
H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

D1.4

Final Component, Architecture, and

Intercommunication Design

WP1 – Distributed System Architecture

SIFIS-Home

Secure Interoperable Full-Stack Internet of Things for Smart Home

Due date of deliverable: 30/09/2022

Actual submission date: 30/09/2022

Responsible partner: FSEC

Editor: Marko Komssi;

 E-mail address: marko.komssi@f-secure.com

29/09/2021

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

The SIFIS-Home Project is supported by funding under the Horizon 2020 Framework Program

of the European Commission SU-ICT-02-2020 GA 952652

mailto:marko.komssi@f-secure.com

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Authors: Riccardo Coppola (POL), Andrea Saracino (CNR), Domenico De Guglielmo

(DoMO), Håkan Lundström (SEN), Luca Barbato (LUN), Joni Jämsä (CEN),

Olli Isohanni (CEN), Ossi Saukko (CEN), Otto Waltari (FSC), Marko Komssi

(FSC), Marco Tiloca (RISE).

Approved by: Håkan Lundström (SEN), Elina Hirvonen (CEN)

Revision History

Version Date Name Partner Section Affected

Comments

0.1 01/06/2022 ToC Defined FSEC All

0.2 7/08/2022 Inserted content from

D1.3

CNR, FSEC, POL All

0.3 20/08/2022 Definition of the DHT DOMO Section 3

0.4 25/08/2022 Update of the API POL Section 5

0.5 2/09/2022 Workflows definition CNR, POL, DOMO,

LUM, FSEC

Section 6

0.6 5/09/2022 Upgrade to D1.3

contents

All All

0.7 15/09/2022 Ready for Review All All

1.0 29/09/2022 Ready to submit All All

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Executive Summary

This deliverable reports the final design of the SIFIS-Home architecture and the SIFIS-Home

framework. The SIFIS-Home architecture is the logical representation of the SIFIS-Home aware

devices and their interaction in the smart home. The components of the SIFIS-Home architecture are

Smart Devices and Not So Smart Devices. The former includes devices that either has or has not a

network interface which enables connectivity outside of the smart home. Internet connected smart

devices have a direct interface to send and receive network traffic out of the cyber perimeter, outside

of Smart Home. SIFIS-Home architecture involves six main actors, such as SIFIS-Home

Administrator and SIFIS-Home Tenant. SIFIS-Home framework recognizes each actor, for instance,

by means of the usage, security, privacy and safety policies.

The SIFIS-Home framework is the software architecture installed in the devices of the SIFIS-Home

architecture, used to provide services and manage safety, security and privacy aspects in the smart

home. The architecture of the SIFIS-Home framework consists of five high-level parts that are SIFIS-

Home Smart Device Framework, SIFIS-Home Application Framework, SIFIS-Home NSSD

Framework, SIFIS-Home Cloud Framework and SIFIS-Home Development Tools. Each part

represents a building block that follows microservices design pattern. Moreover, the higher-

granularity architectural details are provided for more complex sub-components that can be

decomposed furtherly.

The deliverable presents a specific set of APIs for the SIFIS-Home architecture and calls them SIFIS-

Home APIs. One such example is Communication APIs that are used to retrieve logs, alerts and

messages generated by the SIFIS-Home system. Another example is Application Manager APIs that

provides operations to manage third-party applications.

Finally, this deliverable describes operative workflows related to the operations that will be supported

by the SIFIS-Home framework. Each operative workflow is presented with a process flow diagram to

illustrate the sequential flows of activities between the components of SIFIS-Home framework. Both

the SIFIS-Home framework and the SIFIS-Home architecture are input for the activities of WP5,

which will implement and deploy the testbed of the SIFIS-Home architecture.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 4 of 91

Table of contents

Contents

Executive Summary ... 3

1 Introduction ... 6

2 SIFIS-Home Architecture ... 6

2.1 The Smart Home Cyber-Perimeter .. 6

2.2 Components and Actors of the SIFIS-Home architecture ... 8

3 SIFIS-Home Framework .. 11

3.1 SIFIS-Home Smart Device Framework ... 14
3.1.1 SIFIS-Home API Gateway .. 15

3.1.2 Secure Lifecycle Manager ... 16

3.1.3 NSSD Manager .. 17

3.1.4 Application Toolboxes .. 20

3.1.5 Secure Communication Layer ... 25

3.1.6 Proactive Security Management Layer .. 25

3.1.7 DHT Manager .. 27

3.1.8 VPN Manager .. 36

3.2 SIFIS-Home Application Framework .. 36

3.2.1 Home ... 37

3.2.2 Device Management .. 38

3.2.3 Alarms / Log .. 38

3.2.4 Application Launcher .. 38

3.2.5 Settings .. 39

3.2.6 Input collection .. 39

3.3 SIFIS-Home NSSD Framework... 41
3.3.1 Bootstrap Manager .. 41

3.3.2 Device API Manager ... 41

3.4 SIFIS-Home Cloud Framework ... 41

3.5 SIFIS-Home Development Tools... 42

3.6 Cryptography Management .. 42

3.6.1 OSCORE Security Protocols ... 43

3.7 Updates with respect to preliminary SIFIS-Home Architecture .. 44

4 Mapping between Functional Requirements and SIFIS-Home Architecture 47

5 SIFIS-Home APIs ... 49

5.1 Home APIs ... 49

5.1.1 Login API .. 49

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 5 of 91

5.2 Communication APIs ... 49

5.2.1 Messages .. 49

5.2.2 Message Feed Register .. 50

5.2.3 Message Feed Unregister ... 50

5.2.4 Stream Camera Feeds .. 51

5.3 Device Management APIs ... 51

5.3.1 Add Favourite Device .. 51

5.3.2 Remove Favourite Device ... 51

5.3.3 Favourite Devices .. 52

5.4 Application Manager APIs ... 52

5.4.1 Install Application ... 52

5.4.2 Remove Application .. 53

5.4.3 Kill Application ... 53

5.4.4 Wipe Application ... 53

5.5 Device Management API ... 54

5.6 WoT Interfacing API ... 56

5.7 Secure Communication Manager ... 56

6 Operative Workflows of main SIFIS-Home Operations .. 57

6.1 Register New Home ... 57

6.2 Register New Smart Device [UC05] .. 58

6.3 Register New NSSD... 59

6.4 Register New NSSD Using WoT [UC05].. 60

6.5 Control Resource on NSSD via Third Party App [UC03, UC12] 60

6.6 Register New User, Set Role and assign its Settings [UC01, UC07, UC10] 61

6.7 Anomaly detection analytic workflow [UC04, UC11, UC06] ... 62

6.8 Policy Translation Workflow [UC09].. 63

6.9 Provide and handle a voice command [UC01, UC02] ... 64

6.10 Access house functionality from remote device [UC12,UC13] .. 65

7 Security Analysis and Threat Models ... 67

7.1 Availability... 67
7.1.1 Attacks to Availability ... 68

7.2 Confidentiality ... 68
7.2.1 Attacks to confidentiality ... 68

7.3 Integrity .. 68
7.3.1 Attacks to Integrity .. 68

7.4 Distributed System Security... 69
7.4.1 Attacks to distributed systems ... 69

7.5 Authorization and Access Control ... 69

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 6 of 91

7.5.1 Attacks to Authorization and Access Control ... 69

8 Conclusion .. 70

9 References ... 71

Glossary ... 72

Appendix A: JSON documentation of the APIs .. 73

Appendix B – differences with D1.3 ... 86

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 6 of 91

1 Introduction

To manage security, privacy and safety in the smart home environment, the SIFIS-Home project

deploys a software framework intended to run on the smart home devices, which can be customized

by installing third party applications. According to the requirements elicited in the deliverables D1.1

and D1.2, the SIFIS-Home framework must be resilient, which implies the replication of

functionalities and fault tolerant communications. Thus, the core of SIFIS-Home is based on a peer-to-

peer (P2P) architecture, still a smart-home is a heterogeneous environment, where some devices that

can be customized interact with a set of devices with limited possibilities of customization and

functionalities. To represent such heterogeneity and the interaction between the devices and users, we

also define the SIFIS-Home architecture, defining all the actors and their interactions.

In this deliverable, on one hand, we report the description of the SIFIS-Home architecture, also by

presenting the concept of the Smart Home cyber-perimeter and some background information on the

DHT model that will be used to implement the SIFIS-Home communication protocol. On the other

hand, we describe in detail the final architecture of the SIFIS-Home framework, describing at first a

high-level view of the architecture, followed by a detailed view of the components and their

interactions. The SIFIS-Home framework has been designed following a top-down approach, as

discussed in D1.1. The design pattern followed is the microservices design pattern, which favours

both flexibility and modularity. Accordingly, the deliverable reports the architectural components in

three levels of detail. Finally, the deliverable will report the SIFIS-Home APIs and the related

operative workflows.

This deliverable D1.4 extends and complements the preliminary architecture of SIFIS-Home

Framework as well as the preliminary set of APIs described in deliverable D1.3. WP1 and WP5 have

co-operated in the architecture design and implementation. Both the SIFIS-Home framework and the

SIFIS-Home architecture are input for the activities of WP5, which will implement and deploy the

testbed of the SIFIS-Home architecture. D1.3 provided an input to the activities of WP5. Likewise, the

initial implementation and deployment of the SIFIS-Home framework and architecture provided

feedback to D1.4. The feedback has been used to complete the operative workflows of main SIFIS-

Home operations together with the finalized list of the implemented APIs and components. The

complete list of the changes between D1.3 and D1.4 are presented in Appendix A.

The deliverable is organized as follows. Section 2 of this deliverable introduces the SIFIS-Home

architecture, while Section 3 introduces the SIFIS-Home framework. Section 4 describes mapping

between the defined functional requirements and SIFIS-Home architecture. Section 5 presents the

APIs with examples. Section 6 introduces a number of operative workflows of key SIFIS-Home

operations and Section 7 concludes the deliverable.

2 SIFIS-Home Architecture

The SIFIS Home architecture is the representation of the devices and actors interacting with the

SIFIS-Home Framework. More in details the architecture depicts at a logical level the devices that are

present in a SIFIS-Home aware smart home, their interconnection and interactions.

2.1 The Smart Home Cyber-Perimeter

Protecting the Smart Home and its users from unintended disclosure of sensitive information requires

defining a logical distinction between the outside and inside of the Smart Home. A concept that we are

defining in the scope of SIFIS-Home, which will be relevant to define the SIFIS-Home architecture

and for defining data privacy policy, is the Smart Home Cyber-Perimeter. The concept is illustrated in

Figure 1.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 7 of 91

Figure 1: Concept of Smart Home Cyber-Perimeter

The Smart Home Cyber-Perimeter is the separation between the two domains: outside or inside of the

Smart Home. The cyber-perimeter is a logical barrier, which identifies the elements (i.e., devices and

application) of the Smart Home, which can be used to receive and send data toward entities that are

not part of the Smart Home (i.e., external entities). For example, a smart speaker with an embedded

voice assistant exploiting a cloud service to process voice commands is both an access (since it

receives instructions from the cloud) and exit (since it sends data to the cloud) point of the Smart

Home cyber-perimeter. Though even inside the Smart Home cyber-perimeter, there might be specific

privacy constraints, a violation of the Smart Home privacy is performed when sensitive information

leaves the Smart Home cyber-perimeter. Figure 2 illustrates the actors and elements of the SIFIS-

Home architecture their relation to Smart Home Cyber-Perimeter.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 8 of 91

Figure 2: Actors and Elements of the SIFIS-Home Architecture

We base this definition of privacy violation on the worst possible case: once a piece of data leaves the

Smart Home cyber-perimeter, the users potentially lose control of that data piece, which can thus be

re-used and redistributed indefinitely. We derive that data can be safely exchanged among devices and

services inside the Smart Home cyber-perimeter. The rationale behind this distinction is in the trade-

off between ensured privacy and needed accuracy for data analysis algorithms, which are essential to

provide smart services. Thus, inside the Smart Home cyber-perimeter, data can be exchanged and

processed without applying privacy-enhancing techniques to maximize data analysis accuracy,

providing the best service level. In fact, inside the cyber-perimeter, data cannot be shared with

external entities and remains only available to the data owner, i.e., the Smart Home residents. The

validity of this assumption depends on the devices and applications behaviour on the cyber-perimeter,

which act as access points to the Smart Home. Their behaviours should be monitored and certified,

when possible, to ensure that when they have access to sensitive information, they are not going to

send them outside out of the cyber-perimeter. When this cannot be ensured, or it is known that a data

piece is bound to leave the perimeter, it should be processed through specific privacy-enhancing

techniques to avoid disclosing sensitive information.

2.2 Components and Actors of the SIFIS-Home architecture

The main components of the SIFIS-Home architecture are the following:

• Smart Devices: These devices are characterized by a relatively good computational capability;

they are based on general purpose computational hardware and their functionalities are

managed through an Operative System (OS). Smart devices can be customized by installing

third party software and have the capability of directly communicating among them,

autonomously exchanging information. This intercommunication enables a Peer-to-Peer (P2P)

logical model, which is easily represented by means of a distributed hash table (DHT).

Example of Smart Devices are Smart TVs, Smart Refrigerators, Laptops/Desktops, Family

Hubs.

o Internet Connected Smart Devices: This is a subset of the Smart Devices which are

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 9 of 91

characterized by the presence of a network interface which enable connectivity outside

of the smart home. Example of these devices are smart routers (connected to optical

fiber or DSL), smartphones and tablets (with 4G/5G connectivity). Internet Connected

Smart Devices are in general on the Smart Home cyber-perimeter, as they have a direct

interface to send network traffic out of the cyber perimeter.

• Not So Smart Devices (NSSD): This set is made by those devices which present smart

functionalities and present a network interface, yet they still have very limited computational

power, and only present a firmware instead of a fully-fledged OS. For this reason, the NSSDs

cannot be customized by installing third party software or applications. Examples of NSSDs

are smart sensors, smart cameras, smart lights, smart speakers, smart locks. NSSDs can have

Internet capabilities, but generally the Internet connection will be forced to happen through

their responsible Smart Devices.

Figure 2 and Figure 3 illustrate the communication and interaction between components and actors of

SIFIS-Home architecture. The Smart Devices are at the core of the SIFIS-Home architecture, since

they will be the only devices installing the SIFIS-Home framework. Thus, the minimal instance of a

SIFIS-Home architecture is the one made by a single smart device. When more than one smart device

is added to a SIFIS-Home architecture instance, we consider them as logically interconnected. The

interconnection and network communication are handled at application level by a DHT protocol. In

SIFIS-Home we are using the Kademlia protocol as DHT, which is detailed in the next subsection.

The DHT abstracts from the actual network implementation, i.e., the smart devices can be physically

connected to the same Wi-Fi network, be connected to different Wi-Fi hot spots, or use ad hoc Wi-Fi

routing protocols such as AODV [Perkins, 1999]. The SIFIS-Home architecture is, thus, oblivious of

the actual network technology and topology, which makes it adaptable to any network configuration.

The DHT allows to view the SIFIS-Home architecture from outside as a single entity, accepting

requests from external services and applications as if it was a monolithic server. Following the DHT

protocol, Smart Devices handle in a distributed way computational task, data storage, message

forwarding, attribute retrieval and data analysis, implementing thus the services of the SIFIS-Home

framework.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 10 of 91

Figure 3: Communication and interaction between components and actors of SIFIS-Home

architecture

Whilst smart devices manage framework operations and message exchange, the NSSDs provide the

SIFIS-Home architecture with additional capabilities to read physical measures through sensing

mechanisms, and to actively interact with the physical world through actuators. NSSDs are thus

considered as peripheral devices under the direct control of one or more smart devices. When

registered, a smart device connects via Wi-Fi, Bluetooth, or 802.15.4 protocols to one or more smart

devices (number and topology will be selected by the SIFIS-Home administrator) and will only accept

messages and commands from these devices. Each NSSD offers thus a set of APIs to receive queries

on sensed data, or to perform operations, which are issued by the responsible smart devices. A very

preliminary implementation of a P2P architecture of Smart Devices in a smart home environment has

been presented in [La Marra et. al, 2017].

The actors we have defined for the SIFIS-Home architecture are the following:

• SIFIS-Home Administrator: The administrator is a human user who is the owner of an instance

of the SIFIS-Home architecture. Generally, this person coincides with the smart home owner.

The administrator defines usage policies, assign roles to other tenants or guests of the home,

sets up restrictions, application preferences, smart home routines and possible configuration.

Since SIFIS-Home is human centred, the administrator is considered the highest authority,

who can supersede at any time the SIFIS-Home framework decisions. The administrator can

install third party applications on the framework and remove or change the authorizations to

applications installed by other users.

• SIFIS-Home Tenant: The SIFIS-Home tenant is the standard user of the smart home. The

tenant is a resident of the smart home and the main target of the SIFIS-Home system. This user

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 11 of 91

can set up preferences and configurations which should not be in contrast with those set up by

the administrator. The tenant can give command to the smart home devices via voice

command or via a user interface on devices like smartphone, tablet or PC, and he can install

applications on the smart devices which are not in contrast with the administrator policies. The

user can remove the applications he installed. Each tenant will have his or her own profile,

describing usage preferences and configuration, which cannot be modified by other tenants.

Only the administrator can modify the profile of another tenant. Generally, the administrator is

also a tenant. Moreover, each tenant can define and configure one or more usage modes (e.g.,

“do not disturb”), which can be switched several times during the usage of the platform.

• SIFIS-Home Maintainer: The maintainer is an entity external to the smart home which is

trusted by the administrator to correctly configure the smart home security, privacy and safety

policies. In a commercial model, the maintainer can be the provider of the SIFIS-Home

framework, holding the same right of the administrator. The maintainer can also install

applications for handling specific management services, and they can remove applications

installed from any user. The maintainer is not a mandatory actor, but when present has to be

considered a trusted party.

• SIFIS-Home Tenant with restrictions: This user is a smart home tenant with restrictions on the

functionalities they can use. The restrictions are needed to avoid possible damage or hazard to

the tenant or to the home devices. Typical example of these tenants are children, who can still

interact with the smart home and beneficiate from services, still they cannot use dangerous

functionalities (e.g., turning on a stove). As the other tenants, they can install applications,

however the set of available applications can be limited according to specific safety policies.

