1995] Clutterbuck Wichmann Canning and Marsh. 1995. Industrial perspective

on static analysis. (1995), 69–75.

[Yan 2019] Meng Yan, Xin Xia, Xiaohong Zhang, Ling Xu, Dan Yang, and Shanping

Li. 2019. Software quality assessment model: A systematic mapping

study. Science China Information Sciences 62, 9 (2019), 191101.

DOI:https://doi.org/10.1007/s11432-018-9608-3

[Zhou 2007] Yuming Zhou and Hareton Leung. 2007. Predicting object-oriented

software maintainability using multivariate adaptive regression splines.

Journal of systems and software 80, 8 (2007), 1349–1361.

Annex A: Glossary

Acronym Definition

CMSS Common Misuse Scoring System

CVSS Common Vulnerability System

https://doi.org/10.1145/3196398.3196438
https://doi.org/10.3390/fi13020030
https://doi.org/10.1109/SANER48275.2020.9054853
https://doi.org/10.1007/s11432-018-9608-3

H2020-SU-ICT-02-2020-SIFIS-HOME –#952652 Deliverable D2.1

Version: 1.2 Page 30 of 30

CWE Common Weakness Enumeration

DMM Delta Maintainability Model

DOQ Document Quality

IDE Integrated Development Environment

ISO/IEC International Organization for Standardization/International Electrotechnical

Commission

LOC Line of Code

MI Maintainability Index

OSS Open Source Software

SEI-MI Software Engineering Institute Maintainability Index

SIG-MM Software Improvement Group Maintainability Model

UOS Understandability of Software

UT Unit Testing

VM Virtual Machine

VS Visual Studio