As the other tenants, they can have a personal profile and their own usage policies. However,

these policies are generally set by the administrator.

• Guest: A guest is a smart home user who is not resident in that smart home but is accessing

and using the premises for a limited amount of time, upon authorization of the administrator or

another tenant. Guests do not have profiles, nor they can set up policies, still they can use a

subset of the house functionality. The services and functionality available are set by the

administrator for all guests. Guests cannot install applications.

• External Operator: The external operator could be a technician, a plumber, gardener, or house

maid, accessing the house for a limited amount of time, with the authorization of a tenant.

Differently from guests, the operators will not use the smart home functionalities, still they

might have specific policies needed to protect their privacy.

The SIFIS-Home actors are the entities defined and recognized by the SIFIS-Home framework. Thus,

they can be used as subjects for the usage, security, privacy and safety policies.

As shown in Figure 2 apart from the smart home cyber-perimeter, including smart devices and

NSSDs, on which the SIFIS-Home Smart Device and SIFIS-Home NSSD frameworks are integrated,

there are two additional software components installed on external devices, namely the SIFIS-Home

Cloud and the SIFIS-Home Application.

3 SIFIS-Home Framework

The design of the SIFIS-Home framework has been based on the microservices design pattern. In fact,

to design the SIFIS-Home framework we have taken in consideration the requirements described in

D1.1 and D1.2.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 12 of 91

The final architecture of the SIFIS-Home Framework described in the present deliverable extends and

complements the preliminary architecture described in deliverable D1.3. The SIFIS-Home framework

architecture has been defined by following a top-down approach. By using microservices is possible

to define a modular architecture where each component offers a specific set of functionalities, which

can be invoked either by other architectural components, or externally. In the following we provide a

view of the SIFIS-Home architecture as a whole and we will then analyse the functionalities of each

subcomponent.

The high-level architecture of the SIFIS-Home framework is presented in Figure 4. These high-level

architecture consists of five parts that are:

• SIFIS-Home Smart Device Framework: The SIFIS-Home Smart Device Framework is the

set of software components that are executed on the Smart Devices (SD) present in the smart

home. Refer to section 2.2 of the present document for the definition of Smart Device.

• SIFIS-Home Application Framework: The SIFIS-Home application Framework is the set of

software components that are installed on a mobile device (smartphone) that is used to control

the smart home. The SIFIS-Home Application provides a Graphical User Interface to the

different typologies of users that will utilize the smart home.

• SIFIS-Home NSSD Framework: The SIFIS-Home Not-So-Smart Device Framework is the

set of software components that are executed on the Not-So-Smart Devices (SD) present in the

smart home. Refer to section 2.2 of the present document for the definition of Not So Smart

Device.

• SIFIS-Home Cloud Framework: The SIFIS-Home Cloud Framework is the set of software

components and applications that reside on the SIFIS-Home cloud that are mainly used to

allow a user to control the smart home from a remote side.

• SIFIS-Home Development Tools: it is the set of developer tools that have been developed in

the context of WP2. They are expected to be executed on the PC of an external developer.

In this high-level architecture, we separate the software components according to the physical device

or system on which they are deployed. In particular, the software components can reside on the SIFIS-

Home Cloud, on a smart device, on a Not So Smart Device (NSSD) or on the mobile device used by

the user to control its house. In the next sections we detail these five parts.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 13 of 91

Figure 4: High-level architecture of the SIFIS-Home framework

Figure 5 provides a more detailed architecture and illustrates the main components of each building

block. The following subsections expand the previous component diagrams by describing the internal

components in which each of the high-level modules are divided, when a finer-grained decomposition

is needed. Higher-granularity architectural details are provided for more complex sub-components that

can be decomposed furtherly.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 14 of 91

Figure 5: Detailed view of the SIFIS-Home framework, Cloud and Application

3.1 SIFIS-Home Smart Device Framework

The SIFIS-Home Smart Device Framework is the set of SIFIS-Home software components that are

executed on all smart devices present in the smart home. The SIFIS-Home Smart Device Framework

is composed of a set of macro-components providing the following functionalities:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 15 of 91

• SIFIS-Home API Gateway: this component includes a set of high-level APIs and has the

purpose of interfacing the SIFIS-Home Smart Device framework with external applications. In

particular, it offers APIs that are used by the 3rd party applications and the SIFIS-Home control

application.

• Secure Lifecycle Manager: this component is responsible of the bootstrap of a smart device.

Also, it takes care to remove misbehaving nodes and applications. Also, it allows to install 3rd

party applications on the smart devices of the smart home.

• NSSD Manager: it manages the communication with the NSSD devices.

• Application toolboxes: it is the set of software components that take care to perform data

analytics and operations such as policy enforcement and data anonymization.

• Proactive security management layer: this component handles automatically all tasks related

to management of safety and security, such as intrusion and anomaly detection, by triggering

correction measures to stop or mitigate such misbehaviours.

• DHT Manager: it provides a mechanism through which all the different software components

can interact following a publish/subscribe approach. Also, it takes care to communicate with

the SIFIS-Home cloud to allow offering a FIWARE compliant API for a SIFIS enabled smart

home.

• VPN Manager: all smart devices to a VPN server executing on the SIFIS-Home cloud. Its role

is to allow access to the services offered by the smart devices from a remote side and, hence,

allow users to control their smart home when outside.

In the following we describe every macro-component in detail.

3.1.1 SIFIS-Home API Gateway

The SIFIS-Home API gateway (design of which is reported in Figure 6) is the component that allows

interaction of 3rd party applications and the SIFIS mobile application with the smart home. It is

composed of two different components named Mobile Application API and 3rd Party API that we

describe in the following.

Figure 6: The SIFIS-Home API gateway

• Mobile Application API: this component is responsible for allowing the SIFIS mobile

application to interact with the smart home. In particular, it offers APIs providing all the

information needed by the control application. It provides APIs to install third-party

applications on the smart devices, to retrieve the list of all the devices that are inside the

network, to allow to change policies and settings of the smart home, to get alarms and logs

from the system.

• 3rd Party API: this component provides a set of APIs in the form of application libraries to

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 16 of 91

be used by part of 3rd party applications. The APIs will provide access to the information of

the smart home (e.g. the set of lights of the smart home, the list of settings) and will also

allow the 3rd party application to execute commands (e.g. turn on/off a certain

light/appliance). The 3rd party API component communicates with the policy manager to

check whether a certain action requested by an application is allowed or denied. Also, it

communicates with the NSSD Manager component to control and interact with the physical

devices of the smart home.

The set of exposed APIs is reported in Section 5 of the present deliverable.

3.1.2 Secure Lifecycle Manager

Figure 7 presents Secure Lifecycle Manager that is a core module of the SIFIS-Home framework. This

module acts as orchestrator of the framework lifecycle, regulating presence and behaviour of both

Smart Devices and applications. In particular, the Secure Lifecycle Manager enables and handles new

device registration, as well as un-registration. Moreover, it manages installation and removal of third-

party applications, according to the received instructions from the user or from the policy engine and

the intrusion detection system.

Figure 7: Architecture of the Secure Lifecycle Manager

The Secure Lifecycle Manager module includes the following components:

• Node Manager: the node manager registers and unregisters devices in the DHT allowing them

to participate to the communication among the Smart Devices. In detail, it continuously checks

if a certain smart device is misbehaving. If this is the case, it starts a DHT rekeying operation

that forbids that smart device to access the DHT now on. The Node Manager interacts with the

Device Registration Manager to handle the registrations of smart devices and with the System

Protection Manager to get information on the DHT activities and trigger the removal of nodes

which are misbehaving.

• System Protection Manager: this component acts as interface between the Proactive Security

Management Layer and the other components of the secure lifecycle manager. More in details,

the System Protection Manager regulates the collection of behavioural data from nodes and

applications and forwards them for intrusion detection analysis. Thus, it receives commands

which are dispatched to the application manager and node manager to block suspicious

behaviours of both nodes and applications.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 17 of 91

• Application Manager: the application manager is a component which is in charge of

monitoring and controlling the behaviour of the third-party applications installed in the SIFIS-

Home architecture. This component has the needed functionalities to install and remove

applications, as well as interrupting their execution. Moreover, the Application Manager

collects information on the application behaviour, related to their execution, the API they are

invoking, the used resources and the invoked system calls. The application manager can

launch an application execution, and interacts with the Marketplace (that resides on the SIFIS-

Home cloud) to download and install the desired applications. Also, it communicates with the

System Protection Manager to receive commands to halt and remove misbehaving

applications.

• Key Manager: This component provides functionalities for requesting, establishing, updating

and managing security material and credentials used to enforce secure communications and

protection of message exchanges in the SIFIS-Home network.

• Authentication Manager: This component provides functionalities for requesting, updating,

validating, consuming and managing security credentials used to enforce authentication,

authorization and access/usage control of resources and services in the SIFIS-Home network.

3.1.3 NSSD Manager

The NSSD Manager (design is reported in Figure 8) is the component that allows the management of

the Not-so-smart devices that are part of the smart home. It is composed of two different components,

named WoT Manager and COAP Manager, that we describe in the following.

Figure 8: Components of the NSSD Manager

3.1.3.1 WoT Manager

This is the component that takes care to manage the interaction of the SIFIS-Home framework

with NSSD devices that are compliant to the WebThings specification. In particular, this

component takes care to perform the WebThings discovery procedure through which WebThings

enabled devices are discovered. Also, it retrieves all the WebThings descriptions and makes them

available in a WebThings directory and on the DHT, for further usage. Finally, it receives

commands for the WebThings NSSD devices from the DHT and takes care to execute them using

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 18 of 91

the WebThings standard. The software structure and library dependencies of the WoT manager are

depicted in Figure 9.

Figure 9: Software structure of the WoT Manager

A short description of the components is reported in the following.

• sifis-client: is the software used to develop third-party applications runnable on SIFIS-Home

smart devices.

• sifis: is the software components used to translate WoT things representations in SIFIS-Home

devices and resources to make them available to third-party applications.

• sifis-runtime: is the interface toward the DHT, which reads requests toward WoT devices or

publish on topics related to resources controlled by the WoT NSSDs.

3.1.3.2 Interaction with WebThings

WebThings enables direct control of smart home devices over the web by giving them URLs, making

them discoverable and linkable, also defining a standard data model and APIs to make the devices

interoperable and to exchange data between devices and systems. WebThings implementation

includes two main items:

• WebThings Gateway: allows the user to monitor and manage smart home devices and

infrastructure over the web, it has also a rules engine to automate functions based on a

predefined set of rules.

• WebThings Framework: consists of software components developed to directly interact with

the WebThings API and use smart home services.

The SIFIS-Home developers APIs build upon WebThings model, which is used to abstract from the

specific producer-based implementation of functionalities used to provide generic services, such as

“Switch on Light”, “Open Lock”, “Increase Temperature”, etc. Following the Web of Things

terminology, we can name these services “Capabilities”. The Capabilities help developers of third-

party applications to provide applications able to invoke these generic services, without having to be

worried about the actual implementation which in general is device specific. To clarify, let us suppose,

for example, that two device manufacturers provide for their device “Refrigerator”, two different

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 19 of 91

implementations of the “lowerFridgeTemp()” API, to decrease the current temperature in the

refrigerator by 1 °C. To offer this API to third party developers, not having to foresee two distinct

invocations, one for Manufacturer 1 and one for Manufacturer 2, the manufacturers describe the API

as a capability “lowerFridgeTemp()”, exposed by SIFIS-Home. In such a way, the developer shall

simply invoke the capability and the actual implementation, or the specific refrigerator present in a

home, are fully transparent to him.

3.1.3.3 WebThings Architecture

Figure 10 shows the architecture of WebThings that is mainly composed of:

• Things: a physical or virtual entity in the smart home environment abstracted and integrated in

the SIFIS-Home architecture. Things are thus representation of a resource in a IoT

environment offering services and functionalities.

• Thing Description: a structured description of general metadata, domain-specific metadata,

supported Protocol Bindings and links. These metadata are self-descriptive, so that consumers

are able to identify Thing capabilities and how to use them based on the affordances concept.

• Consumers: entities that are responsible for interaction with Things and the processing of

Thing Description. They can be either other devices, applications or web services.

• Intermediaries: entities that sits between Things and Consumers and are indistinguishable

from Things for Consumers.

Figure 10: WoT Architecture

3.1.3.4 WebThings Components

When WebThings architecture components are implemented as a software stack to take the role of

representing an Exposed Thing and making the WoT interface available to the Thing Consumers or

representing a Consumed Thing and making this Thing available to the applications running on the

servient and need to process Thing Descriptions to interact with Things. The resulted software stack is

called a servient and its architecture is illustrated in Figure 11. WebThings servient model has two

different implementations, either based on the WoT scripting language or based on native language

implementation, as shown in and the components are:

• Behaviour Implementation: represents the overall application logic of the servient in terms

of servient autonomous behaviour, interaction affordances, Consumer behaviour, Intermediary

behaviour, and the definition of Things, Consumers, and Intermediaries that are hosted by the

Thing.

• WoT Scripting API: is the interface between Behaviour Implementation and a scripting-

based WoT Runtime. Where the WoT Runtime is a Scripting Runtime system that manages

https://www.w3.org/TR/wot-architecture/#dfn-wot-runtime
https://www.w3.org/TR/wot-architecture/#dfn-wot-runtime

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 20 of 91

WoT-specific aspects, interprets and executes application scripts.

• Native WoT Runtime: a Servient implementation without the WoT Scripting API. Any

programming language may be used for the WoT Runtime application-facing API. But

usually, it is the native language of the Servient software stack.

• Private Security Data: security data such as the secret key used for interaction with Thing are

managed by WoT Runtime but not directly accessible by the application. This data is stored in

a separate isolated memory and an abstract of a group of operations are made accessible.

• Protocol Stack Implementation: implements the WoT interface used by Consumers to use

remote Things via Exposed Things and produces protocol messages for interactions over the

network, where multiple protocols may be implemented supported by protocol bindings for

different IoT platforms.

Figure 11: Architecture of the WoT servient

3.1.3.5 COAP Manager

This is the component that manages the communication of the SIFIS-Home framework with NSSD

devices that are using COAP as their application protocol. The COAP Manager receives commands

and retrieves information from the DHT manager, then it takes care to execute the requested

operations toward the NSSD devices. The communication with the NSSD is protected and established

by using the advanced protocols and solutions that have been studied in the context of WP3.

3.1.4 Application Toolboxes

The diagram in Figure 12 shows the structure of the Application Toolboxes module.

https://www.w3.org/TR/wot-architecture/#dfn-servient
https://www.w3.org/TR/wot-architecture/#dfn-wot-scripting-api
https://www.w3.org/TR/wot-architecture/#dfn-wot-runtime
https://www.w3.org/TR/wot-architecture/#dfn-servient

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 21 of 91

Figure 12: Components of the Application Toolboxes module

The Application Toolboxes module includes the following components that further elaborated in sub-

sections:

• Policy Enforcement Engine: The policy enforcement engine is responsible of evaluating

requests of actions and services in the SIFIS-Home framework, against the policies of usage,

privacy and security defined by the administrator or maintainer.

• Data Analysis Toolbox: The data analysis toolbox includes all the mechanisms to perform

statistical-based and machine learning data analysis. The analysis toolbox provides thus the

main building blocks to analyse textual data, tabular data and multimedia data in order to

perform predictions, analyse voice and gesture commands, detect intrusions and

misbehaviours, as well as providing advanced smart services to the smart home users.

• Anonymization Toolbox: The anonymization toolbox contains software tools to preserve

privacy of data during analysis. Depending on the data type and the desired level of privacy,

the anonymization toolbox can generalize or suppress data information, as well as supporting

differential privacy for privacy preserving data analysis.

Figure 13 illustrates in detail the sub-components of the Policy Enforcement Engine component.

More in details whenever an actor (subject) or component of the SIFIS-Home Architecture is willing

to perform an operation, or requesting a service which might have security, safety or privacy

implications, a request is issued and sent to the policy enforcement engine. The request is matched

with the relevant policies, being thus either authorized or denied. The decision is based on a number

of conditions depending on the subject performing the request, the operation requested and the context

in which the operation is performed. The policy definition and evaluation follow an access control

model based on ABAC (Attribute Based Access Control), which also considers mutable attributes for

decisions that might change over time. The model exploited by the SIFIS-Home framework is the

Usage Control (UCON), which extends the classical ABAC by including the possibility to revoke

previously granted authorizations.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 22 of 91

Figure 13:Sub-components of the Policy Enforcement Engine component

In the following we will give a description of the components of the policy enforcement engine:

• PEP: Policy Enforcement Point. This component acts as interface to the policy enforcement

engine, sending and receiving messages from it. In particular, the PEPs intercept the issuing of

a critical operation and prepares the request to be evaluated. Afterward, the PEP receives the

decision on the policy evaluation and enforces the policy effectively granting, denying or

revoking the access and usage to a resource, operation or service. In the SIFIS-Home

framework, the PEPs are the various subcomponent of the framework issuing operations that

will directly control both the running applications and devices, both Smart and NSSD.

• PDP: Policy Decision Point. This component is the actual policy evaluation engine. It takes as

input an access (usage) request and an access (usage) policy returning one of three possible

decisions: (i) PERMIT, (ii) DENY, (iii) UNDETERMINED. Policies and requests are

expressed in XACML language [XACML, 2013].

• PIP: Policy Information Point. This component retrieves attributes related to the subject (i.e.

the entity requesting a action or resource), object (i.e. the protected resource or action), or

environment (i.e. the description of the context) of received access requests. Each PIP act as

the interface of the Policy Enforcement Engine with a specific Attribute Manager. The

implementation of each PIP is custom for the specific application, Attribute Manager and kind

of attribute that should be retrieved.

• CH: Context Handler. This component is mainly a message dispatcher. It is at the core of the

Policy Enforcement Engine and is responsible of forwarding the access requests first to the

various PIPs for attribute retrieval, then forwards the complete access request to the PDP,

finally returning the decision to the PEP. The CH also receives notification from PIPs for

attribute value changes, forwarding the new value to the PDP for policy re-evaluation,

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 23 of 91

eventually notifying the PEP for a triggered access revocation. The CH is responsible of

handling concurrency issues, also in applications considering several PEP and PIP.

• SM: Session Manager. This component is a database which stores all the active sessions, with

the necessary information to perform policy re-evaluations.

• PAP: Policy Administration Point. This component stores the policies for the PDP and

automatically retrieves the correct policy(es) to be matched with the requests sent by the PEPs.

• PTP: Policy Translation Point. The PTP modules enables translation between high level

human readable policies (which will be described in deliverables of WP2 and WP4) and the

enforceable XACML policies. PTP module firstly checks if there are conflicts between the

available high-level policies. If this is the case, the Evaluator/Notifier and Alarms/Log

modules are used to send an alarm to the user, e.g., in the form of a notifications. If there are

no conflicts, instead, the policies are translated in the corresponding XACML policies.

• AM: Attribute Manager: This component is the interface between a PIP and the attribute

environment. In the SIFIS-Home framework AMs are the various monitors provided by the

Proactive Security Manager and the Distributed Storage itself.

Figure 14 presents in detail the sub-components of the Data Analysis Toolbox component. It includes

four sub-components to carry out statistical-based and machine learning data analysis.

Figure 14: Sub-components of the Data Analysis Toolbox component

The building blocks of the data analysis toolbox are the following:

• The Analytics API: this component provides key data sources and enable data integration and

visualization. It is responsible to grant access to data analysis mechanisms, provide the

functionality to request these mechanisms, pass required parameters and datasets for them to

be performed, and define the way of how the system should respond to the user and visualize

the analysis results. This component has six analysis methods that enable real-time predictions

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 24 of 91

using datasets, models, clusters, and anomaly detectors. Data collected from SIFIS Home

environment are analysed and then produce results to answer questions like whether a software

intrusion has been detected, is there a person in a dangerous situation. It allows to extract

important insights, and execute data manipulations, like converting speech to text and perform

person recognition and identification.

• The pre-processing layer: this component is responsible for the data preparation functions in

terms of cleaning, formatting, normalization, transformation into an understandable format,

and feature extraction. It involves cleaning missing and noisy data, transforming data into an

appropriate and unified format, normalizing data according to the range of values, and

reducing data dimensionality by selecting or combining variables into features. The product of

this component is the final dataset presented in a unified format ready to be analysed by the

analytics engine.

• The Analytics Engine: this component receives the output dataset from the pre-processing

layer after being anonymized as an input and provides methods and models to describe and

analyse data based on machine learning, deep learning, and statistical approaches with secure

computation. This component invokes the mechanisms to handle intrusion detection, identity

recognition, object detection, parental control, multi-level intrusion detection, and software

intrusion detection. After data analysis is performed, the results are sent to the last component

to be aggregated and presented to the user.

• The Post Processing Layer: this component is responsible for the aggregation of the results

obtained from the analytics engine and prepare them to be displayed either on-screen or on

hardcopy to the user. It also interprets the results and communicate with the alerting and

monitoring component in case an intrusion or an anomaly has been detected.

Figure 15 presents in detail the sub-components of the Anonymization Toolbox component. This

toolbox is responsible for data anonymization to protect the privacy of sensitive data by performing

multiple operations:

• The generalization component modifies original data to be in a more general version.

• The suppression component is used to delete or replace the values that disclose identifying

information about the user with NULL value.

• The perturbation component replaces the original data by adding noise to dataset elements in a

random manner.

After the anonymization operations are performed on the original dataset, the anonymized dataset is

forwarded to the pre-processing layer in order to be shared with the Analytic Engine.

Figure 15: Sub-components of the Anonymization Toolbox component

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 25 of 91

3.1.5 Secure Communication Layer

The Secure Communication Layer is illustrated in Figure 16 and includes tools and functionalities for

handling secure message exchange between the components of the SIFIS-Home architecture, in

particular among smart devices.

Figure 16: Secure Communication Layer

The components of the secure communication layer are described in the following.

• Secure Message Exchange Manager – This component provides functionalities to ensure (end-

to-end) protection of communications and message exchanges, between the devices in the

SIFIS-Home network as well as between such devices and auxiliary entities providing

security/administrative supporting services in the network.

• Content Distribution Manager – This component provides functionalities to ensure that

(protected) data and control messages are practically exchanged in the SIFIS-Home network

infrastructure, between the devices in the SIFIS-Home network as well as between such

devices and auxiliary entities providing security/administrative supporting services in the

network. Support is provided for different message exchange models, such as one-to-one, one-

to-many (group communication), and publish-subscribe.

3.1.6 Proactive Security Management Layer

The Proactive Security Management Layer (whose design is reported in Figure 17) is the component

that handles automatically all tasks related to management of safety and security, such as intrusion and

anomaly detection. It is composed of three different components, named Monitors, Self-Healing and

Distributed trust, that we describe in the following.

Figure 17: Components of the Proactive Security Management Layer

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 26 of 91

Monitors: this component is tasked with identifying misbehaviours, security and safety threats in a

SIFIS-Home enabled smart home.

In SIFIS-Home we consider the following misbehaviour types:

• Physical Intrusion: An unauthorized person enters the house premises, or a Guest or Operator

performs unauthorized operations (e.g. when not in the presence of the tenants, begins looking

in the drawers, or they perform aggressive behaviours).

• Software Intrusion: An application performs intentionally behaviours aimed at either violating

privacy, taking control of the SIFIS-Home architecture, hijacking communications between

devices, escalate privileges, violating data integrity, causing physical damage to devices, the

home or tenants, undermining the expected functionality of the smart home services and

devices.

• Device or service misfunction: A device or a service unintentionally misbehaviour, due to a

technical issue (e.g. broken sensor or actuator), or programming mistake.

The Monitors component, thus, extracts/receives features and data from daemons constantly

monitoring all the layers of the SIFIS-Home architecture and framework. Features include information

on operations on the DHT, readings from physical sensors, cameras and microphones, API monitors

and System Calls. The received information are continuously analysed by the Monitors, exploiting the

classifiers of the Data Analysis Toolbox. Afterward, in case a misbehaviour is identified, the Monitors

component interacts with the Application Manager and the Node Manager in the Secure Lifecycle

Manager to tackle the misbehaviour according to a set of pre-defined actions. The Monitors

component also cooperates in both directions with the Distributed Trust Manager, to improve

detection and prevention of misbehaviours coming from Smart Devices.

Self-Healing: this component automatically detects, analyses, and fixes network and devices failures

with minimal human intervention to ensure the property of being self-tolerant and dynamically adapt

to device failures and network requirements and changes. This is performed using the ‘Secure and

Dependable Communication Manager’ for network communication between devices and distributed

Hashtable architecture updates when a device is registered/deregistered. And the ‘Secure Lifecycle

Manager’ for framework bootstrapping, registration/deregistration of the devices and forcing these

operations when needed.

Distributed Trust: the distributed trust manager is a component in support of the anomaly detection.

Being in a fully distributed peer-to-peer environment, a root of trust is lacking and in the event of

having one or more devices (both smart devices and NSSDs) compromised, identification of the

compromised device(s) will be based on a collective decision where every Smart Device participates.

The collective decision is based on a weighted voting procedure on identifying the misbehaving

device(s). Elements to this decision are features and readings on physical and software measures,

coming from sensors and the various monitors offered by the Proactive Security Management Layer.

The distributed trust manager exploits these readings from each device to constantly update a

trustworthiness value, which is based on three parameters: belief, disbelief and uncertainty. When a

voting procedure is performed, the vote from each device is weighted by its trustworthiness value.

Moreover, nodes with a low trustworthiness level are immediately considered either as corrupted or

damaged. Through the node manager, these devices are prevented to further participate to the

architecture activities, unless the self-healing engine manages to fix the issue. Further details, together

with a first implementation of this distributed trust mechanism can be found in [Faiella et al. 2016].

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 27 of 91

3.1.7 DHT Manager

This component (whose representation is provided in Figure 18) is in charge of managing the DHT

(Distributed Hash-Table) and allowing access to it to other software components. Also, it manages the

interaction with Yggio, that is the SIFIS-Home component responsible for providing a FIWARE

compatible API to a SIFIS-Home enabled smart home. As it can be observed by looking at Figure 17,

DHT Manager presents two macro-components, the DHT and the Fiware API ones.

The Publish/Subscribe DHT software component, hereafter referred to as SIFIS-Home DHT for the

sake of brevity, is a software module that i) allows communication among SIFIS-Home software

components and SIFIS-Home devices using a publish/subscribe pattern and ii) provides an easy-to-use

mechanism to share information among devices and applications.

Figure 18: Components of the DHT Manager

SIFIS-Home DHT Reference scenario: the SIFIS-Home DHT component has been specifically

designed for the smart home scenario, which presents a set of unique characteristics and challenges.

As depicted in Figure 19, in a typical smart home, devices are interconnected by means of different

network technologies. For example, we can have some devices (such as smart devices SD1 and SD3

in Figure 19), that are directly connected to the main home router (through a Ethernet or Wi-Fi

connection), but there are also devices (SD2 and SD4 in Figure 19) that connect to the main home

router and to the other smart home devices by means of a multi-hop mesh network. Also, devices can

join and leave the network at any time and can experience failures. In addition, due to the use of

wireless communication, the network may be unstable and network partitions can occur.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 28 of 91

Figure 19: DHT reference smart home scenario

In a SIFIS-Home enabled smart home, the smart devices are used to run a number of services and

applications that take care to manage the smart home (see also Figure 20). Applications need to

communicate with each other and, also, need to share information. Note that due to devices

joining/leaving the smart home it is not possible (or very difficult in practice) to provide applications

with the list (and addresses) of all the other applications that are in their same smart home. Hence,

dynamic discovery mechanisms should be adopted.

Figure 20: DHT reference scenario, applications running on different smart devices

SIFIS-Home DHT Requirements: the SIFIS-Home DHT is the mechanism through which the

communication and data sharing challenges that applications experience in a typical smart home

scenario are addressed in the SIFIS-Home project. In detail, we designed the SIFIS-Home DHT in

such a way that it satisfies the following requirements:

• Pub/Sub messaging without broker: pub/sub messaging is a very effective way to allow

different microservices to communicate. However, classic pub/sub protocols, such as MQTT,

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 29 of 91

are based on the presence of a central messaging broker in the system, that represents a Single

Point of Failure (SPoF). The SIFIS-Home DHT allows applications to rely on a pub/sub

messaging mechanism to exchange information but without the presence of a centralized

broker.

• Dynamic discovery: due to the dynamic nature of a smart home, with nodes joining/leaving

the network at any time, it is not possible to provide applications with the list of all the other

nodes and services present in the system. For this reason, the SIFIS-Home DHT provides a

built-in discovery mechanism through which nodes automatically discover each other. The

discovery mechanism works even if nodes are connected through multiple hops.

• Authentication, confidentiality: despite the DHT presents a built-in discovery mechanism,

only allowed nodes should be able to join the DHT and publish/receive messages. All

communication in the SIFIS-Home DHT is encrypted and all nodes must be provided with a

shared DHT group key in order to be part of the DHT.

• Robust to network partitions: due to the use of wireless communications, network partitions

are likely to occur in a smart home scenario. The SIFIS-Home DHT is robust to network

partition. In particular, applications are not affected at all by network partitions and can

continue to operate normally. Also, specific mechanisms are used to solve possible problems

(e.g. data conflicts) due to the network partitioning (see below).

• Volatile and persistent messages: the DHT allows applications to publish/receive two

different types of messages: volatile and persistent messages. Volatile messages are used to

propagate volatile information (e.g. commands for smart home devices, signalling of events),

i.e. information that does not need to be stored in a persistent way. Conversely, persistent

messages contain information that needs to be stored in a persistent way. For example, in a

smart home scenario persistent messages are used to propagate and store temperature targets,

user policies or the list of devices in the house.

• Data conflicts management: every time a new node joins/re-joins the DHT, a possible data

conflict can occur, since the set of persistent messages possessed by the new joining node can

be significantly different with respect to that present on the nodes that are already part of the

DHT (referred to as DHT nodes in the following paragraph). In detail, data conflicts occur

when: a) there are some messages stored by the joining node that are missing in the set of

persistent messages available on the DHT nodes, b) the DHT nodes have some persistent

messages that are not present in the joining node storage, c) some messages are present on

both the new node and the DHT nodes but their values are different. The SIFIS-Home DHT

provides a built-in mechanism to automatically solve data-conflicts.

In the following section we describe in detail the different mechanisms that are used by SIFIS-Home

DHT to satisfy the above mentioned requirements.

SIFIS-Home DHT technical description: The SIFIS-Home DHT has been developed using the Rust

language, due to its stability, performance and memory usage guarantees. Also, the SIFIS-Home DHT

relies on the usage of the libp2p Rust implementation (https://github.com/libp2p/rust-libp2p). In

detail, SIFIS-Home DHT makes use of the libp2p implementation of the mDNS and gossipsub

protocols. mDNS is used to provide automatic node discovery. gossipsub is instead used to provide

the SIFIS-Home software modules with a completely distributed pub/sub messaging system. In the

following subsections, we report some details about libp2p and its mDNS and gossipsub protocols

implementations.

libp2p basics: libp2p is a modular system of protocols, specifications and libraries that enable the

https://github.com/libp2p/rust-libp2p

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 30 of 91

development of peer-to-peer network applications. In a libp2p network every node is identified

through a PeerId. Every libp2p node has a private key, which it keeps secret from all other nodes.

Every private key has a corresponding public key, which is shared with the other nodes. The public

and private key (or “key pair”) allow nodes to establish secure communication channels with each

other. A PeerId is a cryptographic hash of the public key of a certain node. When nodes establish a

secure channel, the hash can be used to verify that the public key used to secure the channel is the

same one used to identify the node.

libp2p mDNS: multicast DNS (mDNS) protocol resolves hostnames to IP addresses within small

networks that do not include a local name server. It is a zero-configuration service, using essentially

the same programming interfaces, packet formats and operating semantics as unicast Domain Name

Service (DNS). It takes a different approach than the well-known DNS. Instead of querying a name

server, a client sends a multicast request asking which network node matches up with a particular host

name. Multicast is a unique form of communication through which an individual message is directed

at a group of recipients. The group can be made up of, for example, the entire network or a sub-

network. In this way, the request also reaches the node who owns the host name that is being searched

for. The latter responds to the entire network (also via multicast). All participants are informed of the

connection between the name and IP address of the node, and can make a corresponding entry in their

mDNS cache. As long as this notation is valid, no one in the network needs to request the host name

again.

In the context of libp2p, the mDNS protocol is used to discover other nodes on the local network that

support libp2p. In detail, when a libp2p node starts, it sends a specific mDNS message asking all the

other libp2p nodes in the network to send an mDNS response with their information. As mDNS

responses come in, the node adds the information of the other nodes into its local database of

peers/nodes. The mDNS response sent by every libp2p node contains, in particular, the list of

addresses that can be used to connect to the node as well as its PeerId (and, hence, its public key).

Through the usage of the mDNS protocol a libp2p node is able to discover all the other libp2p nodes

that are connected to its same local network. SIFIS-Home DHT instructs libp2p to use all the available

network interfaces to send mDNS discovery requests. In this way, whatever local network is used to

connect two nodes, they are able to discover each other. Please note that the mDNS discovery

mechanism alone does not provide multi-hop node discovery. SIFIS-Home DHT uses an additional

mechanism to provide multi-hop node discovery (see below for details).

Additional details of the libp2p mDNS implementation can be found at

https://github.com/libp2p/specs/blob/master/discovery/mdns.md.

libp2p2 gossipsub: In a publish/subscribe system nodes communicate by exchanging messages and

every message pertains to a specific topic. A node must be subscribed to a certain topic in order to

receive the messages pertaining to that topic.

In a distributed pub/sub system all nodes participate in delivering messages throughout the network.

libp2p uses a gossipsub protocol to provide a completely distributed publish/subscribe messaging

infrastructure. The name gossipsub is due to the fact that peers gossip to each other about which

messages they have seen and use this information to maintain a message delivery network.

Before a node can subscribe to a topic, it should discover the other nodes in the network and establish

a connection with them. Libp2p gossipsub does not provide mechanisms to discover other nodes, but

expects the application using it to provide the addresses of the nodes to which a connection should be

established. In SIFIS-Home DHT, other nodes are discovered through mDNS (see also sections

below).

https://en.wikipedia.org/wiki/Hostname
https://en.wikipedia.org/wiki/Name_server
https://en.wikipedia.org/wiki/Zero-configuration_networking#Name_service_discovery
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://www.ionos.com/digitalguide/server/know-how/multicast/
https://github.com/libp2p/specs/blob/master/discovery/mdns.md

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 31 of 91

Subscribing operation: Nodes keep track of the topics their directly-connected nodes are subscribed

to. Using this information each node is able to build up a picture of the topics around them and which

nodes are subscribed to each topic (Figure 21):

Figure 21: LibP2P subscription model

Keeping track of subscriptions happens by sending subscribe and unsubscribe messages (Figures 22-

23). When a new connection is established between two nodes they start by sending each other

the list of topics they are subscribed to:

Figure 22: Messages exchanged for subscribing to topics

Then over time, whenever a node subscribes or unsubscribes from a topic, it will send each of its peers

a subscribe or unsubscribe message. These messages are sent to all the connected nodes regardless

of whether the receiving node is subscribed to the topic in question:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 32 of 91

Figure 23: Messages exchanged for subscribing/ unsubscribing to topics

Publish operation: when a node wants to publish a message it sends a copy to all the nodes it is

directly connected to (Figure 24).

Figure 24: Publish operation

Similarly, when a node receives a new message from another peer, it stores the message and forwards

a copy to all other nodes it is directly connected to (Figure 25). In the gossipsub specification,

nodes are also known as routers because of this function they have in routing messages

through the network.

Figure 25: Forwarding of a published message

Additional details of the libp2p gossipsub implementation can be found at

https://docs.libp2p.io/concepts/publish-subscribe.

SIFIS-Home DHT combined usage of mDNS and gossipsub: The libp2p gossipsub protocol does

not have any way to discover nodes by itself. For this reason, every SIFIS-Home DHT node uses

mDNS to discover other nodes in its local network. Every time a new node is discovered through

mDNS, its addresses and PeerID are sent to the gossipsub protocol in order to start a connection with

it and start setting up a pub/sub messaging infrastructure.

SIFIS-Home DHT access protection and DHT confidentiality: In order to prevent unauthorized

nodes from joining the gossipsub system, every DHT node is equipped with a pre-shared group key

named DHT key. It is a 32 bytes long key that can be generated using standard tools such as openssl

(the command “openssl rand -hex 32” generates a 32 bytes long random key). Once a connection

between two nodes is started, a proof of possession operation of the shared group key is performed.

The connection is established only if the two nodes both possess the shared key. Please note that every

https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/README.md#controlling-the-flood
https://docs.libp2p.io/concepts/publish-subscribe

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 33 of 91

libp2p connection is both encrypted and authenticated. Hence, it is not possible for nodes external to

the DHT to capture DHT information.

SIFIS-Home DHT details: in this section we describe the specific operations and algorithms that are

executed by every SIFIS-Home DHT node. As mentioned before, SIFIS-Home DHT relies on the

libp2p gossipsub publish/subscribe infrastructure. In detail, the SIFIS-Home DHT uses three different

libp2p gossipsub topics to perform its operations:

• Topic sifis-config: it is the topic used to send DHT maintenance related messages. They are

needed for the correct operation of the DHT. All DHT nodes subscribe to topic sifis-config.

Hence, sifis-config messages are spread throughout the entire network.

• Topic sifis-volatile-data: it is the topic used to propagate volatile messages. Every DHT node

subscribes to topic sifis-volatile-data and is, hence, able to receive all the volatile messages

that are published into the system. Volatile messages are not stored using persistent storage.

Volatile messages are JSON based messages that can contain arbitrary information.

• Topic sifis-persistent-data: it is the topic used to propagate persistent messages. Every DHT

node subscribes to topic sifis-persistent-data. Hence persistent messages are received by all the

DHT nodes. Every persistent message is a JSON based message. Differently from volatile

messages, persistent messages pertain to a topic (whose name is topic_name) and are

identified by means of a topic_uuid. Also, persistent messages are stored using persistent

storage.

Every application using the SIFIS-Home DHT (the SIFIS-Home DHT can be embedded into an

application) is provided with the following DHT operation primitives:

• pub(value: json): operation that allows the application to request the publication of a volatile

message. The content of the published message is specified by the value parameter (json

object).

• put(topic_name: string, topic_uuid: string, value: json): operation that allows to request the

publication of a persistent message pertaining to topic topic_name and whose identifier is

topic_uuid. Its content is specified by parameter value (json object).

• get(topic_name: string, topic_uuid: string): operation that allows to retrieve the persistent

message identified by topic_name and topic_uuid.

In the following sections we highlight the operations that are performed when a pub, put, get operation

is executed by a certain application. Also, we give details about the data structure that is used to store

persistent messages on every DHT node. Finally, we describe the specific messages that are sent using

the sifis-config topic that help in maintaining the DHT operational and solving possible data conflicts.

SIFIS-Home DHT pub() operation: an application using the DHT can request the publication of a

volatile message using the pub operation. In detail, when the pub operation is executed a gossipsub

message, whose content is equal to that specified by parameter value of the pub operation, is

published on topic sifis-volatile-data. The message is received by all the nodes that are part of the

system using the distributed messaging infrastructure built by libp2p.

SIFIS-Home DHT put() operation: persistent messages must be stored by the DHT in a persistent

way. Every persistent message pertains to a specific topic, named topic_name, and has a specific

identifier, named topic_uuid. SIFIS-Home DHT makes use of a BTreeMap to store persistent

messages in the memory of every DHT node. In addition, persistent messages are stored also on disk

using an Sqlite database. In detail, the BTreeMap stores items of type SifisCacheElement. Every

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 34 of 91

SifisCacheElement is composed of different fields and allows storing a single persistent message:

• topic_name: topic to which the stored persistent message pertains to

• topic_uuid: identifier of the persistent message

• value: json object used to store the content of the persistent message, it can contain arbitrary

information

• publisher_peer_id: PeerId of the node that published the persistent message

• publication _timestamp: publication timestamp of the persistent message

Using a BtreeMap allows one to realize the abstraction through which persistent messages can be

thought of as being stored in different tables (topic_names) using different rows (identified by the

topic_uuid of a persistent message) as depicted in Figure 26.

topic_name: SIFIS::Lights

topic_uuid value publisher_peer_id publication_timestamp

first_light {“state”: “on”} node_1 15

second_light {“state”: “off”} node_2 30

topic_name: SIFIS::Sockets

topic_uuid value publisher_peer_id publication_timestamp

first_socket {“state”: “off”} node_3 17

second_sockt {“state”: “off”} node_3 89

Figure 26: SIFIS-DHT Abstraction

Every SifisCacheElement is also persisted on disk using an Sqlite database. This allows applications

to retrieve persistent messages even in case the node where they execute is restarted.

An application can request the publication of a persistent message by using the put primitive. In

detail, the application should specify the topic_name, topic_uuid and value of the persistent message

to be published. A number of operations are performed after a put request. First, a SifisCacheElement

is created and inserted in the BtreeMap of the DHT node where the publishing application is executing

(it is also stored in the local Sqlite database). The publisher_id is set equal to the PeerId of the DHT

node where the application is running while the publication_timestamp is the time at which the put

operation has been requested (i.e. the current timestamp). The SifisCacheElement is then serialized

and published on topic sifis-persistent-data to be received by all the other SIFIS-DHT nodes in the

network. When a DHT node receives the persistent message, it executes the following operations.

First, the topic_name and topic_uuid of the persistent message are extracted from the received

serialized SifisCacheElement. Then, the BTreeMap of the receiving node is accessed to check if it

already contains a SifisCacheElement identified by the topic_name and topic_uuid of the received

persistent message (i.e. if a persistent message with those topic_name and topic_uuid has been already

published in the past). If the message is not present in the BTreeMap, the received SifisCacheElement

is inserted in the BTreeMap. Otherwise, the publication_timestamp of the received SifisCacheElement

and the publication_timestamp of the stored SifisCacheElement are compared. The received

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 35 of 91

SifisCacheElement is inserted in the BTreeMap only if its publication_timestamp is more recent than

the one of the SifisCacheElement already stored in the BTreeMap. In all the other cases, the received

message is dropped. This realizes a Last Writer Wins policy that is extremely helpful while solving

possible data conflicts.

BTreeMap initialization

The BTreeMap of a DHT node is initialized using the set of persistent messages that are stored inside

the Sqlite file of the DHT node. This allows applications to retrieve persistent messages even in case

of a node reboot.

SIFIS-Home DHT get() operation: an application can retrieve a persistent message by using the get

DHT operation and providing the topic_name and topic_uuid of the persistent message to be retrieved.

When it is executed, the BTreeMap of the local node is accessed and the content of the entry

identified by topic_name, topic_uuid is returned. Please note that the get operation is very efficient

since it does not generate any network message.

SIFIS-Home DHT maintenance and data-conflicts management: topic sifis-config is used to

propagate information that is needed to maintain the DHT in an operational state. Also, the messages

exchanged through topic sifis-config are necessary to solve possible data conflicts arising after

network partitions or node joining events.

Usage of topic sifis-config

Every DHT node periodically sends a DHT State Message using topic sifis-config. A DHT State

Message contains the following information:

• peer_id: peer id of the node publishing the State Message. Since State Messages are received

by all the nodes in the system, they can be used by DHT nodes to discover the identity of

nodes that are even more than one hop far from them (directly connected nodes are discovered

through mDNS).

• cache_hash: it is the hash value of the current content of the BTreeMap of the node publishing

the State Message. Please note that the cache_hash of a node changes every time the

BTreeMap state changes (e.g. due to the insertion of a new persistent message or due to a

change in the content of a persistent message stored in the BTreeMap). Also note that if the

content of two different BTreeMaps is the same, also the computed hash value is the same.

• publication_timestamp: it is the timestamp at which the State Message has been published.

State Messages with a quite old publication timestamp are dropped since they do not provide

updated information.

Every DHT node stores the received State Messages in a specific table, named Peers State Table.

The Peers State Table provides a compact view of the states of the BTreeMap of every DHT node in

the system. It can be observed that when the DHT is stable, it is expected that the cache_hash of all

the entries in the Peers State Table should be the same. This is because the set of persistent messages

stored by every node should be exactly the same. Conversely, in case a new node joins the system or

when some network nodes reconnect after a network partition event, the set of persistent messages on

different nodes can be different, causing the cache_hash values of different entries in the Peers State

Table to be different too. In such a case, a data conflict is present in the system and the DHT should

take care to manage and solve it. In detail, every DHT node periodically checks the entries of its Peers

State Table. If some entries report different cache_hash values, the following actions are performed.

For every hash_value present in the Peers State Table (representing a certain set of persistent

messages stored by a certain node or by a set of nodes), a hash leader is selected. The hash leader is

the DHT node that will be responsible for republishing the content of its BTreeMap, i.e. the set of

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 36 of 91

persistent messages producing that particular hash_value. When all the hash leaders finish publishing

the content of their BTreeMap the most recently published persistent message for every topic_name,

topic_uuid will be stored in the BTreeMap of every DHT node (remember that a Last Writer Wins

policy is used to store messages in the BTreeMap of the DHT nodes). Hence, the data conflict is

automatically solved by the DHT thanks to the Last Writer Wins policy and to the periodic exchange

of State Messages.

DHT usage: rust applications can use the SIFIS-Home DHT by embedding the DHT. The SIFIS-

Home DHT is available as a library for Rust native applications. For non-Rust applications, the SIFIS-

Home DHT provides a REST + WebSocket interface through which it is possible to publish volatile

messages and store/retrieve persistent messages.

Fiware API: This component takes care of forwarding the information stored and published on the

DHT to the Yggio component residing on the SIFIS-Home cloud. In addition, the Fiware API

component receives configurations and commands from Yggio and stores/forward them on the DHT.

The Fiware API component is expected to communicate with Yggio by using the well-known MQTT

protocol.

3.1.8 VPN Manager

The VPN Manager component is a VPN client connecting to the SIFIS-Home VPN Server. Its

functionality is to allow access to the smart devices from the outside, even in case the home router

connection is under NAT.

3.2 SIFIS-Home Application Framework

The SIFIS-Home Application Framework is the set of SIFIS-Home software components that are

installed and executed on the mobile devices dedicated to the control of the smart home.

The SIFIS-Home Application Framework is the main interaction element between the SIFIS-Home

framework and the tenants and other users (e.g. administrator, maintainer). The Application

Framework provides a user interface used to configure user preferences, interact with GUI-capable

applications, install and remove applications, set-up usage, safety and security policies. SIFIS-Home

Application Framework and its macro-components are illustrated in Figure 27.

The SIFIS-Home Application Framework is composed of a set of macro-components providing the

following functionalities:

• Home: the principal component of the User Interface, containing commands that lead the

resident user of the SIFIS-Home system to the lead features of the infrastructure.

• Device management: components for the configuration of the devices in the SIFIS-Home

network.

• Alarms/Log: a component including features to show alarms to the user, and to gather logs of

the functioning of the SIFIS-Home infrastructure.

• Settings: the component provides user interfaces for the configuration of the SIFIS-Home

infrastructure. Different interfaces are provided to different actors of the SIFIS-Home system.

• Application Launcher: the component provides graphical user interfaces from which the user

can visualize available applications to be installed on the SIFIS-Home system, download,

install, update them if new versions are available, and launch them.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 37 of 91

• Input Collection: modules in charge of providing the facility of collecting the inputs from the

user, in all the forms that are allowed by the system.

Figure 27: Macro-components of the SIFIS-Home Application Framework

3.2.1 Home

Figure 28 illustrates the Home module that consists of the most important features of the devices. An

aim of the module is that users can see the overall status of their Smart Home at a glance, without

having to navigate further.

Figure 28: Components of the Home module

The module has five detailed components as follows

• Message Feed: This component stores and shows to the users a list of messages received from

the smart devices of the SIFIS-Home architecture. Message Feed may contain crucial alerts, a

link to the smart device they come from and call to action-buttons depending on the type of the

message (e.g., show more-buttons, shut down an alarm and/or feature).

• Camera Feed: Shows a live camera feed and an easy way to browse through different

cameras if there are more than one. In event of an alarm, Camera Feed should have a recording

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 38 of 91

of the source of the alarm if there are any cameras pointing at the location or (using facial

recognition) a picture of an intruder.

• Login Screen: Users may choose to log-in using their biometric data or an access code. Login

Screen provides the means for a quick and easy login.

3.2.2 Device Management

The Device Management module provides methods to view the list of SD and NSSD devices of the

smart home. The user is allowed to add a certain SD or NSSD to the smart home as well as remove

devices. Also, the Device Management module allows to create a list of favourite devices, rename

devices, and indicate if a certain device is allowed to report alarms.

3.2.3 Alarms / Log

Figure 29 illustrates the Alarms / Log module that is used to show, visualize and set off alarms.

Alarms are logged in an Activity Log and shown in both SIFIS-Home system and SIFIS-Home app in

order to reach user wherever they are.

Figure 29: Components of the Alarms / Log module

The Alarms / Log module includes two components as follows

• Activity Logs: A sortable list of all the activity from the SIFIS-Home connected devices. Can

be divided into important events and an overview of the events of the last day.

• Alarm visualization: A visual presentation of the alarm on SIFIS-Home and a mobile app.

Can include both auditive and visual presentations.

3.2.4 Application Launcher

Presents all the available applications which can be installed on a SIFIS-Home enabled smart home.

The user should be able to select the list of applications to be installed on the smart home, as well as

remove applications.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 39 of 91

3.2.5 Settings

Figure 30 presents the Settings module that is divided in two different modules: User Settings and

System Setting that are explained in this sub-section.

Figure 30: Structure and components of the Settings module

User Settings: this module has three parts

• User Management: allows to retrieve the list of users, create new ones and assign roles to

users.

• Biometric data: Editing and viewing biometric data of the user. Users should be able to

upload-record their Face model in order to be recognized by the system

• Profiles: allows to define different smart home user roles. For every role, it is possible to

specify its rights and allowed/denied operations.

System Settings: this module offers general system-wide settings to control SIFIS-Home. The system

settings are based on the definition of policies. The policy definition and evaluation follow an access

control model based on ABAC (Attribute Based Access Control), which also considers mutable

attributes for decisions that might change over time. The model exploited by the SIFIS-Home

framework is the Usage Control (UCON), which extends the classical ABAC by including the

possibility to revoke previously granted authorizations.

3.2.6 Input collection

Figure 31 presents the Input collection module that is used to collect various types of input data from

the SIFIS-Home tenants and guests.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 40 of 91

 Figure 31: Components of the Input collection module

The Input collection module consists of the following components

• Voice Input: used to get voice commands from the user.

• Camera Input: used to get images from the camera to be used for various analytics tasks.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 41 of 91

3.3 SIFIS-Home NSSD Framework

The SIFIS-Home NSSD Framework is the set of components that are expected to be present and every

NSSD device that should be part of a SIFIS-Home enabled smart home. As illustrated in Figure 32,

the SIFIS-Home NSSD Framework is composed of the Bootstrap Manager and Device API Manager

components.

Figure 32: The SIFIS-Home NSSD Components

3.3.1 Bootstrap Manager

This component allows a NSSD device to receive all the information needed to allow it to join a

SIFIS-Home network. In detail, the Bootstrap manager provides APIs that allow to i) set network

connection information (e.g. SSID and password of the Wi-Fi network to which the NSSD device

should connect to) and ii) set authentication credentials to access the NSSD so that only allowed

applications are able to communicate and operate with the NSSD.

3.3.2 Device API Manager

This component offers the API through which a NSSD can be operated. In the case of a WebThings

enabled NSSD, all the functionalities of the NSSD are offered by means of a set of properties, actions,

events that can be set and retrieved by using standard Web-based protocols.

3.4 SIFIS-Home Cloud Framework

The SIFIS-Home Cloud framework is the set of SIFIS-Home components that reside and are executed

on the SIFIS-Home cloud as illustrated in Figure 33. They are the following ones:

• Marketplace: it is a webservice component that provides a set of APIs through which it is

possible to retrieve the list of SIFIS-Home 3rd party applications that can be installed on SDs.

For every application it is reported the download URL as well its security assessment score.

The marketplace webservice provides also developer APIs to upload and store 3rd party

applications by part of external developers.

• VPN Server: a VPN server to which the SDs connect to. It is used to allow access to the SDs

from the Internet even when the house is not provided with a public IP connection.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 42 of 91

• SIFIS-Yggio: it is a specialized version of YGGIO, the SENSATIVE context broker. Its role

is to provide a FIWARE compliant API to SIFIS-Home enabled smart homes. It communicates

with the Fiware API component to receive messages published on the DHT and to send

command to the NSSD devices of the smart home.

• Home Registration Manager: it provides an interface through which it is possible to create a

new SIFIS-Home enabled house. When a new house is created, a VPN server and an Yggio

instance dedicated to the house are created.

Figure 33: The SIFIS-Home Cloud Components

Picture above must get updated with “Home registration manager”

3.5 SIFIS-Home Development Tools

This component is the set of tools that are made available to developers of third party applications. As

discussed, this component includes the toolboxes and the API set to interact with the marketplace

described in the WP2 deliverables.

3.6 Cryptography Management

In SIFIS-Home, the assumption relevant for cryptography management is that both Smart Devices and

NSSDs are honest and trusted. Thus, cryptography is thus used to protect the confidentiality and

integrity of packets exchanged among smart devices and NSSDs by other entities. In fact, since the

communications are based on wireless protocols, the system needs to be protected from eavesdropping

and other attacks falling the sphere of Man-In-The-Middle attacks.

Key recovery attacks can rely on accessing the secret cryptographic material on a compromised

device, or on exploiting weaknesses in the used cryptographic algorithms. As to the former approach,

devices that can afford technologies such as Trusted Execution Environments should use those for

securely storing and using secret cryptographic material.

Thus, having access to the cryptographic material from a key recovery attack implies that a device has

been compromised and is misbehaving. Such issue does not fall under cryptography and is left for

management through intrusion detection. Once a device is deemed as malicious, that device is isolated

and all keys are regenerated.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 43 of 91

3.6.1 OSCORE Security Protocols

SIFIS-Home relies on solutions for secure communication that in turn use standard, state-of-the-art

cryptographic algorithms. Nevertheless, the following actions are taken to further mitigate the impact

of potentially compromised keying material.

The following makes specific reference to the OSCORE Master Secret, that are used in the OSCORE

and Group OSCORE security protocols to derive pairwise keying material and group keying material,

respectively. Note that the OSCORE Master Salt is not intended to be secret.

When considering one-to-one communication protected with OSCORE, the two peers share the

OSCORE Master Secret, from which they derive the keying material used to protect their

communications with OSCORE.

If, irrespectively of the reason, the Master Secret gets compromised, the whole secure association

between the two peers gets compromised. As soon as one of the two peers, say A, becomes aware of

that, it terminates the secure association with the other peer B. After that, if A (B) still believes B (A)

to be honest and non-compromised, then A (B) can establish a new secure association with B (A).

Like when establishing the first secure association, this can happen, e.g., by using the authenticated

key establishment protocol EDHOC, or the OSCORE profile of the ACE Framework for

Authentication and Authorization in Constrained Environments.

As long as a secure association between A and B is legitimately ongoing, both A or B can securely

update such association, e.g., by using the lightweight key update procedure KUDOS. In order to

reduce the risk of key recovery attacks and of experiencing weaker security assurances, performing

such an update is recommended with a regular cadence (depending on application policies) as well as

upon approaching limits related to the usage of the keying material in the secure session. Such limits

are peculiar of each different encryption algorithm, and typically concern the number of performed

encryptions with the same symmetric key and the number of failed authenticated decryptions with the

same symmetric key.

When considering one-to-many, group communication protected with Group OSCORE, all the peers

in the security group share the same OSCORE Master Secret, from which they derive the keying

material used to protect their communications with Group OSCORE. Together with other relevant

parameters, the group members obtain the OSCORE Master Secret when joining the OSCORE group

through the OSCORE Group Manager responsible for that group.

The Group Manager is also responsible for renewing the OSCORE Master Secret in the group (i.e., to

perform a group rekeying). This can occur for a number of reasons:

• Periodically, according to application policies. Like for the case of one-to-one communication

discussed above, this also limits the risk of key recovery attack.

• Upon a current group member's leaving, e.g., as a spontaneous group leaving or because

compromised or suspected so. In such a case, the Group Manager does not provide the new

OSCORE Master Secret to the leaving node, hence rekeying the group in such a way that

logically evicts that node and ensures forward security.

• If the application requires backward security, the Group Manager rekeys the group upon a

node joins as a new group member.

If, irrespectively of the reason, the OSCORE Master Secret gets compromised, the whole secure

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 44 of 91

association between the group members gets compromised. As soon a group member becomes

aware of that, it stops using the secure association to communicate with the other group members.

As soon as the Group Manager becomes aware of that, the Group Manager would rekey the group,

hence all the group members can rely on a new OSCORE Master Secret to establish a new group

secure association.

The Group Manager might specifically become aware of compromised group members, possibly

through the assistance of an Intrusion Detection System. In this case, the group rekeying is

performed in such a way to logically evict the compromised group members (see above).

The OSCORE Group Manager is not devoted to any particular group rekeying scheme. While it

must support a basic, point-to-point rekeying scheme that leverages pairwise secure associations

between the Group Manager and another single group member, the Group Manager can also take

advantage of additional, more efficient rekeying schemes presented in the literature (e.g., based on

key graphs or time-based sorting of administrative rekeying keys).

3.7 Updates with respect to preliminary SIFIS-Home Architecture

In this section we report a description of the updates with respect to the preliminary SIFIS-Home

Architecture (discussed in deliverable D1.3).

In Table 1, we report all the components and subcomponents described in the preliminary architecture

reported in deliverable D1.3. For each component (and subcomponent) we report the correspondent

component (and subcomponent). We report and motivate the actions taken for each component in the

architecture.

In summary, the following principal updates were applied on the SIFIS-Home Architecture:

- The SIFIS-Home API Gateway has been restructured, by defining only two sub-modules

(Mobile Application API and 3Rd Party API) instead of 12. This modification has been

performed in order to simplify the architecture and separate the two components according to

their responsibility and not to the specific group of endpoints (APIs) offered.

- Six high-level components have been added to the architecture: SIFIS-Home Development

Tools; SIFIS-Home Cloud Framework, SIFIS-Home NSSD Framework, DHT Manager, VPN

Manager, NSSD Manager;

- The User Interface component of the original architecture has been moved outside the SIFIS-

Home Application high-level macro-component and renamed SIFIS-Home Application

Framework;

- The high-level component Secure Communication Layer has been removed from the level one

architecture of the SIFIS-Home framework.

Table 1: Updates to component and subcomponents with respect to preliminary SIFIS-Home Architecture

Component and subcomponent in

D1.3

Component and subcomponent in

D1.4

Action

SIFIS-Home

API Gateway

- SIFIS-Home

API Gateway

- No action

SIFIS-Home

API Gateway

Data

Management API

- - Sub-modules merged into Mobile

application API

SIFIS-Home

API Gateway

Device

Management API

- - Sub-modules merged into Mobile

application API

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 45 of 91

SIFIS-Home

API Gateway

DHT

Management API

- - Sub-modules merged into Mobile

application API

SIFIS-Home

API Gateway

Application API - - Sub-modules merged into Mobile

application API

SIFIS-Home

API Gateway

Policy

Management API

- - Sub-modules merged into Mobile

application API

SIFIS-Home

API Gateway

Data Analysis

API

- - Sub-modules merged into Mobile

application API

SIFIS-Home

API Gateway

Notification API - - Sub-modules merged into Mobile

application API

SIFIS-Home

API Gateway

Communication

API

- - Sub-modules merged into Mobile

application API

SIFIS-Home

API Gateway

Marketplace API - - Sub-modules merged into Mobile

application API

SIFIS-Home

API Gateway

Home API - - Sub-modules merged into Mobile

application API

SIFIS-Home

API Gateway

WoT Interfacing

API

- - Sub-modules merged into Mobile

application API and 3rd party API

SIFIS-Home

API Gateway

Fiware

Interfacing API

- - Sub-modules merged into Mobile

application API and 3rd party API

User Interface - SIFIS-Home

Application

Framework

- Component renamed and moved

outside the SIFIS-Home Smart Device

Framework

User Interface Home SIFIS-Home

Application

Framework

Home No action

User Interface

Device

Management

SIFIS-Home

Application

Framework

Device

Management

No action

User Interface

Settings SIFIS-Home

Application

Framework

Settings Merged with Policy Manager

User Interface

Alarms / Logs SIFIS-Home

Application

Framework

Alarms / Logs No action

User Interface

Marketplace SIFIS-Home

Application

Framework

Marketplace No action

User Interface

Input Collection SIFIS-Home

Application

Framework

Input Collection No action

User Interface

Policy Manager SIFIS-Home

Application

Framework

Settings Merged with Settings

Secure Lifecycle

Manager

- Secure Lifecycle

Manager

- No action

Secure Lifecycle

Manager

Application

Manager

Secure Lifecycle

Manager

Application

Manager

No action

Secure Lifecycle

Manager

Node Manager Secure Lifecycle

Manager

Node Manager No action

Secure Lifecycle

Manager

Authentication

Manager

Secure Lifecycle

Manager

Authentication

Manager

No action

Secure Lifecycle

Manager

Device

Registration

Manager

Secure Lifecycle

Manager

Device

Registration

Manager

No action

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 46 of 91

Secure Lifecycle

Manager

Key Manager Secure Lifecycle

Manager

Key Manager No action

Secure Lifecycle

Manager

System

Protection

Manager

Secure Lifecycle

Manager

System

Protection

Manager

No action

Secure

Communication

Layer

- Secure

Communication

Layer

- No action

Secure

Communication

Layer

DHT

Communication

Manager

DHT Manager Fiware API Functions of the module moved into the

DHT Manager module

Secure

Communication

Layer

External

Communication

Manager

SIFIS-Home

API Gateway

3rd Party API Functions of the module moved into the

SIFIS-Home API Gateway Module

Secure

Communication

Layer

Secure Message

Exchange

Manager

Secure

Communication

Layer

Secure Message

Exchange

Manager

No action

Secure

Communication

Layer

Network

Protection

Manager

- - Functions of the module distributed

into the individual components needing

network protection features

Secure

Communication

Layer

Content

Distribution

Manager

Secure

Communication

Layer

Content

Distribution

Manager

No action

Application

Toolboxes

Policy

Enforcement

Engine

Application

Toolboxes

Policy

Enforcement

Engine

No action

Application

Toolboxes

Data Analysis

Toolbox

Application

Toolboxes

Data Analysis

Toolbox

No action

Application

Toolboxes

Anonymization

Toolbox

Application

Toolboxes

Anonymization

Toolbox

No action

Proactive

Security

Management

Layer

- Proactive

Security

Management

Layer

- No action

Proactive

Security

Management

Layer

API Monitor Proactive

Security

Management

Layer

Monitor Merged into the “Monitor” component

Proactive

Security

Management

Layer

DHT Monitor Proactive

Security

Management

Layer

Monitor

Merged into the “Monitor” component

Proactive

Security

Management

Layer

Network /

System Monitor

Proactive

Security

Management

Layer

Monitor

Merged into the “Monitor” component

Proactive

Security

Management

Layer

Self Healing Proactive

Security

Management

Layer

Self-Healing No action

Proactive

Security

Management

Layer

Distributed Trust Proactive

Security

Management

Layer

Distributed Trust No action

Proactive

Security

Management

Layer

Evaluator /

Notifier

- - Functions of the module distributed

into the individual components

Distributed

Data Storage

- DHT Manager DHT Module moved in DHT manager

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 47 of 91

4 Mapping between Functional Requirements and SIFIS-Home Architecture

In Table 2, we report a mapping between the Functional Requirements of the SIFIS-Home

Framework, described in deliverable 1.2, and the components of the architecture designed in the

present deliverable.

Table 2: Mapping between functional requirements and architecture components

ID Req. description Architecture Component

F-01
The SIFIS-Home framework shall provide means of identifying the resident users and

administrators inside the smart home through biometrics.

Input collection, System

Protection Manager

F-02
The SIFIS-Home system shall provide means of authentication to resident users,

administrators and guest users inside the smart home.
Authentication Manager

F-03
The SIFIS-Home system shall match read biometrics against a database of stored ones, in

order to assess authentication.
Authentication Manager

F-04
The system shall make different features available and accessible to different users, based

on their authenticated identity
Authentication Manager

F-05
The system shall activate a guest profile when the identity of the biometrics is not

recognised.
Authentication Manager

F-06

The SIFIS-Home system shall provide Automatic Speech Recognition (ASR) to provide

resident users and administrators the facility to control their home appliances through their

speech.

Input Collection

F-07

The SIFIS-Home system shall have means to receive and interpret the voice commands

provided by the user, and it shall be able to interpret those commands belonging to a

predefined command set

Input Collection

F-08
The SIFIS-Home system shall be able to execute a predefined set of actions in response to a

predefined set of recognizable voice commands
Input Collection

F-09
The SIFIS-Home system shall signal the presence of an intruder when the identity is not

recognised and no residents are at home.

Input Collection, System

Protection Manager

F-10
The SIFIS-Home system, following the detection of an intruder, shall track the intruder and

attempt again to identify him/her

Input Collection, System

Protection Manager

F-11

The SIFIS-Home system shall store the identity of the intruder if the face is recognized. If

the face is not recognized, the video and audio recordings must be stored from the system as

well

Input Collection, Alarms /

Log, System Protection

Manager

F-12
The SIFIS-Home system, following the detection of an intruder, shall track the intruder and

attempt again to identify him/her.

Input Collection, Alarms /

Log, System Protection

Manager

F-13 The SIFIS-Home system may grant the access to recording to the maintainer.
Input Collection, Alarms /

Log

F-14
The SIFIS-Home system may allow administrators and resident users to contact police to

receive assistance in case of intrusions

Input Collection, Secure

Message Exchange Manager

F-15
The SIFIS-Home system shall provide means of identifying anomalous situations and

behaviours inside the smart home

Input Collection, Policy

Enforcement Engine, Alarms

/ Log

F-16

The SIFIS-Home system shall provide means of recognition of allowed users in unusual

locations or performing dangerous actions, and signal them to resident users and

administrators.

Input Collection, Policy

Enforcement Engine, Alarms

/ Log

F-17
The SIFIS-Home system shall provide means of recognition of prohibited objects inside the

smart home and signal resident users and administrators.

Input Collection, Policy

Enforcement Engine, Alarms

/ Log

F-18
The SIFIS-Home system shall provide means of recognition of allowed objects inside the

smart home in unusual positions, and signal resident users and administrators.

Input Collection, Policy

Enforcement Engine, Alarms

/ Log

F-19 The SIFIS-Home system shall detect, identify and disconnect infected devices. Device Management

F-20
The SIFIS-Home system shall notify resident users and administrators when malware is

detected.
Alarms / Log

F-21
The SIFIS-Home system shall be able to execute self-healing algorithms to transfer

functionalities of devices that have been disconnected for security reasons to the others.
System Protection Manager

F-22
The SIFIS-Home system should allow means of verifying that the malware has not spread to

other devices.
System Protection Manager

F-23 The SIFIS-Home system shall allow the resident user to register more components to the Device Management

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 48 of 91

system.

F-24
The SIFIS-Home system shall allow the resident users and administrators to visualize a list

of the registered devices, along with their characteristics.
Device Management

F-25
The SIFIS-Home system shall allow the administrators and device owners to unregister

from the system a registered component.
Device Management

F-26
The SIFIS-Home systems shall expose a section where the device owners and

administrators can configure the devices.
Device Management

F-27
The SIFIS-Home system shall prompt the administrator when unsolicited configuration

changes are propagated to the devices.
Alarms / Log

F-28
The SIFIS-Home system must provide a marketplace function for the download of third-

party applications on smart devices.
Marketplace

F-29
The SIFIS-Home system shall retrieve and provide information about the safety and security

aspects of an application to the user.
Application Manager

F-30
The SIFIS-Home system must provide a feature to show the administrators a list of

currently active policies.
Policy Manager

F-31
The SIFIS-Home system must provide a feature to show the administrators a list of

currently active policies
Policy Manager

F-32
The SIFIS-Home system must allow the administrator to configure policies for (groups of)

users.
Policy Manager

F-33
The SIFIS-Home system must allow the administrator to configure policies for (groups of)

devices.
Policy Manager

F-34
The SIFIS-Home system must allow the administrator to view the policies related to

features and/or resources either permitting or denying access or usage to (groups of) users.
Policy Manager

F-35
The SIFIS-Home system must allow the administrator to see the list of features/resources

that are allowed or forbidden for all groups of devices.

Device Management, Policy

Manager

F-36
The SIFIS-Home system must provide the user with a feature to list all the currently

available profiles.
Policy Manager, Settings

F-37 The SIFIS-Home system must allow the user to configure his/her profiles. Settings

F-38 The SIFIS-Home system may allow the user to switch his/her current profile. Settings

F-39
The SIFIS-Home system should show the user a summary of the preferences associated to

its current profile.
Settings

F-40
The SIFIS-Home system should show notifications to the user when the current profile is

changed.
Settings, Alarms / Log

F-41
The SIFIS-Home system should offer aggregate analytics and statistics about the usage and

behaviour of devices to the administrator.
Data Analysis Toolbox

F-42
The SIFIS-Home system should offer aggregate analytics and statistics about the usage of

profiles to the administrator.
Data Analysis Toolbox

F-43
The SIFIS-Home system must offer remote authenticated and secure log-in features to

configurer/maintainers of user profiles.
Authentication Manager

F-44
The SIFIS-Home system shall offer to the maintainers a panel with the remote homes he/she

can manage.
Settings

F-45
The SIFIS-Home system must offer the maintainer an interface with the possibility to call

the authorities or alert the administrator and residents, in case of intrusions.

Settings, Secure Message

Exchange Manager

F-46
The SIFIS-Home system shall allow the residents to store personal content (video, audio,

text).

Input Collection, Content

Distribution Manager

F-47
The SIFIS-Home system must be able to map a policy defined by the administrator into one

or more device-level policies.

Policy Manager, Device

Management

F-48
The SIFIS-Home should be able to map the device-level policies with the capabilities of the

involved devices.

Policy Manager, Device

Management

F-49 The SIFIS-Home must be able to apply the active device-level policies to the actual devices.
Policy Manager, Device

Management

F-50 The SIFIS-Home must be able to apply the active device-level policies when needed. Policy Manager

F-51
The SIFIS-Home should notify when a device-level policy cannot be mapped onto any

device.

Policy Manager, Alarms /

Log

F-52 The SIFIS-Home should be able to identify redundant or conflicting policies. Policy Manager

F-53
The description of the policies must be available to administrators, maintainers and tenants

of the SIFIS-Home system.
Policy Manager

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 49 of 91

F-54 Administrators and configurers shall be able to create, configure and delete security groups.
Policy Manager,

Authentication Manager

F-55
Administrators and configurers shall be able to register security groups and thus make them

dynamically discoverable

Policy Manager, Node

Manager

F-56
There must be a means for Administrators and devices to discover security groups,

including their properties, how to join them, as well as their associations with application

groups and their resources.

Application Manager,

Device Management, Policy

Manager

F-57
There must be a means for devices to join/leave a security group and retrieve/provide

updated key material to communicate in the group

Policy Manager, Secure

Message Exchange Manager

5 SIFIS-Home APIs

In the following sub-sections, we provide the APIs that have been defined for the set of blocks of the

SIFIS-Home architecture.

We identify a separation between two different levels of APIs:

- Application APIs, that are going to be used by the house control application and the

configuration portal, and are defined as REST APIs. We used the OpenAPI specification

(https://www.openapis.org/) and Swagger Editor (https://editor.swagger.io/) to define the

APIs. The swagger file is reported in Appendix A. OpenAPI is the de-facto industrial standard

to define REST based APIs.

- Internal APIs, that are utilized by the SIFIS-Home architecture components as a means of

internal communication and are defined as SDKs.

5.1 Home APIs

APIs used to authenticate users and get all the information that should be present in the house control

dashboard.

5.1.1 Login API

- Description: API to get an authorization token using username and password. The

 API returns as a parameter the Authorization token to be used in further

 API invocations.

- URI: /home/login

- HTTP method: GET

- Header Parameters: username (string)

password (string)

- Responses: - 200 OK
Response schema: Authorization token (string)

- 401 “Login Failure”

5.2 Communication APIs

APIs used to retrieve logs, alerts and messages generated by the SIFIS-Home system.

5.2.1 Messages

https://www.openapis.org/
https://editor.swagger.io/

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 50 of 91

- Description: The API returns a list of messages. It returns the messages belonging to

 the topic to which the client is registered. The API allows an optional

 additional filter to be provided as a parameter.

- URI: /messages

- HTTP method: GET

- Header Parameters: authorization (string) - authorization token of the client requiring the

 data feed

- Query Parameters: searchstring (string) - Optional filter string for the messages to be

 returned

- Responses: - 200 “OK”
Response schema: Message (object)

- 401 “Login Failure”

- 404 “No messages found”

5.2.2 Message Feed Register

- Description: The API allows to subscribe to data from alarms and activity logs

 pertaining to a certain topic. The API receives the topic to which the

 user wants to subscribe.

- URI: /messages/messageFeedRegister/{topic}

- HTTP method: POST

- Header Parameters: authorization (string) - authorization token of the client willing to

 perform the registration

- Path Parameters: topic (string) - Topic of the required feed

- Responses: - 200 “OK”
Response schema: Message (object)

- 401 “Login Failure”

- 404 “Topic not registered”

5.2.3 Message Feed Unregister

- Description: The API allows to disable the subscription to data from alarms and

 activity logs pertaining to a certain topic. The API allows to disable the

 subscription to data from alarms and activity logs pertaining to a certain

 topic.

- URI: /messages/messageFeedUnregister/{topic}

- HTTP method: post

- Header Parameters: authorization (string) - authorization token of the client willing to

 unregister

- Path Parameters: topic (string) - Topic of the feed

- Responses: - 200 “OK”
- 401 “Login Failure”

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 51 of 91

- 404 “Topic not registered”

5.2.4 Stream Camera Feeds

- Description: The API allows to access data from alarms and activity logs.

- URI: /messages/streamCameraFeeds/{topic}

- HTTP method: GET

- Header Parameters: authorization (string) - authorization token of the client willing to

 stream the camera feed

- Path Parameters: topic (string) - Topic of the desired camera feeds

- Responses: - 200 “OK”
Response schema: CameraFeed (object)

- 401 “Login Failure”

- 404 “Topic not registered”

5.3 Device Management APIs

- APIs used to manage the list of devices present in the house. They allow to retrieve the list of

devices that are present in the house as well as add/remove one device from the list of

)information about the devices

- Responses: - 200 “OK”
Response schema: Device (object)

- 401 “User unauthorized”

- 404 “Devices not found”

5.3.1 Add Favourite Device

- Description: The API receives the ID of a device that has to be put into the set of

 favourites

- URI: devices/addFavouriteDevice/{deviceID}

- HTTP method: POST

- Header Parameters: authorization (string) - authorization token of the client willing to

 add the favourite device

- Path Parameters: deviceID (string) - ID of the device to be added to the favourites

- Responses: - 200 “OK”
- 401 “User unauthorized”

- 404 “Device not found”

5.3.2 Remove Favourite Device

- Description: The API receives the ID of a device that has to be removed from the set

 of favourites

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 52 of 91

- URI: devices/removeFavouriteDevice/{deviceID}

- HTTP method: DELETE

- Header Parameters: authorization (string) - authorization token of the client willing to

 remove the favourite device

- Path Parameters: deviceID (string) - ID of the device to be removed from the favourite

 devices set

- Responses: - 200 “OK”
- 401 “Login Failure”

- 404 “Device not found”

5.3.3 Favourite Devices

- Description: The API returns information about all devices that are saved as

 favourite in the system

- URI: /devices/favouriteDevices

- HTTP method: GET

- Header Parameters: authorization (string) - Authorization Token of the client requiring

 information about the favourite devices

- Responses: - 200 “OK”
Response schema: Device (object)

- 401 “Login Failure”

- 404 “Topic not registered”

5.4 Application Manager APIs

The Application Manager APIs provides operations to manage third-party applications. They allow to

install/remove a third-party application as well as kill it and remove its data.

5.4.1 Install Application

- Description: The API is used to add a new third-party application to the SIFIS-

 Home system. It receives as parameters: i) Activate (indicates if the

 application should be started after its installation), ii) the application ID

 (identifier of the app to be added), iii) the application name and iv)

 application specific settings.

- URI: /applications/installApplication/{applicationId}

- HTTP method: POST

- Header Parameters: authorization (string) - Authorization Token of the client requiring

 to install the application

Activate (boolean) - Defines if the activation of the application has to be

 performed after the installation

Settings (string) - Application-specific settings passed to the installation

 function

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 53 of 91

- Path Parameters: applicationID (integer) - ID of the application to install

- Responses: - 200 “OK”
- 401 “Client unauthorized”

- 404 “Application not found”

5.4.2 Remove Application

- Description: The API is used to remove a third-party application. It receives as

 parameter the identifier of the app to be deleted. It returns an HTTP

 response with the operation result.

- URI: /applications/removeApplication/{applicationId}

- HTTP method: DELETE

- Header Parameters: authorization (string) - Authorization Token of the client requiring

 to remove the application

- Path Parameters: applicationId (integer) - ID of the application to remove

- Responses: - 200 “OK”
- 401 “Client unauthorized”

- 404 “Application not found”

5.4.3 Kill Application

- Description: The API is used to kill an active third-party application. It receives as

 parameter the id (identifier of the app to be killed). It returns an HTTP

 response with the operation result.

- URI: /applications/killApplication/{applicationId}

- HTTP method: GET

- Header Parameters: authorization (string) - Authorization Token of the client willing to kill

 the application

- Path Parameters: applicationId (integer) - ID of the application to kill

- Responses: - 200 “OK”
- 401 “Client unauthorized”

- 404 “Application not found”

5.4.4 Wipe Application

- Description: The API is used to wipe all the data of an application which is already

 installed in the solution. It receives as parameter the id (identifier for the

 app whose data has to be wiped). It returns an HTTP response with the

 operation result.

- URI: /applications/wipeApplication/{applicationId}

- HTTP method: GET

- Header Parameters: authorization (string) - Authorization Token of the client willing to wipe

 the application data

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 54 of 91

- Path Parameters: applicationId (integer) - ID of the application whose data has to be

 wiped

- Responses: - 200 “OK”
- 401 “Client unauthorized”

- 404 “Application not found”

5.5 Device Management API

Internal APIs required to manage the registered devices.

Request Authorization Credentials

- Method: RequestAuthCredential()

- Return type: result(b) [true: success, false: failure], credential(s) [authorization credential]

- Parameters: credentialTarget (s), credentialIssuer (s), scope (s) , [securitySpecificParameters

(s), profileSpecificParameters (s)]

- Description: it is called by a subject to perform certain operations at certain resources of

certain target network nodes. The API relates to the “Authentication manager component”. It

receives the credential target, issuer, scope of the authorization, and security and profile-

specific parameters, and returns the operational result (Boolean) and the authorization

credential (if successful).

Upload Authorization Credentials

- Method: UploadAuthCredential()

- Return type: result(b) [true: success, false: failure], parameters(s)

- Parameters: credentialTarget (s), authorizationCredential (s), [securitySpecificParameters (s),

profileSpecificParameters (s)]

- Description: The API relates to the “Authentication manager component”. It receives the

credential target, the authorization credential, and security and profile-specific parameters, and

returns the operational result (Boolean) and the security and profile specific related

parameters. Note that an access request is automatically checked against the authorization

credential at the credential target, when later receiving a request for resource access from the

subject.

Check Status of Authorization Credentials

- Method: CheckAuthCredentialStatus()

- Return type: result(b) [true: success, false: failure], parameters(s)

- Parameters: authorizationCredential(s) , filter (s)

- Description: to perform certain operations at certain resources of certain target network

nodes. The API relates to the “Authentication manager component”. It receives an

authorization credential, the identifier of authorization credential and filter criteria. It returns as

output the operation result, and security and profile specific parameters.

Perform the exchange of a security secret

- Method: ExchangeSecuritySecret()

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 55 of 91

- Return type: result(b) [true: success, false: failure], [securitySecret(s), securityInformation(s)

[information derived from the security secret], extAuthData(s) [external authorization data]]

- Parameters: targetDevice(s), identityCredential (s), establishmentParameters (s),

[externalAuthorizationData(s)], [wrappingContainer]

- Description: to establish an (end-to-end) security association with another network node. The

API relates to the “Key Manager” component. It receives as input the target device, an identity

credential, and establishment-specific parameters. It receives optionally external authorization

data. As output, it returns the operation result, the security secret, and optionally information

derived from the security secret and external authorization data.

Perform an update of pairwise key material shared with another network node

- Method: UpdatePairwiseKeyMaterial()

- Return type: result(b) [true: success, false: failure]

- Parameters: targetDevice(s)

- Description: The API relates to the “Key Manager” component. It receives as input the target

device, identified with a string parameter, and returns as output the operational result.

Join a Security Group

- Method: JoinSecurityGroup()

- Return type: result(b) [true: success, false: failure], groupKey(s) [group key]

- Parameters: groupManager(s), groupName(s), roles (s), publicKey (s), [requiredInfo(s)

- Description: retrieving the group key material and related parameters; further

material/information retrieval as group member; leaving the security group. The API

relates to the “Key Manager” component. It receives as input the Group Manager of the group,

name of the group, roles wished in the group, [own public key], [interest for other group

information]. It produces as output the operation result (Boolean), group key material, [group

members' public keys], [additional group information].

Discovery of network nodes and their resources

- Method: DiscoveryNetworkNodes();

- Return type: list<s>

- Parameters: targetDiscoveryRequest(s), [targetAttributes(s)]

- Description: The API relates to the “Key Manager” component. It receives the target of the

discovery request and optional attributes for the request. It returns the list of the links to the

discovered resources

Registration of network nodes and their resources (e.g. at Node Discovery)

- Method: RegisterNetworkNodes()

- Return type: result(b) [true: success, false: failure]

- Parameters: targetRegistrationRequest(s), links (list<s>)

- Description: The API relates to the “Key Manager” component. It receives as parameters the

target of registration request, and list of links to register. It returns as output the operation

result (a Boolean value).

Bootstrapping of a network node (e.g. at a LwM2M Bootstrap Server)

- Method: BootstrapNetworkNode()

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 56 of 91

- Return type: result(b) [true: success, false: failure], String [target server], String [security-

mode specific information]

- Parameters: targetBootstrapServer(s), [securityModeSpecificInformation(s)]

- Description: The API relates to the “Key Manager” component. It receives as input the target

bootstrap server, and [security-mode specific information]. It returns as output the operational

result, the target device manager server, and security mode specific information.

Registration of a network node (e.g. at a LwM2M Device Manager Server)

- Method: RegisterNetworkNode()

- Return type: Boolean [true: success, false: failure], String [configuration parameters]

- Parameters: targetDeviceManagementServers(s), securityModeInformation(s)

- Description: The API relates to the “Key Manager” component. It receives as parameters the

target Device Manager Server, and [security-mode specific information]. It gives as output the

operation result, and configuration parameters

Registration of a new smart device in the SIFIS-Home architecture

- Method: RegisterNewSmartDevice()

- Return type: result(b) [true: success, false: failure]

- Parameters: String [digest], String [metadata]

- Description: This API is the high-level interface which triggers the joining of a new Smart

Device to the SIFIS-Home architecture. The digest parameter is used to verify the integrity of

the SIFIS-Home framework instance installed on the device, whilst the metadata provide

information on the device type and functionalities.

5.6 WoT Interfacing API

The WoT interfacing API work as end point to query the devices exposing their functionalities

through a WoT interface. A sample API is reported in the following:

Call WoT Turn Light On

- Method: CallWoTTurnLightOn() devices/lamp/{id}/{command} in this case turnOnLight

- Return type: result(b) [true: light turned on, false: error]

- Parameters: [lightID (f), roomID (f)], intensity (f), colour (f)]

- Description: It calls the WoT implementation of the API to turn on a specific light bulb,

identified by the light-id parameter or all the lights in a specific room. If the first parameter is

missing all available lights will be turned on. Intensity and colour can be used for configurable

light bulbs and are ignored if the light bulb is not configurable. The invoked API returns true if

the light has been turned on, or false if the light is already on, is not reachable or reported as

not working.

5.7 Secure Communication Manager

This API allows to request the transmission of messages to other network nodes. Corresponding

Responses/Acknowledgments/Reset messages are handled by the communication stack.

Send a Message

- Method: SendMessage()

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 57 of 91

- Return type: result(b) [true: success, false: failure]

- Parameters: data (s), transferParameters (s), securityProtocolParameters (s),

targetRecipient(s)

- Description: This API relates to the "Content Distribution Manager" component and the

"Secure Message Exchange Manager" component. The API is used to send a message to a

recipient. It receives as parameters the data to send, transfer- and security-protocol specific

parameters, the target recipient(s). It gives as output the operation results (a Boolean value).

Abort a Message

- Method: AbortMessage()

- Return type: result(b) [true: success, false: failure]

- Parameters: sentMessage (s)

- Description: This API relates to the "Content Distribution Manager" component and the

"Secure Message Exchange Manager" component. The API is used to abort a message

sending. It receives as parameters the pointer to a sent message or the corresponding

transmission. It gives as output the operation results (a Boolean value).

6 Operative Workflows of main SIFIS-Home Operations

This section reports the final set of operative workflows related to the operations that will be

supported by the SIFIS-Home framework. The final set of operative workflows is an extension of the

preliminary set reported in D1.3.

6.1 Register New Home

This workflow, illustrated in Figure 34, is the first operation which is performed by an Administrator

to register his own smart home as a SIFIS-Home instance. In order to register a new Home, the user

should own a SIFIS-Home Smart Device, PC or smartphone. The user needs to download the SIFIS-

Home mobile application on a smartphone or tablet, or access the SIFIS-Home application through the

web portal and then register a new account on the SIFIS-Home Cloud. This triggers the generation of

a dedicated VPN Server with a dedicated DNS record. Then an instance of the SIFIS-Home Smart

Device framework is installed on the associated smart device and a DHT shared key is generated and

stored in the smart device. Finally, Yggio is updated accordingly associating the user to the SIFIS-

Home instance.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 58 of 91

Figure 34: Register new home workflow.

6.2 Register New Smart Device [UC05]

This workflow, illustrated in Figure 35, is used to add a new smart device to a SIFIS-Home instance.

This operation can also be used to register the first smart device after that a new house has been

created. The needed devices for performing the registration of a new smart device are the

smartphone/tablet used to create the new house and the smart device itself. The presence of the

smartphone ensures that the registration is intentional and actually triggered by the authorized user.

First of all, the user should install the SIFIS-Home SD Framework on the new device (if the device

provided by SIFIS, the framework is already installed) and start the smart device in access point

mode. Then it will use the mobile app to select the Add New Device option in the Device Manager

panel. Then the mobile application asks the user to provide an identifier of the smart device (e.g. QR-

Code) and the smart device receives from the mobile application a digest to verify the integrity of the

software. Once the integrity is verified, the smart device uses the Key Manager to generate and store a

pair of keys (public key). The public key is then sent to the Mobile Application for the establishment

of a secure channel. Through this channel, the Mobile Application sends the DHT and Yggio MQTT

credentials to the smart device. If this is the first smart device of the house, it generates the DHT,

receives an Identifier and updates the list of devices also in the cloud by using the FIWARE API

component. Otherwise, the smart device asks to the DHT to elect a leader node, which will perform

the registration of the smart device and will assign an identifier to it. As before the device is also

registered in the cloud to be accessible through Yggio remotely. This workflow satisfies the Use Case

UC05.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 59 of 91

Figure 35: Register new smart device workflow.

6.3 Register New NSSD

This workflow, illustrated in Figure 36, details the installation of a new NSSD in a smart home

instance. Also this workflows implements the use case UC05.

Assumptions: The NSSD comes with the SIFIS-Home NSSD framework. The NSSD has a Wi-Fi

interface.

- NSSD connects to a default NSSD join network.

- The NSSD exposes a number of REST endpoints that allow a SD to give to the NSSD, the Wi-

Fi credentials to use as well as a shared key that should be used to control the NSSD after the

join procedure is completed.

- Device is registered on the DHT by the SD Node that performed the NSSD registration, and

DHT is synchronized.

- The shared key to communicate with the NSSD should be stored into the DHT.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 60 of 91

Figure 36: Register new NSSD workflow.

6.4 Register New NSSD Using WoT [UC05]

This workflow, illustrated in Figure 37, reports the registration of a NSSD which offers a Web of

Things interface. The assumption for this workflow is that there is already at least a smart device in

the SIFIS-Home instance. The NSSD when turned on will start an advertisement procedure to find a

smart device to which it should be connected. The advertisement is interpreted by the WoT Manager

in the NSSD manager. The WoT manager will then retrieve the Thing Description from the NSSD,

extracting thus capabilities and resources, and associates to it an NSSD identifier. The smart device

becomes responsible for the NSSD and the association between the NSSD identifier is stored in the

DHT.

Figure 37: Register new NSSD Using WoT workflow.

This workflow enables the use case UC05.

6.5 Control Resource on NSSD via Third Party App [UC03, UC12]

 This workflow, illustrated in Figure 38, describes the control of a NSSD based on WoT by using a

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 61 of 91

third party application. The workflow is initiated by the third party app, installed on a smart device,

which looks for a specific resource type (e.g. a light) by querying through the WoT manager of the

NSSD manager, the available resources. The resources are stored in the DHT and the query result is

returned. Before the resource list is returned to the app, the SIFIS-Runtime checks the manifest to

verify which resources are declared as relevant for this app. Thus, a filtered list is returned. Once the

third party app has found the relevant resource(s), it can subscribe on the DHT to the topic related to

this resource to receive status information and update the GUI (if any) accordingly. Now the request

to operate the resource can be issued. The operation is performed by publishing on the topic of the

resource a “turn ON” command. The DHT intercepts the publish and converts the topic to “Policy

Engine” so that the request can be evaluated. Supposing a PERMIT response is returned, the status of

the resource is changed on the DHT and the command to operate it is sent to the NSSD. If the

operation is successful, the third party app is notified.

Figure 38: Third party app control of a NSSD resource

This workflow satisfies the use case UC05.

6.6 Register New User, Set Role and assign its Settings [UC01, UC07, UC10]

This workflow, illustrated in Figure 39, describes the procedure of the registration of a new user,

following by the definition of its role and the assignation of its settings. The workflow is initiated by

the administrator, with the login on the mobile application. After logging in, the administrator selects

the Settings screen in the mobile app, and provides the information (name and role) for a new user to

be added. The mobile applications at this point performs an authentication with the Authentication

Manager module, with administrator privileges. The Policy Enforcement Engine checks the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 62 of 91

authorization for the administrator and the mobile app to add a new user. Once the creation of the user

is authorized, the Key Manager module generates the credentials for the new user. The user is then

registered in the DHT, and his role and credentials are encrypted and stored. The system sends a

notification to the administrator, and the new user is provided with a default password to be used for

the first login in the system.

At this point, the new user can log in to the system, through an instance of the Mobile Application.

The Authentication Manager receives the user’s credentials, and provides access. The mobile

application asks the user to insert a new password: once the user provides it, a new key pare is

generated and the credentials in the DHT are updated. If the user does not log-in and perform an

update of the default password in the first 24 hours after the registration, he is deleted from the

system.

Figure 39: Workflow to register New User, Set Role and assign its Settings

6.7 Anomaly detection analytic workflow [UC04, UC11, UC06]

This workflow, which will be detailed in D4.2, shows the sequence of events in the execution of the

anomaly detection analytic. As shown in Figure 40, the first part of the workflow consists of

collecting input data from the various monitors and input interfaces in the GUI and Proactive Security

Management Layer. The collection is done through either a polling mechanism, where the information

is periodically stored in the Distributed Storage through the DHT communication manager, or through

providing a handle representing a socket stored in the Distributed Storage. The latter data collection

mechanism is suitable for e.g., network packet data, which must be subjected to an analytic as close as

possible to real-time in order to minimize response time when reacting to e.g., network intrusions or

threats. The Application Manager in the Secure Lifecycle Manager will handle the classification

procedure through a dedicated service that will invoke the Policy Enforcement Engine, as shown in

Figure 41. Data are anonymized before the analysis through the anonymization toolbox and then

processed through a specific analytic. The output of the analytic is then processed by the

Evaluator/Notifier which might either notify the user or trigger corrective actions through the

Application Manager or the Node Manager (not shown in Picture). This workflow implements the use

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 63 of 91

cases UC04, UC11 and UC06.

Figure 40: First part of the anomaly detection workflow: Illustration of sources providing input for various

anomaly detection analytics.

Figure 41: Second part of the anomaly detection workflow: Runtime communication between components

6.8 Policy Translation Workflow [UC09]

The workflow depicted in Figure 42 represents the operation performed by the Policy Translation

Point (PTP) subcomponent of the Policy Enforcement Engine. The goal of this workflow is to

translate high-level policies like “WHEN evening AND in living room THEN deny audio registration”

into a set of low-level policies, preferably in a XACML-like formalism, that will be then used by the

SIFIS-Home system to control the behaviour of the devices and applications installed in the smart

home. In parallel, another goal of the task is to detect potential conflicts between high-level policies.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 64 of 91

Figure 42: Policy Translation Workflow

These processes will happen through a reasoning process that will analyse contextual information as

well as the capabilities of the devices and applications installed in the home. To this end, we will

design a custom ontology, and we will exploit the tools and software provided by the Semantic Web

framework.

In the SIFIS-Home architecture, the ontology and the developed software are included in the Policy

Enforcement Engine module, within a specific sub-module named Policy Translation Point (PTP).

To implement the translation of high-level conflicts and the conflicts detection, we continuously get

the following inputs from other modules:

• From the Application Manager module, we get information about the applications installed in

the home, e.g., their capabilities, their current statuses, etc.

• From the Node Manager module, we get information about the devices installed in the home,

e.g., their capabilities, their current statuses, etc. In parallel, we also get information about the

home itself, e.g., the rooms, the position of the various devices, etc.

• From the Settings module, we retrieve the list of high-level policies to be checked and

translated.

From the collected input, the PTP module firstly checks if there are conflicts between the available

high-level policies. If this is the case, the Alarms/Log module used to send an alarm to the user, e.g.,

in the form of a notifications. If there are no conflicts, instead, the policies are translated in the

corresponding XACML policies. Such policies are then sent to the same Policy Enforcement Engine

module, which is in charge of enforcing them on the right devices and applications. This workflow

satisfies the use case UC09.

6.9 Provide and handle a voice command [UC01, UC02]

This workflow, illustrated in Figure 43, shows the sequence of events required to issue a voice

command to the DHT through the mobile app, leveraging the Data Analysis Toolbox to identify the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 65 of 91

user and translate the voice to a Command and have the Policy Enforcement Engine evaluate it before

allowing (or denying it). This workflow implement the use cases UC01 and UC02.

• A voice command is recorded through the Home component of the mobile app

• The command is recorded in the DHT manager and a post to the voice analysis topic is

performed.

• The voice command is sent to the data analysis toolbox where the command is processed.

• The identity of the user is recognized.

• The analysis toolbox translates the command in a DHT command providing a topic and

payload with parameters.

• The command is posted on the DHT with the topic for Policy Enforcement Engine.

• The policy enforcement engine verifies if the user can give such a command.

• If Permit the DHT manager publishes the payload on Topic, otherwise returns error to Home.

• The command is managed by the intended component.

Figure 43: Workflow to provide and handle a voice command

6.10 Access house functionality from remote device [UC12,UC13]

As illustrated in Figure 44, this workflow is to access house functionality from a remote device. To

access the house when being outside one must interface the cloud interface. The cloud interface will

then let the user access the SIFIS Home network inside the house. Depending on role of the user

different authorization rights to view and do things will be available:

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 66 of 91

- Continuously:

o The DHT manager is subscribing to events from the FIWARE API related to the house

o The DHT manager updates status in FIWARE as soon as any status in the house

change, that is, the FIWARE API always holds the latest status from device, user,

policy and general status point of view.

- Access the house and get the status

o The user connects to Yggio via the mobile application. Depending on login credentials

different access rights to the house will be granted.

o Yggio request the FIWARE Context broker to provide latest status of the house for the

logged in user. Yggio then provides this status the user.

- Perform an update action (device, policy or user):

o The user request Yggio to update a resource (for example turn on/off a lamp) in the

house, Yggio forward the request to the FIWARE Context broker and also confirm the

request to the user.

o The FIWARE Context broker execute the update request, if the user credentials are

authorized the update will be done and if not, it will get rejected.

o Since the DHT manager subscribed to FIWARE events if the update is approved it will

get notified an authorized user wants to perform an action, the request is forwarded to

the device manager that executes the request.

o The user will then get confirmation that the request is done or if it was rejected.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 67 of 91

Figure 44: Workflow to access house functionality from a remote device

7 Security Analysis and Threat Models

The SIFIS-Home architecture has been designed to be dependable and secure, to be protected against

both cyber attacks and devices misbehaviours. In the following we report a brief analysis of what are

the security properties implemented in the SIFIS-Home architecture and the SIFIS-Home framework

and we will discuss a set of threat models which are relevant for this environment and that will be

tested against the SIFIS-Home security capabilities.

7.1 Availability

The capability of the system to be available, to perform its tasks and to satisfy user requests is

extremely relevant in the smart home environment. Even partial unavailability can be catastrophic in a

smart home environment. The functionalities of the SIFIS-Home framework are replicated among the

smart devices. In particular, each smart device installs an instance of the SIFIS-Home SD framework.

Thus, the availability of SIFIS-Home is ensured until at least one smart device is active. If there are no

active smart devices, the SIFIS-Home architecture fails.

We assume that a SIFIS-Home instance includes a number of smart devices greater or equal than 3. If

one device fails, the self-healing module will redistribute functionalities and resources assignment

(especially NSSDs), and it will try to restore the fault device.

The failure of one device or of the connection to the SIFIS-Home Cloud, in SIFIS-Home is designed

to generate a potential functionality degradation, but not an overall system failure. In fact, the

unavailability of a smart device or of the SIFIS-Home cloud (which might be caused by the lack of

Internet connection) will cause AT MOST the unavailability of the resources connected to that smart

device, or of the functionalities accessed through the cloud. This is also ensured by the presence of the

DHT, which replicates at a certain degree the information available on each smart device and can even

be fully replicated.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 68 of 91

7.1.1 Attacks to Availability

Physical removal of a smart device: we consider the attacker able to physically disconnect/remove

from the house a number of smart devices between 1 and m where m is lesser than the total number of

devices.

Denial of Service: the attacker is able to send a large number of packets toward a single device (smart

device or NSSD) blocking all the useful network traffic toward that device and making it unreachable.

Physical removal of a NSSD: the attacker removes or turns off a NSSD making the resources

controlled by it unavailable.

Wi-Fi shut down / Jamming: the attacker disconnects the Wi-Fi router or jams a specific Wireless

channel to block the connection among smart devices.

Computation Overload: The attacker installs an application on the smart device which consumes all

the CPU time, making it impossible to perform normal operations.

7.2 Confidentiality

Being able to access private information allows an attacker to violate the privacy of the smart home

tenants, or can give access to credentials which can be used to escalate the attack and take control of

the system. SIFIS-Home exploits security protocols and state of the art cryptography mechanisms to

ensure that all transported data remain confidential. In particular, all communications happening

among smart devices, and those among smart devices and NSSDs, they all rely on TLS or DTLS,

ensuring that entities which are not part of the SIFIS-Home architecture, are not able to read the

exchanged packets. Access to the SIFIS-Home architecture is protected through credentials and

workflows which ensure that the access of a new device can only be performed when triggered by an

administrator/maintainer. For those devices which are part of the SIFIS-Home architecture, still might

be compromised, a first level of protection is ensured by differentiated encrypted storage. In

particular, the DHT stores data always encrypted, where the encryption is performed on a topic base,

meaning that a device which should not have access to a specific topic, cannot access, delete or

modify those information. A rekeying workflow is triggered immediately once a device is found to

have been compromised, to further reduce the malicious effects on confidentiality.

7.2.1 Attacks to confidentiality

Eavesdropping: The attacker connects the Wi-Fi network in promiscuous mode and intercepts

packets attempting to read their content.

Spyware: The attacker installs a third party application which attempts at extracting private

information from the DHT and accessing NSSDs resources. We assume that the application can query

the DHT but does not have the authorization to read the target information and does not have the right

to access the target resource.

7.3 Integrity

This is a key property of cybersecurity, which ensures that information are not maliciously modified

either during transport or at rest. By exploiting TLS, the integrity at transport is ensured by design.

Integrity at rest is ensured by data encryption and by means of access control mechanisms.

7.3.1 Attacks to Integrity

Man in the Middle (MITM): the attacker tries to intercept and modify packets while in transit

between two legit entities. We assume that the attacker is able to listen on the wireless channel

between two smart devices and between a smart device and an NSSD.

DHT spoofing: the attacker tries to modify the content of stored information in the DHT. We assume

that the attacker is able to access the DHT and is allowed to modify the target information. We assume

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 69 of 91

that only one smart device is under the control of the attacker by means of a specific third-party

application.

7.4 Distributed System Security

The lack of a root of trust is the weak point of distributed systems. While the distributiveness is an

asset to counter denial of services, distributed systems have to rely on different techniques to

understand when a device is misbehaving or it has been compromised. SIFIS-Home uses a trust-based

model to identify and isolate misbehaving devices. In particular, many operations in SIFIS-Home

require a general consensus among the smart devices. Such decisions could be access control

decisions, reading of data from correlated sensors and anomaly detection decisions. These decisions

are take through a collaborative vote. Each time such a decision has to be taken, the smart devices

exploit the DHT to vote on the decision. Only the devices that are actually entitled to vote can

participate to each voting procedure (e.g. the smart devices having access on correlated resources).

The vote of each smart device is weighted according to a reputation score, which is increased every

time the nodes vote in agreement with the common decision and is decreased (significantly) every

time the node is in disagreement with the common consensus. A reputation threshold is established

and nodes under the threshold cannot participate to a vote (but they can still express their decision to

update the reputation score). This algorithm is used to help in the detection of compromised nodes,

which intentionally (malicious) or unintentionally (malfunctioning) vote for wrong decisions. The

mechanism is resistant to coalition attacks.

7.4.1 Attacks to distributed systems

Device Compromission: The attacker maliciously gains the control of a smart device or NSSD, by

installing malicious third party app or software on it. We assume that for smart devices the attacker is

able to install a malicious application and for the NSSDs is able to modify the firmware.

Sybil Attack: The attacker attempts to create fake devices with fake identities which become part of

the DHT. This attack is escalated to generate network partitions and perform MITM attacks.

7.5 Authorization and Access Control

The management of access control is a main security aspect addressed by the SIFIS-Home framework.

In SIFIS-Home each user has a role, to which specific authorizations are given for specific operations.

At the same time, an authorization based system is also used to control the access to resources and

operations, by both devices and applications. This granular control is enabled by the Policy

Enforcement Engine, which is a tool based on dynamic attribute-based access control (ABAC).

Through secure APIs and the presence of the DHT intercepting all operations and requests, it is

possible to control in the SIFIS-Home framework virtually the authorizations for any operation, user,

device and application. Still, the challenge resides in the correct definition of policies, which become

more complicated as the complexity of a smart home environment increase, leaving the system

potentially prone to specific attacks.

7.5.1 Attacks to Authorization and Access Control

Honest but curious: This is the typical threat model of any access control system. We consider any

entity (user, application, device) requesting authorizations as an honest component, which means it

totally abides to the protocols and given authorization. Still, if the entity has the possibility to access a

resource which should not be accessed, the entity will exploit this possibility and access the resource.

This attack becomes possible when there are mistakes in the access policies.

Privilege Escalation: Through this attack, an entity tries to progressively and maliciously take higher

privileges, which should not be granted to it. This attack is made possible again through policy

mistakes and lack of control on the minimum privilege paradigm.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 70 of 91

8 Conclusion

In this deliverable we have presented the preliminary design of the SIFIS-Home Architecture and the

SIFIS-Home framework. The SIFIS-Home architecture helps in providing a formal definition of

SIFIS-Home actors, users and devices, which will be used to define security and safety policies, based

on their rights to perform specific actions in specific contexts. The SIFIS-Home framework defines

instead all the components which have been used to map the needed functionalities addressing the

requirements specified in D1.1 and D1.2. We recall that the architecture of the SIFIS-Home

framework presented in this document is preliminary, and though it has followed a monitored bottom-

up approach, we are aware that some modifications might occur following the feedbacks from the

implementation and deployment phase.

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 71 of 91

9 References

[Maymounkov et al. 2002] P. Maymounkov, D. Mazières, "Kademlia: A Peer-to-Peer Information

System Based on the XOR Metric", Peer-to-Peer Systems. IPTPS 2002. Lecture Notes in Computer

Science, vol 2429. Springer, Berlin, Heidelberg

[Faiella et. al 2016] Mario Faiella, Fabio Martinelli, Paolo Mori, Andrea Saracino, Mina

Sheikhalishahi:

Collaborative Attribute Retrieval in Environment with Faulty Attribute Managers. ARES 2016: 296-

303

[WoT, 2020] Web Of Things (WoT) Architecture, W3C recommendation 9 April 2020,

https://www.w3.org/TR/wot-architecture/

[FIWARE, 2021] What is FIWARE?, https://www.fiware.org/developers/

[YGGIO, 2021] Yggio DiMS, Digitalization infrastructure Management System,

https://sensative.com/yggio/

[La Marra et al, 2017] Antonio La Marra, Fabio Martinelli, Paolo Mori, Andrea Saracino:

Implementing Usage Control in Internet of Things: A Smart Home Use Case.

TrustCom/BigDataSE/ICESS 2017: 1056-1063

[Facchini et al, 2020] Simone Facchini, Giacomo Giorgi, Andrea Saracino, Gianluca Dini:

Multi-level Distributed Intrusion Detection System for an IoT based Smart Home Environment.

ICISSP 2020: 705-712

[Saracino et al, 2021] M Sheikhalishahi, A Saracino, F Martinelli, A La Marra, Privacy preserving

data sharing and analysis for edge-based architectures, International Journal of Information Security,

1-23

[XACML, 2013] eXtensible Access Control Markup Language (XACML) Version 3.0, Oasis

Standard, http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

[Perkins, 1999] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, Proceedings

WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications

https://www.w3.org/TR/wot-architecture/
https://www.fiware.org/developers/
https://sensative.com/yggio/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 72 of 91

Glossary

Acronym Definition

DHT Distributed Hash Table

FR Functional Requirements

NFR Non-functional requirement

OS Operative System

P2P Peer to Peer

SIFIS-Home Secure Interoperable Full Stack Internet of Things for Smart Home

UC Use case

US User story

SD Smart Device

NSSD Not So Smart Device

XACML eXtensible Access Control Markup Language

PEP Policy Enforcement Point

PIP Policy Information Point

PDP Policy Decision Point

PAP Policy Administration Point

PTP Policy Translation Point

CH Context Handler

AODV Ad-hoc On-demand Distance Vector

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 73 of 91

Appendix A: JSON documentation of the APIs

{

 "swagger": "2.0",

 "info": {

 "description": "SIFIS-Home example APIs",

 "version": "1.0.0",

 "title": "SIFIS-Home example APIs"

 },

 "host": "web.sifis-home.eu",

 "basePath": "/v1",

 "tags": [

 {

 "name": "devices",

 "description": "APIs to get information and details about the managed devices"

 },

 {

 "name": "home",

 "description": "APIs to get credentials"

 },

 {

 "name": "message",

 "description": "APIs to get messages, logs and alarms from a SIFIS-Home system"

 },

 {

 "name": "application",

 "description": "APIs to manage the installation/removal of third-parties applications"

 }

],

 "schemes": [

 "https",

 "http"

],

 "paths": {

 "/devices": {

 "get": {

 "description": "The API returns information about all the devices registered in the SIFIS-Home

system",

 "parameters": [

 {

 "in": "header",

 "name": "Authorization",

 "description": "Authorization Token of the client requiring information about the devices",

 "type": "string",

 "required": true

 }

],

 "tags": [

 "devices"

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 74 of 91

],

 "responses": {

 "200": {

 "description": "OK",

 "schema": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Device"

 }

 }

 },

 "401": {

 "description": "User unauthorized"

 },

 "404": {

 "description": "Devices not found"

 }

 }

 }

 },

 "/devices/addFavouriteDevice/{deviceID}": {

 "post": {

 "description": "The API receives the deviceID of a device that has to be put into the set of

favourite devices",

 "tags": [

 "devices"

],

 "responses": {

 "200": {

 "description": "OK"

 },

 "401": {

 "description": "User not authorized"

 },

 "404": {

 "description": "Device with deviceID not found"

 }

 },

 "parameters": [

 {

 "in": "path",

 "name": "deviceID",

 "description": "ID of the device to be added to the favourite devices set",

 "type": "string",

 "required": true

 },

 {

 "in": "header",

 "name": "Authorization",

 "description": "Authorization Token of the client requiring information about the devices",

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 75 of 91

 "type": "string",

 "required": true

 }

]

 }

 },

 "/devices/removeFavouriteDevice/{deviceID}": {

 "delete": {

 "description": "The API receives the deviceID of a device that has to be deleted from the set of

favourite devices",

 "tags": [

 "devices"

],

 "responses": {

 "200": {

 "description": "OK"

 },

 "401": {

 "description": "User not authorized"

 },

 "404": {

 "description": "Device not found"

 }

 },

 "parameters": [

 {

 "in": "path",

 "name": "deviceID",

 "description": "ID of the device to be removed from the favourite devices set",

 "type": "string",

 "required": true

 },

 {

 "in": "header",

 "name": "Authorization",

 "description": "Authorization Token of the client requiring information about the devices",

 "type": "string",

 "required": true

 }

]

 }

 },

 "/devices/favouriteDevices": {

 "get": {

 "description": "The API returns information about all the devices that are in the favourite devices

set",

 "parameters": [

 {

 "in": "header",

 "name": "Authorization",

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 76 of 91

 "description": "Authorization Token of the client requiring information about the favourite

devices",

 "type": "string",

 "required": true

 }

],

 "tags": [

 "devices"

],

 "responses": {

 "200": {

 "description": "OK",

 "schema": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Device"

 }

 }

 },

 "401": {

 "description": "User unauthorized"

 },

 "404": {

 "description": "Devices not found"

 }

 }

 }

 },

 "/home/login": {

 "post": {

 "description": "API to get an authorization token using username and password",

 "tags": [

 "home"

],

 "responses": {

 "200": {

 "description": "OK",

 "schema": {

 "type": "string",

 "description": "Authorization Token"

 }

 },

 "401": {

 "description": "Login failure"

 }

 },

 "parameters": [

 {

 "in": "header",

 "name": "username",

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 77 of 91

 "description": "username for the login procedure",

 "type": "string",

 "required": true

 },

 {

 "in": "header",

 "name": "password",

 "description": "password for the login procedure",

 "type": "string",

 "required": true

 }

]

 }

 },

 "/messages": {

 "get": {

 "tags": [

 "message"

],

 "summary": "Access data from alarms and activity log",

 "description": "The API returns a list of messages. It returns the messages belonging to the topics

to which the client is currently registered. The API allows an optional additional filter to be provided

as a parameter.",

 "produces": [

 "application/json"

],

 "parameters": [

 {

 "in": "header",

 "name": "Authorization",

 "description": "Authorization Token of the client requiring the data feed",

 "type": "string",

 "required": true

 },

 {

 "in": "query",

 "name": "search_string",

 "description": "Optional filter string for the messages to be returned",

 "type": "string",

 "required": false

 }

],

 "responses": {

 "200": {

 "description": "OK",

 "schema": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Message"

 }

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 78 of 91

 }

 },

 "401": {

 "description": "Client unauthorized"

 },

 "404": {

 "description": "No messages found"

 }

 }

 }

 },

 "/messages/messageFeedRegister/{topic}": {

 "post": {

 "tags": [

 "message"

],

 "summary": "The API allows to subscribe to data from alarms and activity logs pertaining to a

certain topic ",

 "description": "The API receives the topic to which the user wants to subscribe.",

 "produces": [

 "application/json"

],

 "parameters": [

 {

 "in": "header",

 "name": "Authorization",

 "type": "string",

 "description": "Authorization Token of the client willing to perform the registration",

 "required": true

 },

 {

 "in": "path",

 "name": "topic",

 "description": "Topic of the required feed",

 "type": "string",

 "required": true

 }

],

 "responses": {

 "200": {

 "description": "OK"

 },

 "401": {

 "description": "Client unauthorized"

 },

 "404": {

 "description": "Topic not registered"

 }

 }

 }

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 79 of 91

 },

 "/messages/messageFeedUnregister/{topic}": {

 "post": {

 "tags": [

 "message"

],

 "summary": "The API allows to disable the subscription to data from alarms and activity logs

pertaining to a certain topic",

 "description": "The API receives the topic to be unregistered from.",

 "produces": [

 "application/json"

],

 "parameters": [

 {

 "in": "header",

 "name": "Authorization",

 "type": "string",

 "description": "Authorization Token of the client willing to unregister",

 "required": true

 },

 {

 "in": "path",

 "name": "topic",

 "description": "Topic of the feed",

 "type": "string",

 "required": true

 }

],

 "responses": {

 "200": {

 "description": "OK"

 },

 "401": {

 "description": "Client unauthorized"

 },

 "404": {

 "description": "Topic not registered"

 }

 }

 }

 },

 "/messages/streamCameraFeeds/{topic}": {

 "get": {

 "tags": [

 "message"

],

 "summary": "Access data from alarms and activity log",

 "description": "The API receives as a parameter the topic of the camera feeds to read.",

 "produces": [

 "application/json"

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 80 of 91

],

 "parameters": [

 {

 "in": "header",

 "name": "Authorization",

 "type": "string",

 "description": "Authorization Token of the client willing to stream the camera feed"

 },

 {

 "in": "path",

 "name": "topic",

 "type": "string",

 "description": "Topic of the desired camera feeds",

 "required": true

 }

],

 "responses": {

 "200": {

 "description": "OK",

 "schema": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/CameraFeed"

 }

 }

 },

 "401": {

 "description": "Client unauthorized"

 },

 "404": {

 "description": "No messages found"

 }

 }

 }

 },

 "/applications/installApplication/{applicationID}": {

 "post": {

 "tags": [

 "application"

],

 "summary": "The API is used to add a new third-party application to the SIFIS-Home system. It

receives as parameters: i) Activate (indicates if the application should be started after its installation),

ii) the application ID (identifier of the app to be added), iii) the application name and iv) application

specific settings.",

 "parameters": [

 {

 "in": "path",

 "name": "applicationID",

 "type": "string",

 "description": "ID of the application to install",

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 81 of 91

 "required": true

 },

 {

 "in": "header",

 "name": "Authorization",

 "type": "string",

 "description": "Authorization Token of the client willing to install the application"

 },

 {

 "in": "header",

 "name": "Activate",

 "type": "boolean",

 "description": "Defines if the activation of the application has to be performed after its

installation"

 },

 {

 "in": "header",

 "name": "Settings",

 "type": "string",

 "description": "Application-specific settings"

 }

],

 "responses": {

 "200": {

 "description": "OK",

 "schema": {

 "$ref": "#/definitions/Application"

 }

 },

 "401": {

 "description": "Client Unauthorized"

 },

 "404": {

 "description": "Application not found"

 }

 }

 }

 },

 "/applications/removeApplication/{applicationID}": {

 "delete": {

 "tags": [

 "application"

],

 "summary": "The API is used to remove a third-party application. It receives as parameter the

identifier of the app to be deleted. It returns an HTTP response with the operation result.",

 "parameters": [

 {

 "in": "path",

 "name": "applicationID",

 "type": "string",

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 82 of 91

 "description": "ID of the application to remove",

 "required": true

 },

 {

 "in": "header",

 "name": "Authorization",

 "type": "string",

 "description": "Authorization Token of the client willing to remove the application"

 }

],

 "responses": {

 "200": {

 "description": "OK"

 },

 "401": {

 "description": "Client Unauthorized"

 },

 "404": {

 "description": "Application not found"

 }

 }

 }

 },

 "/applications/killApplication/{applicationID}": {

 "post": {

 "tags": [

 "application"

],

 "summary": "The API is used to kill an active third-party application. It receives as parameter the

id (identifier of the app to be killed). It returns an HTTP response with the operation result.",

 "parameters": [

 {

 "in": "path",

 "name": "applicationID",

 "type": "string",

 "description": "ID of the application to kill",

 "required": true

 },

 {

 "in": "header",

 "name": "Authorization",

 "type": "string",

 "description": "Authorization Token of the client willing to kill the application"

 }

],

 "responses": {

 "200": {

 "description": "OK"

 },

 "401": {

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 83 of 91

 "description": "Client Unauthorized"

 },

 "404": {

 "description": "Application not found"

 }

 }

 }

 },

 "/applications/wipeApplication/{applicationID}": {

 "post": {

 "tags": [

 "application"

],

 "summary": "The API is used to wipe all the data of an application which is already installed in

the solution. It receives as parameter the id (identifier for the app whose data has to be wiped). It

returns an HTTP response with the operation result.",

 "parameters": [

 {

 "in": "path",

 "name": "applicationID",

 "type": "string",

 "description": "ID of the application whose data has to be wiped",

 "required": true

 },

 {

 "in": "header",

 "name": "Authorization",

 "type": "string",

 "description": "Authorization Token of the client willing to wipe the application data"

 }

],

 "responses": {

 "200": {

 "description": "OK"

 },

 "401": {

 "description": "Client Unauthorized"

 },

 "404": {

 "description": "Application not found"

 }

 }

 }

 }

 },

 "definitions": {

 "Message": {

 "type": "object",

 "properties": {

 "id": {

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 84 of 91

 "type": "string",

 "description": "identifier of the message"

 },

 "type": {

 "type": "string",

 "description": "type of message",

 "enum": [

 "alarm",

 "log"

]

 },

 "topic": {

 "type": "string"

 },

 "description": {

 "type": "string",

 "description": "Message content"

 }

 }

 },

 "CameraFeed": {

 "type": "object",

 "properties": {

 "id": {

 "type": "integer",

 "description": "identifier of the camera feed",

 "format": "int64"

 },

 "topic": {

 "type": "string",

 "description": "topic of the feed"

 },

 "stream": {

 "type": "string",

 "format": "byte",

 "description": "image feed"

 }

 }

 },

 "Application": {

 "type": "object",

 "properties": {

 "applicationID": {

 "type": "string",

 "description": "identifier of the application"

 },

 "name": {

 "type": "string",

 "description": "Application-specific name"

 },

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 85 of 91

 "settings": {

 "type": "string",

 "description": "Application-specific settings"

 }

 }

 },

 "Device": {

 "type": "object",

 "properties": {

 "deviceID": {

 "type": "string",

 "description": "identifier of the device"

 },

 "name": {

 "type": "string",

 "description": "Name of the device"

 }

 }

 }

 },

 "externalDocs": {

 "description": "Find out more about Swagger",

 "url": "http://swagger.io"

 }

}

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 86 of 91

Appendix B – differences with D1.3

The present appendix discusses and motivates the modifications performed on the conceptual architecture of

the SIFIS-Home framework between the preliminary version (presented in deliverable 1.3) and the final one

(presented in this deliverable).

The main modification performed on the conceptual architecture has been the logical separation of macro-

components according to the specific hardware device where their deployment has to be performed. This has

led to the separation of the single top-level architectural block “SIFIS-Home Framework” into four different

top-level architectural blocks: SIFIS-Home Application Framework, containing all the software components to

be deployed on a mobile device to control the SIFIS-Home Framework; SIFIS-Home Cloud Framework,

containing all the software components to be deployed on a Cloud infrastructure to support the other

components of the architecture; SIFIS-Home NSSD Framework, containing all the software components to be

installed on Not-so-smart Devices; SIFIS-Home Smart Device Framework, containing all the software

components to be installed on the Smart Devices managing the SIFIS-Home infrastructure.

Minor modifications have been applied inside the macro-components, principally to simplify the architecture:

an example of such practice is the more compact design of the SIFIS-Home API Gateway component, where a

Mobile Application API sub-component has been defined to incorporate nine different components of the

preliminary architecture. Other architectural changes have been performed to increase the cohesion of the

software modules, e.g., the movement of the WoT manager in the NSSD Manager component and out of the

SIFIS-Home API Gateway due to low cohesion with the latter software modules.

All the modifications performed in the architecture in the transition between deliverable D1.3 and deliverable

D1.4 are described in table below. The table provides the corresponding component in the new architecture

for each component of the architecture in deliverable D1.3 and describes the rationale for the changes (if

any).

D1.3 macro-
component

D1.3 component D1.4 macro-
component

D1.4 component Notes

SIFIS-Home API
Gateway

Device
Management
API

SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the
architecture

SIFIS-Home API
Gateway

Data
Management
API

SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the
architecture

SIFIS-Home API
Gateway

DHT
Management
API

SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the
architecture

SIFIS-Home API
Gateway

Application API SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 87 of 91

architecture

SIFIS-Home API
Gateway

Policy
Management
API

SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the
architecture

SIFIS-Home API
Gateway

Data Analysis
API

SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the
architecture

SIFIS-Home API
Gateway

Notification API SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the
architecture

SIFIS-Home API
Gateway

Communication
API

SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the
architecture

SIFIS-Home API
Gateway

Marketplace API SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the
architecture

SIFIS-Home API
Gateway

Home API SIFIS-Home API
Gateway

Mobile
Application API

All API modules
collected in a
single module to
simplify the
architecture

SIFIS-Home API
Gateway

WoT Interfacing
API

NSSD Manager WoT Manager Component
moved in the
newly-defined
NSSD Manager
macro-
component

SIFIS-Home API
Gateway

Fiware
Interfacing API

DHT Manager Fiware API Component
moved into the
new DHT
Manager macro-
component

User Interface Home SIFIS-Home
Application
Framework

Home Macro-
component
renamed to
SIFIS-Home
Application

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 88 of 91

Framework

User Interface Device
Management

SIFIS-Home
Application
Framework

Device
Management

Macro-
component
renamed to
SIFIS-Home
Application
Framework

User Interface Settings SIFIS-Home
Application
Framework

Settings Macro-
component
renamed to
SIFIS-Home
Application
Framework

User Interface Alarms / Logs SIFIS-Home
Application
Framework

Alarms / Logs Macro-
component
renamed to
SIFIS-Home
Application
Framework

User Interface Marketplace SIFIS-Home
Application
Framework

Marketplace Macro-
component
renamed to
SIFIS-Home
Application
Framework

User Interface Input Collection SIFIS-Home
Application
Framework

Input Collection Macro-
component
renamed to
SIFIS-Home
Application
Framework

User Interface Policy Manager SIFIS-Home
Application
Framework

Settings Macro-
component
renamed to
SIFIS-Home
Application
Framework;
component
incorporated
into the Settings
component

Secure Lifecycle
Manager

Application
Manager

Secure Lifecycle
Manager

Application
Manager

-

Secure Lifecycle
Manager

Node Manager Secure Lifecycle
Manager

Node Manager -

Secure Lifecycle
Manager

Authentication
Manager

 Secure Lifecycle
Manager

Authentication

Manager

-

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 89 of 91

Secure Lifecycle
Manager

Device
Registration
Manager

Secure Lifecycle
Manager

Device
Registration
Manager

-

Secure Lifecycle
Manager

Key Manager Secure Lifecycle
Manager

Key Manager -

Secure Lifecycle
Manager

System
Protection
Manager

Secure Lifecycle
Manager

System
Protection
Manager

-

Secure
Communication
Layer

DHT
Communication
Manager

DHT Manager DHT Component

moved in the

DHT Manager

component,

features

managed by the

DHT sub-

component

Secure
Communication
Layer

Secure Message
Exchange
Manager

Secure
Communication
Layer

Secure Message
Exchange
Manager

 -

Secure
Communication
Layer

Content
Distribution
Manager

Secure
Communication
Layer

Content
Distribution
Manager

 -

Secure
Communication
Layer

External
Communication
Manager

DHT Manager Fiware API Component
moved in the
DHT Manager
component,
features
managed by the
Fiware API sub-
component

Secure
Communication
Layer

Network
Protection
Manager

Secure Lifecycle
Manager

System
Protection
Manager

Component
incorporated
into the System
Protection
Manager
component

Application
Toolboxes

Policy
Enforcement
Engine

Application
Toolboxes

Policy
Enforcement
Engine

-

Application
Toolboxes

Anonymization
Toolbox

Application
Toolboxes

Anonymization
Toolbox

-

Application
Toolboxes

Data Analysis
Toolbox

Application
Toolboxes

Data Analysis
Toolbox

-

Proactive
Security
Management

API Monitor Proactive
Security
Management

Monitors Component
incorporated
into the

H2020-SU-ICT-02-2020-SIFIS-Home –#952652 Deliverable D1.4

Version: 1.2 Page 90 of 91

Layer Layer Monitors
component

Proactive
Security
Management
Layer

DHT Monitor Proactive
Security
Management
Layer

Monitors Component
incorporated
into the
Monitors
component

Proactive
Security
Management
Layer

Self Healing Proactive
Security
Management
Layer

Self Healing -

Proactive
Security
Management
Layer

Network /
System Monitor

Proactive
Security
Management
Layer

Monitors Component
incorporated
into the
Monitors
component

Proactive
Security
Management
Layer

Distributed Trust Proactive
Security
Management
Layer

Distributed Trust -

Proactive
Security
Management
Layer

Evaluator /
Notifier

SIFIS-Home
Application
Framework

Alarms / Logs Component
incorporated
into the
Alarms/Logs
component

